
1

sistor

n of

ith-

ntic

ign-

dolo-

ions

or as

make

lem,

tyle.

ly for
Chapter 1

Introduction

1.1 Motivation

With the continuous advancement of process and fabrication technologies, tran

feature sizes on VLSI circuits shrink and the complexity and degree of integratio

such circuits exponentially increase, as predicted by the Moore’s law. However, w

out CAD tools that help designers in all different aspects of designing such giga

circuits, the utilization of the Moore’s law would not have been possible.

In particular, the advent of sub-micron technologies have confronted VLSI des

ers with new challenges, some of which might demand whole new design metho

gies. One such challenge in sub-micron design is to circumvent the limitat

introduced by interconnect delay that rapidly becomes the dominant delay fact

feature sizes shrink and switching delays scale down. These parasitic limitations

distribution of signals across a chip and dealing with signal skew a serious prob

restricting the maximum performance achievable by (any) particular design s

Addressing the ever increasing demand for lower power consumption, especial

2

inte-

syn-

ally

due to

intro-

tem-

s of

the

syn-

As a

case

tech-

men-

nous

ple-

oon as

mmu-

ation
portable applications, is among other important challenges in the design of highly

grated circuits. These challenges are of particular significance and magnitude in

chronous design styles where circuit activities are coordinated by a glob

distributed periodic signal(s) called “clock”.

Synchronous design styles have been the dominant approach since mid 60’s,

their relative ease and robustness. In such styles, the use of clock signals has

duced a level of abstraction in the time domain that hides many details about the

poral relations among circuit signals. This has greatly simplified timing analysi

such circuits, often reducing it to merely critical path analysis for the design of

clock signal. This simplification is possible because the only timing concern in a

chronous circuit is that the circuit has to be stable by the end of a clock cycle.

result, the performance of a synchronous circuit is also a function of the worst

delay.

Recent years have witnessed extensive research on asynchronous design

niques and methodologies in an attempt to overcome, among others, the above

tioned challenges of sub-micron design. Instead of using a global clock, asynchro

circuits [77, 15, 39] use local handshaking to coordinate circuit activities and im

ment sequencing. Moreover, in an asynchronous design, computation starts as s

new data is available, and once it is completed, the results can be immediately co

nicated via local handshaking. This more flexible and general method of oper

makes asynchronous circuits highly concurrent systems.

3

ous

ower

t case

ial for

aria-

36].

t fre-

and

rther

signs.

uently

lock

onous

e of

ion a

sig-

at are

n, a

haz-

cor-

the
Asynchronous circuits have the potential of outperforming their synchron

counterparts due to advantages such as elimination of clock skew problem, l

power consumption, low noise and low emission, average case instead of wors

performance, heterogeneous timing, easing of global timing issues, better potent

technology migration, automatic adaptation to fabrication and environmental v

tions, higher modularity, robust mutual exclusion and external input handling [83,

In addition, emerging more aggressive asynchronous design techniques, tha

quently use timing information to combat the full handshake overhead in area

delay by removing redundant handshakes and associated logic [73], are fu

improving the performance, power, area, and even testability of asynchronous de

As a result, such advanced asynchronous design techniques are being more freq

used in stand alone designs, in interfacing synchronous circuits in different c

domains, or in heterogeneous circuits that have both synchronous and asynchr

components.

On the negative side, the lack of global synchronization and the high degre

concurrency in asynchronous circuits make their design, analysis, and verificat

more serious challenge, if not an art. Without the level of abstraction that a clock

nal provides in a synchronous circuit, variations in the speeds of components th

operating concurrently can no longer be ignored. In asynchronous circuit desig

great deal of attention has to be paid to the dynamic state of the circuit, avoiding “

ards” [77, 78]. Hazards are spurious signal transitions that can interfere with the

rect operation of the circuit and even render its digital model invalid by taking

4

take

nge

pes

nals

be

(vary-

tioned

ary-

states

nous

s that

e.g.,

fers

ile

m--

have

zes.

ver-

, and

earch

on of
circuit into a “metastable” state where one or more internal variables of the circuit

on a valuein betweenthe 0 and 1 designated values, possibly fluctuating in that ra

for an indefinite amount of time [78]. As shown in [78], a common cause of all ty

of hazards is the possibility for a gate to simultaneously receive contradictory sig

on different inputs.

In verifying asynchronous circuits, the proper behavior of the circuit has to

assured for all possible execution paths, each corresponding to a different set of

ing) component delays, and along each such path hazard conditions (as men

above) have to be checked for. The nondeterminism resulting from unknown or v

ing component delays can lead to large number of execution paths and reachable

that can be exponential in the number of circuit components. In contrast, synchro

circuits not only have deterministic execution paths, but also have state space size

areonly (at worst case) exponential in the number of state holding components (

latches or flip-flops). Thus, verification of asynchronous circuits inherently suf

exponentiallymore from the so called “state explosion problem”. As a result, wh

symbolic model checkers--with their ability to alleviate the state explosion proble

have been successfully used in verification of large synchronous circuits, they

been far less successful in verification of asynchronous circuits of comparable si

With the increased interest in asynchronous circuit design as a solution to o

come some of the bottlenecks of synchronous design in the sub-micron era

because of the high inherent complexity of asynchronous system verification, res

and development on specialized methodologies and CAD tools for the automati

5

n to

ficient

t cir-

syn-

e the

lays;

perly

tive

ental

mod-

delay

tions

by

ents)
asynchronous design verification are attracting much interest. As a contributio

such efforts, this thesis presents an enhanced methodology and framework for ef

verification of a fundamental class of asynchronous circuits, speed-independen

cuits, which can easily be extended/adapted to the verification of other types of a

chronous circuits such asdelay insensitivecircuits, quasi-delay insensitive, and also

circuits withrelative timing assumptions.

1.2 Speed-Independent Circuit Verification

Speed-independent circuits are a class of asynchronous circuits that assum

unbounded gate delay model for their components along with negligible wire de

thus every fork in the circuit is assumed to be anisochronic fork, causing only negligi-

ble skew. Assuming such a delay model, an speed-independent circuit works pro

for all possible ordering of events associated with all possible (and varying) rela

delays of components. Seemingly restricted, speed-independence is a fundam

model based on which a broader range of asynchronous designs can be readily

eled, such as delay-insensitive designs [29, 30, 41, 17, 16, 50, 51, 56, 76], quasi-

insensitive designs [12, 42, 23, 50], and even circuits with relative timing assump

[73, 74, 26, 60]. For example, (quasi-) delay insensitivity of a circuit can be verified

checking speed-independence of the circuit having additional buffers (delay elem

inserted on the non-isochronic forks and input ports of the circuit [16].

6

zard-

tion

king

lled

ed

that

lures

)

cir-

ule of

ke a

lized

ency

one

. Yet,

equal
The verification problems that are addressed in this thesis are checking ha

freedom, andconformanceof a circuitimplementationto the circuit’sspecification. By

conformance, a circuit implementation can be safely substituted for its specifica

with no danger in generating outputs that are not specified. The problem of chec

conformance easily translates to that of checkingfailure-freedomof a closedcircuit

that is obtained by composing the circuit implementation with themirror of the circuit

specification. Mirroring a circuit specification yields a new circuit component, ca

anenvironment module,which together with the circuit implementation create a clos

circuit. Failures are defined as any input signal transition at a circuit component

can disable an (previously enabled) output transition of that component. Fai

described as such are thus reminiscent ofsemi-modularityfailures in the circuit behav-

ior [55, 57]. This notion of failure also coverschokes, where a choke is any (output

signal transition generated by the circuit implementation that is not specified in the

cuit specification. Since chokes cannot thus be handled by the environment mod

the circuit, they can be thought of as totally disabling the environment module, li

failure. (More formal definitions of these concepts are presented in [27].).

Interleaving semantics, also appearing in the literature as the GSW (Genera

Single Winner) race model [15], is commonly used to model the inherent concurr

in asynchronous circuit behavior. In this model of concurrency, when more than

circuit component is enabled (unstable), only one of them can change at any time

in an speed-independent circuit, concurrently enabled components always have

chances to be the next component to change.

7

ing

nter-

expo-

the

lysis

tates

ized

vesti-

losion

arch

ifica-

ume

, 37],

hical

r have

ow-

and

cuits,

prob-

ts is
Theoretically, the failure-freedom of a closed circuit can be checked by perform

reachability analysis over the state space of the circuit which is modeled using i

leaving semantics. In practice, however, the size of the state space that can be

nential in the number of circuit components (signals), may quickly grow out of

reach of any practicable reachability analysis tool. Even symbolic reachability ana

techniques that implicitly (rather than explicitly) represent and handle (sets of) s

and state transitions may soon reach their limits, even in verifying moderately s

circuits.

Research on verification of speed-independent circuits has thus focused on in

gation and exploration of abstraction techniques to tackle the state space exp

problem associated with full reachability analysis. There exists a rich body of rese

and literature on various abstraction techniques to reduce the complexity of ver

tion--of various properties and systems. Over-under approximations [86], ass

guarantee paradigms [2], partial order techniques [1, 32, 33, 62, 63, 81, 82, 35

homomorphic reductions [35, 47], divide and conquer paradigms and hierarc

approaches [47] are some of the better known general approaches that can, o

been, applied to speed-independent circuit verification in one or another way. H

ever, there exist only a few theoretical frameworks that are specifically designed

tailored to address the verification of this fundamental class of asynchronous cir

and yet fewer have attempted to combine various abstraction techniques for this

lem. An overview of the previous work on verification of speed-independent circui

presented next.

8

on in

the

ce is

gen-

duced

trace

ned

rk

if a

can

the

ore

mple-

cuit is

ss of a

alled

rst-
1.3 Related Work

The verification of speed-independent circuits has been given significant attenti

the literature. Dill proposed a trace theoretic framework in which he formulated

notion of trace conformance of speed-independent circuits [27]. Trace conforman

a safety property of speed-independent circuits checking whether the circuit can

erate outputs that are unexpected by its specification. Ebergen and Gingras intro

the notion of completeness with respect to a specification which is stronger than

conformance in that it requires the circuit to be able to exhibit all the behaviors defi

by the specification [31]. Gopalakrishnanet al. proposed a similar notion of strong

conformance [34].

It is important to note that both Dill’s work [27] and Ebergen and Gingras’s wo

[31] supporthierarchical verification of speed-independent circuits. Specifically,

block of a circuit has been successfully verified against a specification, the block

be modeled by its specification rather than by its implementation when verifying

whole circuit. This feature is very useful since specifications can typically have m

compact representations in a computer than the behavior of their corresponding i

mentations. Such hierarchical approaches, however, are not effective when a cir

originally flat; i.e.; its circuit-blocks do not have specifications.

Numerous techniques have been proposed to speed up the verification proce

flat circuit. McMillan proposed a partial order approach based on a technique c

Petri-net unfolding[53]. While very successful on some scalable examples, the wo

9

lgo-

type

eded

the

ver-

hile

plex-

t

cir-

.

h

afely

fica-

oach

t sig-

two

l to
case complexity is in fact no smaller than that of standard reachability analysis a

rithms. Yoneda and Yoshikawa [88] proposed an extended version of a different

of partial order approach in which only a subset of interleavings of signals are ne

to be explored [1, 32, 33, 62, 63, 81, 82, 35, 37]. While effective for some circuits,

run-time for other circuits was not impressive because of the high computational o

head associated with determining which interleavings to explore. Burchet al. pro-

posed BDD-based techniques to implicitly analyze the circuit’s state space [18]. W

successful on some examples, the techniques do not improve the worst-case com

ity of the algorithm. Lastly, Roiget al. introduced a modified symbolic breadth-firs

search algorithm which resulted in significant run-time improvements for some

cuits, but again, the worst-case complexity of their algorithm stays the same [64]

To reduce the verification complexity, Beerelet al.proposed a two-phase approac

in which first functional correctness (i.e.,complex-gate equivalence) of the circuit was

verified and then behavioral properties (i.e.,hazard-freedom) were checked [7, 8]. The

key to their technique is that the behavior of some of the circuit signals could be s

approximated, exponentially reducing the time and space complexity of the veri

tion problem for many examples. Later, Roig et. al proposed a hierarchical appr

which also had the advantage of approximating the behavior of some of the circui

nals [65]. Since our proposed technique is most directly related to these latter

works, we describe them in more detail.

The first step in both approaches by Beerelet al.and Roiget al. is to create a com-

plex-gate circuit which effectively induces hierarchy by hiding the signals interna

10

alyzed

ignals.

nt of

tech-

ment

ircuits

large

empt to

arac-

s an

f an

uit-

the

truc-

ioral

ile the

 thesis.
the complex-gates. The state space of the remaining external signals is then an

using standard reachability analysis techniques. In Beerelet al.’s technique, an analy-

sis of this state space is used to deduce hazard-freedom of the internal hidden s

In Roiget al.’s technique, projections of this state space are used as the environme

the complex-gates to verify the hidden signals. The key disadvantage of both

niques, however, is that the set of external signals needs to include all memory ele

outputs (i.e., memory elements cannot be hidden). Since most asynchronous c

are dominated by memory elements, the number of external signals can still be

and their state space can be too large to analyze. This research started as an att

remove the above mentioned limitation on the set of external signals.

1.4 Thesis Contributions

Existing specialized frameworks have been less than successful in either fully ch

terizing and/or utilizing some of the unique properties of speed-independence. A

example, the specialized verification frameworks of [8, 64] use the behavior o

abstract circuit--obtained by collapsing the original circuit into a complex-gate circ

-as an abstraction of the circuit behavior which is then used to verify or deduce

failure freedom of each complex-gate. However, since they use a functional (or s

tural circuit) abstraction to find a behavioral abstraction--rather than a behav

abstraction that is based on speed-independence properties--their approach, wh

most coherent, has fundamental shortcomings that have been addressed by this

11

dent

ech-

We

ctual

havior

en

dom

trac-

afe

its

s are

l in

a

ver,

tech-
We have proposed a theoretical framework for verification of speed-indepen

circuits that incorporates a combination of different abstraction and reduction t

niques to achieve efficiency. This framework is a generalization of that of [65].

introduce the notion of asafe abstractionof the behavior of a set ofexternalcircuit

variables (signals) as a behavior that is never an over-approximation of the a

behavior of external variables, and that is guaranteed to exactly resemble that be

if the circuit is failure-free. We define the notion ofpartitioning the circuit intocircuit

blocksusing the set of external signals, the notion of asafe specificationfor a circuit

block that is derived from a safe abstraction, the notion of anenvironment moduleof a

circuit block that is derived from a safe specification, and finally the notion of asub-

circuit as the composition of a circuit block with its environment module. We th

prove the following important theorem about the relationship between failure-free

of a circuit and failure-freedom of its sub-circuits that are derived from a safe abs

tion: a circuit is failure-free iff all of its sub-circuits are failure-free. By this theorem

(which is also the basis of the hierarchical verification framework of [65]), given a s

abstraction, the problem of verifying a circuit reduces to the problem of verifying

sub-circuits, with the verification results always being exact. Since the sub-circuit

smaller that the original circuit, and the complexity of verification is exponentia

circuit size, thisdivide and conquerapproach which can be recursively applied in

hierarchical fashion can significantly speed up the verification procedure. Howe

the success of this approach would heavily depend on the existence of efficient

niques for finding safe abstractions.

12

rder

phase

xplo-

con-

or

that

tion

ies of

t sig-

other,

in a

ts are

nals

ique

rder

xter-

ise it

ion

-

For efficient derivation of safe abstractions, we have proposed a novel partial o

reduction approach. This approach, which substitutes the functional abstraction

of [65], partially explores the state space of the circuit (avoiding the state space e

sion problem) and constructs a sub-automaton of its behavior automaton. If the

structed sub-automaton isprojectableonto the set of external variables, the behavi

of its projection is shown to be a safe abstraction. We have proposed procedures

(concurrently) perform the partial order analysis, projectability check, and projec

of the partial order sub-automaton onto the automaton of a safe abstraction.

We have devised our partial order technique based on some important propert

speed-independent circuits. Intuitively, in an speed-independent circuit, no outpu

nal transition of a circuit component is ever disabled by an--independent--input signal

transition. Here, two signals are called independent if they cannot disable each

and a unique state is reached for different orderings of their transitions. Thus,

speed-independent circuit, no output transitions are lost if the independent inpu

allowed tosettle(stabilize). Based on this observation, assuming all dependent sig

of a circuit are included in the set of external signals, our partial order techn

always settles all independent internal variables of the circuit by any arbitrary o

before exploring all orderings of transitions of external variables. The explored (e

nal) behavior is proven to be exact if the circuit is speed-independent, and otherw

might be an under-approximation. By this, our framework for hierarchical verificat

of speed-independence is also anassume-guaranteeparadigm; assuming speed-inde

13

ables;

dent

m-

n of

object

its at

ying

, e.g.,

func-

ced

ious

pro-

ork to

o rep-

ased
pendence, the partial order has to explore the exact behavior of the external vari

this is guaranteed when the sub-circuits are all found to be failure-free.

The proposed approach for induced hierarchical verification of speed-indepen

circuits has been implemented in a CAD tool called SPHINX. SPHINX utilizes sy

bolic techniques using binary decision diagrams (BDDs) for efficient representatio

states, state transitions, and the results of reachability analysis. It also uses an

oriented paradigm for representation and treatment of a circuit and its sub-circu

different levels of hierarchy. SPHINX has been especially very successful in verif

speed-independent circuits that are particularly dominated by memory elements

FIFO controller circuits. This is due to its unique ability inhiding memory element

outputs, a feature which was not supported by preceding frameworks that used

tional/structural abstractions (e.g., complex-gate verification [65]).

This thesis is a presentation of my proposed theoretical framework for indu

hierarchical verification of speed-independent circuits, its relationship to prev

work, SPHINX--the developed CAD tool, and some experimental results. It also

poses some directions for future research, such as extending the current framew

the domain of circuits with relative timing assumptions.

1.5 Thesis Organization

This thesis is organized as follows. Chapter 2 introduces the models that we use t

resent circuits and (their) behaviors. This includes our finite-state-automata b

14

and

utom-

en-

set

lock

m a

rcuit

the

en

of

this

ation

plex-

cting

cir-

rov-

rove

t that

safe
model of a circuit as a collection of circuit modules, the notions of behavior

behavior projections together with behavior automata, sub-automata, and sub-a

ata projections, and finally the notion of a safe abstraction.

Our theoretical framework for induced hierarchical verification of speed-indep

dent circuits is introduced in Chapter 3. The notions of partitioning a circuit into a

of circuit blocks using a set of external variables, a safe specification for a circuit b

driven from a safe abstraction, an environment module of a circuit block driven fro

safe specification, and finally the notion of a sub-circuit as the composition of a ci

block and its environment module are introduced in this chapter, all in relation to

notion of inducinghierarchy in a flat circuit. The consequential relationship betwe

the failure-freedom of a circuit and that of its sub-circuits, which is the foundation

our hierarchical verification framework, is presented and proven at the end of

chapter.

In Chapter 4, we discuss some of the issues related to our hierarchical verific

framework. The chapter includes a comparison of the approach with that of com

gate verification in terms of their selection of external variables, the issue of sele

sets of external variables that can successfully induce hierarchy in verification of a

cuit, and finally the concept of sequential hierarchical verification as a way of imp

ing the performance of hierarchical verification.

Chapter 5 introduces our efficient technique for finding safe abstractions. We p

that our proposed partial order technique explores a partial behavior of the circui

under certain conditions (projectability of its automaton) can be used to derive a

15

anal-

ts a

ber

par-

rifi-

and

sents

nous

cture
abstraction. We present an algorithm that concurrently performs the partial order

ysis, checks the projectability of its automaton, and--if it is projectable--construc

safe abstraction.

Chapter 6 presents a brief comparison of our verification approach with a num

of other general reduction techniques and verification methodologies and tools. In

ticular, a more thorough comparison of our framework and that of complex-gate ve

cation is presented in this chapter.

Chapter 7 presents a short overview of the status of our CAD tool, SPHINX,

our experimental results.

Finally Chapter 8 proposes some directions for related future research. It pre

some ideas on how to extend the current framework to the domain of asynchro

circuits with relative timing assumptions. The chapter is closed by an open conje

on the issue of using multiple safe abstractions for hierarchical verification.

16

their)

is

all a

and

neral

rmin-

TGs,
Chapter 2

Models of Circuits and Behaviors

In this chapter we introduce the models that we use to represent circuits and (

behaviors. This includes our finite-state-automata based model of acircuit as a collec-

tion of circuit modules, the notions ofbehaviorandbehavior projectionstogether with

behavior automaton, sub-automaton, andsub-automaton projections. The notion of a

safe abstractionas a key component of our hierarchical verification framework

introduced at the end of this chapter.

2.1 Circuit Modules

In this section, we introduce our model for asynchronous components which we c

“circuit module”. Circuit modules are the building blocks of asynchronous circuits

systems. The generic model of a component presented in this section is ge

enough to model different types of gates (e.g., combinational or sequential, dete

istic or nondeterministic), and different types of specifications (e.g., Petri-nets, S

etc.).

17

n

of
Definition 2.1 [Circuit module] A circuit moduleis a tuple ,

where

• is the set of binarymodule input variables;

• is the set of binarymodule output variables;

• is the set of binarymodule internal state variables;

• is a nondeterministic finite state automato

called themodule automaton, where

• is the input alphabet of the automaton;

• is the set ofmodule variables, as well asautomaton vari-

ables;

• is thestate set of the automaton;

• is thestate labeling functionof the automaton. Here,

is the set of all surjective functions ;

• is the state transition relationof the automaton.

Here, is an additional symbol which identifies empty input transitions

the automaton;

• is thetransition labeling functionof the autom-

aton;

• is the initial state of the automaton.■

The components of a circuit module are further explained below.

Mi Xi Zi Yi FAi, , ,〈 〉=

Xi x1
i … xmi

i, ,{ }=

Zi z1
i … zpi

i, ,{ }=

Yi y1
i … yni

i, ,{ }=

FAi Ai Vi Qi λ i T Ri µi q0
i, , , , , ,〈 〉=

Ai Xi Zi∪=

Vi Xi Zi Yi∪ ∪=

Qi

λi : Qi L Vi()→ L Vi()

l : Vi 0 1,{ }→

TRi Qi Ai ε∪()× Qi×⊆

ε

µi : Qi Ai ε∪()× F S,{ }→

q0
i Qi∈

Mi

18

e-

) is

f the

n a

ach

very

cor-

; that

n I/O

rnal
, , and are pair-wise disjoint sets. is the set ofmodule

variablesas indicated above. , the set ofmodule I/O variables, is identical to

the input alphabet of . A symbol () of the alphabet corr

sponds to transitions on the associated input (output) of the circuit module.

We shall assume that an encoding scheme (by the internal state variables

given for the internal states of the circuit module. Note that here, “internal state o

module” refers to what is requiredbeyondthe I/O state of the module to fully capture

the module’s state.

is an injective function assigning to each state of the automato

unique function which in turn assigns binary values to every . As a result, e

state is an interpretation of the module variables ; i.e, it assumes for e

variable a value in its binary range . Thus, states of the automaton

respond to total states (input/output/internal state) of the circuit module.

is associated with , thestate

transition functionof the automaton1. In general, any individual I/O signal transition

of a circuit module is accompanied by some internal state change of the module

is, some may change simultaneously and instantaneously together with a

signal (e.g.,) transition. On the other hand, the circuit module can have inte

state changes even in the absence of any I/O signal transitions.

1. Each element of the set is one of the subsets of the finite set .

Xi Yi Zi Vi Xi Zi Yi∪ ∪=

Xi Zi∪

Ai FAi a Xi∈ a Zi∈ Ai

Yi

λ i : Qi L Vi()→

v Vi∈

q Qi∈ Vi

v Vi∈ 0 1,{ }

TRi Qi Ai ε∪()× Qi×⊆ δi : Qi Ai ε∪()× 2Qi→

2Qi 2 Qi Qi

Y Yi⊆

a Ai∈

19

I/O

r of

ll

and

e

ng a

.

t sig-

t .

tate

p for

act

ton.
Let be any symbol corresponding to a transition on the associated

signal (or an empty I/O transition in the case of), and be any pai

automaton states. Then iff all of the following hold:

• , and for all other I/O variables , ,

;

• there exists such that for all , , and for a

, ;

• the total state of the circuit module can change according to

through a transition of signal . In other words, if the circuit module is at stat

then a transition of signal can take the circuit module to state by causi

simultaneous change in all internal state variables of the module

In the presence of the above conditions and if , then we say that the outpu

nal isenabledat . Any internal state variable is also said to be enabled a

Let be any state of the automaton. Then is always a s

transition of the automaton. In other words, every automaton state has a self-loo

. Such self loops represent the behavior of the module when it isidle; i.e., no event

occurs at the module2.

An important property of any circuit is itsreceptiveness. This property is related to

the inability of a circuit to control the arrival of transitions on its inputs, and the f

2. This notion of idle self loops is later used in composing modules’ automata into a circuit automa

a Ai ε∪∈

a ε= q q' Qi∈,

q a q', ,() TRi∈

λ i q() a() λi q'() a()≠ b Ai∈ b a≠

λ i q() b() λi q'() b()=

Y Yi⊆ v Y∈ λi q() v() λ i q'() v()≠

w Yi Y–∈ λi q() w() λi q'() w()=

q' δ i q a,()∈

a q

a q'

v Y∈ Yi⊆

a Zi∈

a q v Y∈ q

q Qi∈ q ε q, ,() TRi∈

ε

20

oper

gnal

sition

set

nal

tran-

con-

we

, also

[15],

hav-

bled

h the

endent

e next
that unwanted input transitions are always possible [27, 40]. As such, any pr

model for a circuit has to account for the receptiveness of all circuit components.

In our model, the receptiveness of any circuit module with respect to input si

transitions is modeled as follows: for any state and anyinput signal ,

there always exists a (some) state and a corresponding state tran

. We say that iscompleteover . In contrast, for any state

and anyoutputsignal , and exist iff output sig-

nal isenabledat , but usually at each total state of the circuit module only a sub

of the module’s outputs are enabled to change.

Note that this model does not allow (and/or handle) simultaneous I/O sig

changes; instead, all possible interleavings of simultaneously enabled I/O signal

sitions are assumed to be included in the automaton of the circuit module. This

vention is in accordance with interleaving semantics for circuit behavior, which

have adopted for our analysis of speed-independence. Interleaving semantics

appearing in the literature as the GSW (Generalized Single Winner) race model

is commonly used to model the inherent concurrency of asynchronous circuit be

ior. In this model of concurrency, when more than one circuit component is ena

(unstable), only one of them can change at any time; however, the order in whic

components change cannot be predicted. For the particular case of speed-indep

circuits, concurrently unstable components always have equal chance in being th

component to change.

q Qi∈ a Xi∈

q' Qi∈

q a q', ,() TRi∈ FAi Xi

q Qi∈ a Zi∈ q' Qi∈ q a q', ,() TRi∈

a q

21

es

Let

nsi-

cuit

to

l any

rnal

re

d at

ions

ns

s, if

tate

-

cision
The state transition labeling function labels the edg

of the underlying transition diagram of the automaton (induced by).

, , and . Then for any output signal

we always have ; i.e., any state transition through an output signal tra

tion is always considered asuccesstransition. For any input signal ,

iff the transition of at is anillegal input signal transition. If

then any automaton state transition is called afailure

transition. An illegal input transition is one which is either not expected by the cir

module (e.g., aninput choketo an specification module), and/or one which is known

cause a circuit malfunction (e.g., a hazardous output). In particular, we shall cal

input signal transition which disables a previously enabled output signal (or an inte

state variable), and thus violatessemi-modularity[55, 57], an illegal input tran-

sition. More precisely, assume that , , , and the

exists an output signal (or an internal state variable) which is enable

state but not so in state ; then , marking all possible state transit

from by the symbol as failure transitions. In our model, illegal input transitio

(e.g., chokes) do not change the internal state of a circuit module; that i

, and , then and differ only at the value

they assign to the variable . This convention is only to simplify the choice of a s

that is entered by an illegal input transition.

A circuit module isnon-deterministicif the firing of any output signal can ever dis

able another output (e.g., arbitration in an arbiter module). In such a case, the de

µi : Qi Ai ε∪()× F S,{ }→

TRi

q q', Qi∈ a Ai ε∪∈ q a q', ,() TRi∈ a Zi ε∪∈

µi q a,() S=

a Xi∈

µi q a,() F= a q

µi q a,() F= q a q'', ,() TRi∈

y Yi∈

q q', Qi∈ x Xi∈ q x q', ,() TRi∈

z Zi∈ y Yi∈

q q' µi q x,() F=

q x

µi q x,() F= q x q', ,() TRi∈ λ i q() λi q'()

x

22

m the

l

nsition

ir-

l. In

inis-

TGs)

ircuit

s may

sted

-free

corre-

the I/
of which output to fire is called achoice. A module which is not non-deterministic is

said to bedeterministic.

Note that state transitions caused by output signal changes are excluded fro

set of failure transitions. This makes alloutput choiceslegal; that is, any output signa

change disabling another output signal change represents a non-failure state tra

in the module automaton.

corresponds to the initial total state of the circuit module (within a c

cuit).

2.2 Examples of Circuit Modules

The definition of a circuit module presented in the previous section is very genera

this section we show how elementary gates (combinational and sequential, determ

tic and nondeterministic), and also higher level specifications (e.g., Petri-nets, S

can be modelled as circuit modules. It is to be noted that there may be many c

module representations for a single gate/specification type. Such representation

differ in terms of the internal state encoding of the module, or the behavior manife

beyond the occurrence of a failure; however, they should all agree on the failure

portion of their associated automata languages (the set of all I/O sequences

sponding to the failure-free runs of the associated automata), precisely capturing

O behavior of the physical module prior to failure occurrences.

q0
i Qi∈

23

ch

ty.

he

ny

thus

OR

le

i.e.,
2.2.1 Combinational Gates

A combinational gate is a deterministic circuit module , su

that:

• , and ;

• is adeterministicfinite state automaton such

that:

• is constructed based on the gate’s functionali

Let , , be the boolean function describing the th output of t

gate based on gate inputs; i.e., . Then for a

, iff and .

Here, denotes that the function arguments are evaluated by ;

the latter condition translates to

.

Example 2.1Figure 2.1.a depicts a NOR gate. The module description of the N

gate is where the state diagram of , the modu

automaton, is depicted in Figure 2.1.b. The initial state is entered by an arrow;

. ■

Mi Xi Zi Yi FAi, , ,〈 〉=

Yi ∅= Vi Ai=

FAi Ai A
i

Qi λi TRi, µ i q0
i, , , , ,〈 〉=

TRi Qi Ai ε∪()× Qi×⊆

F j
i

1 j pi≤ ≤ j

zj
i

F j
i

x1
i … xmi

i, ,()=

q q', Qi∈ q zj
i

q', ,() TRi∈ F j
i

x1
i … xmi

i, ,()
q'

zj
i

q'
= zj

i

q'
zj

i

q
≠

.
q'

λi q'()

F j
i λ i q'() x1

i() … λ i q'() xmi
i(), ,() λi q'() zj

i() λi q() zj
i()≠=

M a b,{ } c{ } ∅ FA, , ,〈 〉= FA

λ q0() 000=

24

es the

such

ntial

ule

ty.

he

gate
2.2.2 Sequential Gates

For most elementary sequential gates, the I/O state of the gate completely captur

state of the gate, without requiring any extra internal state variables. Examples of

gates are Flip-Flops, C-elements, and Mutual-Exclusion elements (ME). A seque

gate with no internal state variables is modeled as a circuit mod

 such that:

• , and ;

• is adeterministicfinite state automaton such

that:

• is constructed based on the gate’s functionali

Let , , be the boolean function describing the next value of t

th output of the gate (denoted by) based on the present values of

a
b

000

001

100

101

110

111011

010

a

c

b
c

a
c

ab

b

c
a
b

a

b

b

a

c

(b)

(a)

non-failure transition

failure transition

Fig. 2.1Module description of a NOR gate.
(a) A NOR gate. (b) The module automaton of the NOR gate.

[a,b,c]

Mi Xi Zi Yi FAi, , ,〈 〉=

Yi ∅= Vi Ai=

FAi Ai Ai Qi λ i TRi, µ i q0
i, , , , ,〈 〉=

TRi Qi Ai ε∪()× Qi×⊆

F j
i

1 j pi≤ ≤

j z' j
i

25

y

e C-

he

rrow;

d in

e

nitial

are

as a

state
inputs and outputs; i.e., . Then for an

, iff and

.

Example 2.2Figure 2.2.a depicts a C-element gate. The module description of th

element gate is where the state diagram of , t

module automaton, is depicted in Figure 2.2.b. The initial state is entered by an a

i.e., .■

Example 2.3Figure 2.3.a depicts a Mutual-Exclusion (ME) element as describe

[27]. The module description of the ME is wher

the state diagram of , the module automaton, is depicted in Figure 2.3.b. The i

state is entered by an arrow; i.e., . Only non-failure state transitions

shown in Figure 2.3.b. It is to be noted that in an ME element if any input signal h

second transition before the outputs have changed, that would cause a failure

z' j
i

F j
i

x1
i … xmi

i z1
i … zpi

i, , , , ,()=

q q', Qi∈ q zj
i

q', ,() TRi∈ F j
i

x1
i … xmi

i z1
i … zpi

i, , , , ,()
q

zj
i

q'
=

zj
i

q'
zj

i

q
≠

M a b,{ } c{ } ∅ FA, , ,〈 〉= FA

λ q0() 000=

C

a

b

c

000

100

110

010

a

b

b

a

111

011

001

101

a

b

b

a

c

c

b

b

a

a

non-failure transition

failure transition

Fig. 2.2Module description of a C-element gate.
(a) A C-element gate. (b) The module automaton of the C-element gate.

(a)

(b)

[a,b,c]

M r1 r2,{ } a1 a2,{ } ∅ FA, , ,〈 〉=

FA

λ q0() 0000=

26

iated

gate,

n of

istic.

rmin-

ter-

The

als

nals

is
transition. Thus in Figure 2.3.b the reverse of any state transitions that is assoc

with an input signal change is a failure state transition (not shown for clarity).■

Note that although the above Mutual-Exclusion element is a nondeterministic

its module automaton is deterministic. As a matter of fact, the module automato

any circuit module that does not have internal state variables, is always determin

On the other hand, the existence of internal state variables can introduce nondete

ism in the module automaton iff there can be (at least) two states, with different in

nal states, reachable from a single state by the same I/O signal transition.

Example 2.4 Figure 2.4.a depicts a fair arbiter element as described in [48].

module receives two independent requests to access a single resource, with sign

and , and grants access with signals and , respectively (the latter two sig

are mutually exclusive). The module description of the arbiter

r1

r2

a1

a2
ME

Fig. 2.3Module description of a Mutual-Exclusion element.
(a) A Mutual-Exclusion element. (b) The module automaton of the ME element.

0000

0100

0101

0001 1001

1101

1100

1000 1010

1110 0110

0010

a1

a1

a1

r1

r1

a1

r1

r1

r1

r1

r2r2r2r2

r2r2

a2 a2 a2 a2

(a) (b)

[r1,r2,a1,a2]

r1

r2 a1 a2

27

le

i.e.,

to

re the

2.4.b

e is a

vari-

if it

, it

e

fair

cur-
where the state diagram of , the modu

automaton, is depicted in Figure 2.4.b. The initial state is entered by an arrow;

. Only non-failure state transitions are shown in Figure 2.4.b. It is

be noted that in an arbiter element if any input signal has a second transition befo

outputs have changed, that would cause a failure state transition. Thus in Figure

the reverse of any state transitions that is associated with an input signal chang

failure state transition (not shown for clarity).■

Note that the above arbiter element is a nondeterministic gate with an internal

able . However, its module automaton is deterministic. It is called fair because

receives a request at one input, say , while it has already received a request at

processes the request by first, but once it is done with that, it processes th

request before it can react to a new request from . Unlike the ME element, the

arbiter module is capable of distinguishing the order in which two, possibly con

M r1 r2,{ } a1 a2,{ } p{ } FA, , ,〈 〉= FA

λ q0() 00000=

r1

r2

a1

a2
ME

Fig. 2.4Module description of a fair arbiter element.
(a) A fair arbiter element. (b) The module automaton of the fair arbiter.

(a)

00000

10000

10100

00100

11000

11100

01100

01001

01011

00011

11001

11011

10011

[r1,r2,a1,a2,p]

r1 r2

a1 a2

r1 r2

r2 r1

a1 a2

r1 r2

r2

r2

r1

r1

a1 a2

a1 a2

(b)

p

r1 r2

r2 r1

r2

28

from

ead

n be

ule is

tion

are

n be

r

of a

of

old-

etri-

of the

the

f its
rent, requests arrive at its inputs by means of the internal variable, . As a result,

the initial state, , the two sequence of signal transitions and l

to different states and , respectively.

2.2.3 Specifications

We believe that any asynchronous specification with interleaving semantics ca

modeled as a circuit module, once some encoding of the internal state of the mod

adopted and the failure conditions are all identified.

Signal Transition Graphs (STGs [22, 68]) that are frequently used for specifica

of asynchronous circuit behavior are Petri-nets in which the Petri-net transitions

interpreted as circuit signal transitions (a complete introduction to Petri-nets ca

found at [58]). The state of a Petri-net is completely captured by itsmarking; i.e., the

distribution of tokensin Petri-netplaces. That is, the token-holding places togethe

with the number of tokens in such places completely specify the internal state

Petri-net specification. In asafePetri-net (a Petri-net whose places have a capacity

only one token) the Petri-net marking is completely characterized by the token-h

ing places. Thus, a straight forward way of encoding the internal state of a safe P

net specifications would be to assign one internal state variable to each place

Petri-net. Now, markings of the Petri-net will correspond to binary evaluations of

state variables; that is, for a given marking, a place holds a token iff the value o

associated internal state variable is 1. For simplicity, we consider onlysafeSTG spec-

p

00000 r1 r2, r2 r1,

11000 11001

29

s to

s are

nal

ce.

ch

ple,

ignal

As

an

gure

in

eady

g one

re

tion,
ifications although unsafe STGs can similarly be modeled using multiple variable

represent unsafe places. More efficient encoding schemes for Petri-net marking

proposed in [61].

Thepre-setof a Petri-net place , indicated by , is defined as the set of sig

transitions such that the firing of any of such transitions will put a token in that pla

Similarly, thepost-setof a place indicated by is the set of signal transitions su

that for any of them to fire, a token has to be removed from that place. As an exam

in Figure 2.6 we have and . Animplicit

place of a Petri-net (or STG) is one which exists between two consecutive s

transitions and of an STG (Petri-net) such that and .

an example, place is an implicit place in the Petri-net of Figure 2.6, while is

explicitplace. Implicit places of an STG are usually not drawn, as suggested by Fi

2.5.b which illustrates the same STG as that of Figure 2.6.

Example 2.5 The STG specification of a DME ring of length two is illustrated

Figure 2.5.b. This specification is an example of a safe STG. Thus, as alr

mentioned, the internal state of the specification can be easily encoded by definin

internal state variable per Petri-net place.

would then define the circuit module of the specification, whe

is depicted

in Figure 2.5.c, and . Any state transition by anoutputsignal change

that is missing from Figure 2.5.c corresponds to a failure of a circuit implementa

p p•

p •

p0• ua1- ua2-,{ }= p0 • ua1+ ua2+,{ }=

p

t t' p• t{ }= p • t'{ }=

p1 p0

M ur1 ur2,{ } ua1 ua2,{ } p0{ } FA, , ,〈 〉=

FA ur1 ua1 ur2, ua2, ,{ } p0 ur1 ua1 ur2, ua2, , ,{ } Q λ TR, µ q0, , , , ,〈 〉=

λ q0() 10000=

30

utput

aton

this

of a
because a circuit implementation of this specification should not generate such o

transitions. On the other hand, input transitions that are missing from the autom

correspond to transitions that are never applied to a circuit implementation of

specification; i.e., the specification restricts possible transitions at the inputs

circuit implementation.■

ua1+

ur1+

ua1-

ur1-

ua2+

ur2+

ua2-

ur2-

DME cell DME cell

(w/ token) (w/o token)

ur1 ua1 ur2 ua2

V=[p0,ur1,ua1,ur2,ua2]

10000

11000

01100

00100

10010

00011

00001

11010

01110

00110

01011

01001

ur1

ur1

ur2

ur2

ur2 ur1

ua1

ua1

ua1

ua2

ua2

ua2 ur1

ur1

ur2

ur2
ur1 ur2

ua1ua2

(a) (b)

(c)

Fig. 2.5Module description of a DME ring of length two.
(a) The block diagram of a DME ring of length two. (b) The STG specification of the circuit.
(c) The module automaton of the STG specification.

31

es a

vari-

e the

ces,

te of

be a

dule

such

utput

the

Petri-

ion

s

les

tions

each

cted

esis.
The set of internal variables of the module automaton of Figure 2.5.c includ

single variable associated with explicit place ; that is, we have defined no state

ables associated with the implicit places of this STG specification. This is becaus

I/O state of this STG happens to uniquely determine the marking of its implicit pla

eliminating the need to include the implicit places in the representation of the sta

the specification.

Constructing the module automaton from a given Petri-net specification can

complicated process requiring full traversal of the Petri-net. However, the mo

automaton can be fully expressed by a collection of transition relations: each

relation would represent the possible (eligible) transitions of an associated o

(input) signal of the specification in terms of some portion of the internal state of

specification represented by a subset of Petri-net places. Figure 2.6 depicts the

net specification of Figure 2.5.b with all of its implicit places. The transition relat

of signal can then be defined a

, where the states of this

transition relation are evaluations of the following ordered set of variab

.

Representing the automaton of a specification by a collection of transition rela

as described above would require one internal state variable associated with

implicit place of the specification. However, such variables can usually be proje

away in later phases of hierarchical verification, as will be discussed later in this th

p0

ua1

T Rua1
011000 ua1 100100, ,() 100010 ua1 010001, ,(),{ }=

ua1 p0 p1 p2 p3 p4, , , , ,[]

32

n

uld

rob-

g

the

put

gly.
2.2.4 Environment Modules: Mirror of Specifications

Checking theconformanceof a circuit to its specification is a common verificatio

problem. Our notion of conformance follows that of [27]; that is,safe substitution. By

this, acircuit implementationconforms to acircuit specificationiff the former can be

safely substituted for the latter in any context; i.e., the circuit implementation wo

not generate any output (transition) not specified in the circuit specification. This p

lem can be solved by checking the failure-freedom of aclosedcircuit composed of the

original (open) circuit and themirror of the specification [27]. Conformance checkin

will be discussed in detail in upcoming sections. In this section, we only define

notions of mirrored specifications and environment modules.

The mirror of a specification is obtained by simply switching the role of the in

and output signals of the specification and identifying failure transitions accordin

ua1+

ur1+

ua1-

ur1-

ua2+

ur2+

ua2-

ur2-

p0

p1

p2

p3

p4

p5

p6

p7

p8

Fig. 2.6Petri-net specification of A DME ring with all implicit places shown.

33

pt-

his

-

o its

le

nge

uch

n.

it”.

ir-

d

The mirrored specification then comprises anenvironment modulefor the original cir-

cuit; one which interacts with the circuit by providing inputs to the circuit and acce

ing the circuits outputs. The composition of the original (open) circuit with t

derived environment module creates aclosedcircuit. It has been shown that failure

freedom of this closed circuit guarantees the conformance of the original circuit t

specification [27].

Example 2.6The circuit module for the mirror of the STG specification of Examp

2.5 is defined as , where

is depicted

in Figure 2.5.c, . Again, any state transition by an input signal cha

that is missing from Figure 2.5.c corresponds to a failure state transition. S

transitions correspond to unexpected output transitions of a circuit implementatio■

2.3 Circuit Model

In this section, we introduce our circuit model which we conveniently call a “circu

Circuits are composed of circuit modules. We shall only considerclosedor autono-

mouscircuits, with the notion of closed-ness being implicit in our definition of a c

cuit.

Definition 2.2 [Circuit] A circuit is a tuple , where

• , , is a set of circuit modules, where is define

M ua1 ua2,{ } ur1 ur2,{ } p0{ } FA, , ,〈 〉=

FA ur1 ua1 ur2, ua2, ,{ } p0 ur1 ua1 ur2, ua2, , ,{ } Q λ TR, µ q0, , , , ,〈 〉=

λ q0() 10000=

C MC AC VC GC, FAC, , ,〈 〉=

MC M1 … MnC, ,{ }= nC 1≥ Mi

34

e

,

al

o

in Definition 2.1 for ;

• is the set ofcircuit signals;

• is the set ofcircuit variables;

• is a connected directed graph, thecircuit graph, where

• , is the set ofcircuit nodes, where circuit node is

representative of circuit module in the circuit graph;

• is the set ofcircuit edges, such that for any

input signal of any circuit module , and , ther

exists exactly one output signal of a circuit module , ,

and , such that . In other words, (a) each input sign

is connected to (and thusdriven by) exactly one output signal, and (b) n

input of a module is ever connected to an output of that same module;

• is a nondeterministic finite state

automaton called thecircuit automaton, where

• is the input alphabet of the automaton;

• is the set ofautomaton variableswhich coincides with the set of circuit

variables;

• is thestate set of the automaton;

• is the state labeling functionof the automaton. Here,

 is the set of all surjective functions ;

• is thestate transition relationof the automaton;

1 i nC≤ ≤

AC Zi

1 i nC≤ ≤
∪=

VC Yi Zi∪
1 i nC≤ ≤

∪=

GC NC KC,〈 〉=

NC N1 … NnC, ,{ }= Ni

Mi

KC Z
i

1 i nC≤ ≤
∪ X

j

1 j nC j i≠,≤ ≤
∪×⊆

xl
i

Mi 1 i nC≤ ≤ 1 l mi≤ ≤

zk
j

M j 1 j nC≤ ≤ j i≠

1 k pj≤ ≤ zk
j

xl
i,() KC∈

FAC AC VC QC λC T RC, µC q0
C, , , , ,〈 〉=

AC

VC

QC

λC : QC L VC()→

L VC() l : VC 0 1,{ }→

TRC QC AC ε∪()× QC×⊆

35

es

f any

con-

cir-

ions

d to

tions

fini-

t be

ions

ircuit

ch a

l this

eds

od-

hat
• is the transition labeling functionof the

automaton;

• is the initial state of the automaton.■

From the definition of a circuit graph it follows that, (a) there is no circuit edg

(connections) between output signals of circuit modules, and (b) input signals o

circuit module are connected to output signals of other circuit modules. The first

straint above prohibits wired outputs; the second constraint disallows uncontrolled

cuit module inputs, excluding from the set of circuits any non-autonomous collect

of circuit modules. Note that dangling circuit module outputs that are not connecte

any circuit module inputs are allowable. By this definition, a circuit has to beclosed.

The second constraint on circuit edges, mentioned above, prohibits connec

between inputs and outputs of any given module. This directly follows from the de

tion of a circuit module in which the set of input and output signal variables mus

disjoint. One may wonder about real circuits in which there might be connect

between inputs and outputs of a circuit component. As an example, consider a c

with a 2-input AND gate component whose output drives one of its inputs. In su

case, the generic model for 2-input AND circuit modules cannot be used to mode

particular AND gate; instead, a new circuit module, with one less input signal, ne

to be devised to model this particular AND gate.

The sole presence of a circuit edge between any pair of circuit m

ules and effectively synchronizes the transitions of signal in with t

µC : QC AC ε∪()× F S,{ }→

q0
C QC∈

zk
j

xl
i,() K∈

M j Mi zk
j

M j

36

ta-

ignal

ernal

inter-

of a

,

ich

s of

he set

ribed

ivid-

sult

aton

d

to
of signal in . Thus any transition of the output signal of , is instan

neously seen as a transition on the input signal of . On the other hand, s

transitions of a circuit module are, in general, accompanied by instantaneous int

state changes. Thus, any transition on will cause instantaneous changes in the

nal states of , , and any other circuit module for which .

This direct correspondence between any input signal of any module

(closed) circuit, , and the output signal of some other circuit module

makes the set (all input signals of all modules of a circuit) an entity wh

carries only redundant information about the circuit. That is why (a) input signal

the circuit modules , , appearonly in the circuit graph description of cir-

cuit , (b) the set of circuit signals consists of onlyoutputsignals of component

modules (and not both input and output signals of modules), and (c) as a result, t

of circuit variables consists of all circuit moduleoutputsignals and internal state

variables, but no moduleinput signals.

As a collection of circuit modules connected to each other in the manner desc

above, the behavior of a circuit is determined by the coordinated behaviors of ind

ual circuit modules. The coordination of individual module behaviors is itself a re

of synchronized state transitions of the modules’ automata. The circuit autom

is thus acompositionof individual module automata as describe

below.

The first step in composing the individual module automata in

the compound automaton isvariable substitution. Let be any circuit

xl
i

Mi zk
j

M j

xl
i

Mi

zk
j

Mi M j Mh zk
j

xm
h,() K∈

xl
i

Mi

1 i nC≤ ≤ zk
j

M j

Xi

1 i nC≤ ≤
∪

Mi 1 i nC≤ ≤

C AC

VC

FAC FA1 … FAnC, ,

FA1 … FAnC, ,

FAC zk
j

xl
i,() K∈

37

tion

that

vi-

ule

of

ircuit

a-

s a

s, it

be

od-

input

e,

s

edge indicating that input signal is driven by output signal . Variable substitu

will then replace all occurrences of variable in the model description of module

with the variable . Variable substitution is thus simply a renaming operation.

In the rest of our description of the compound automaton , it is assumed

variable substitution is already performed.

, the input alphabet of , coincides with the set of circuit signals. As pre

ously mentioned, any circuit signal is the output of exactly one circuit mod

and the input of zero or moreothercircuit modules. On the other hand, as a symbol

the alphabet of , any corresponds to transitions on the associated c

signal.

is an injective function assigning to each state of the autom

ton a unique function which in turn assigns binary values to every . A

result, each state is an interpretation of the circuit variables ; that i

assigns to every variable a value in its binary range . Let

any state of and be the label of that state. Moreover, let be any m

ule of the circuit , and be therestrictionof the function to the set

of variables of , (note that variable substitution has already replaced each

variable of with some variable , and thus ; henc

is a well-defined function,). Then, there alway

exists a state such that , and is called thelocal stateof

 associated with state of .

xl
i

zk
j

xl
i

Mi

zk
j

FAC

AC FAC

a AC∈

FAC a AC∈

λC : QC L VC()→

FAC v VC∈

q QC∈ VC

v VC∈ 0 1,{ } q QC∈

FAC λC q() Mi

C λC q() Vi λC q()

Mi Vi

x Xi∈ Mi v VC∈ Vi VC⊆

λC q() Vi λC q() Vi : Vi 0 1{ , }→

qi Qi∈ λC q() Vi λi qi()= qi

FAi q FAC

38

t

sig-

of

t .

of

d

e

et

sig-

of

ate

ate

ere

ere

te

uch

con-
Considering the state transition relation , le

be any symbol corresponding to a transition on the associated circuit

nal (or an empty signal transition in the case of), be any pair

automaton states such that , and be any module of the circui

Furthermore, let be the local states of associated with states

, respectively, and let be defined as follows: if , an

, otherwise. Finally, let , therestriction of state transition

to , be defined as . Then, is

always a state transition of (i.e.,) which is called thelocal

state transition of associated with state transition of .

The state transition labeling function labels th

edges of the underlying transition diagram of (induced by). L

be any symbol corresponding to a transition on the associated circuit

nal (or an empty signal transition in the case of), be any pair

automaton states such that . Let indicate that all st

transitions by from state are failure state transitions while indic

that none of such state transitions are failure transitions. Then iff th

exists a module such that at its associated local state (wh

) we have ; that is, all state transitions from sta

and by symbol are labeled as failure transitions iff there exists a module s

that from its local state, the symbol causes failure state transitions. Note that by

struction, we always have . We say that a circuit is notfailure-freeiff

TRC QC AC ε∪()× QC×⊆

a AC ε∪∈

a ε= q q' QC∈,

q a q', ,() TRC∈ Mi C

qi q'i Qi∈, FAi q q',

FAC a Vi a Vi a= a Ai∈

a Vi ε= q a q', ,() Vi

q a q', ,() Vi q a q', ,() Vi qi a Vi q'i, ,()= q a q', ,() Vi

TRi qi a Vi q'i, ,() TRi∈

FAi q a q', ,() FAC

µC : QC AC ε∪()× F S,{ }→

FAC TRC

a AC ε∪∈

a ε= q q' QC∈,

q a q', ,() TRC∈ µC q a,() F=

a q µC q a,() S=

µC q a,() F=

Mi qi Qi∈

λC q() Vi λi qi()= µi qi a Vi,() F=

q a Mi

a

µC q ε,() S= C

39

il-

n

e.

utom-

omata

e of

ch

(b)

the

that

,

y

-

there exist and , such that ; otherwise, the circuit is fa

ure-free.

A circuit is non-deterministicif it has a non-deterministic module which ca

exhibit a choice within the circuit.

is the initial state of automaton . Let be any circuit modul

Then we have .

So far, we have described how states and state transitions of the compound a

aton are constrained by states and state transitions of the component aut

. An inductive description of the state space of based on thos

 is given below.

Definition 2.3 [State space of a circuit automaton] Let

be a circuit. The state space of

 is inductively defined as follows:

(i) , the label of the initial state of is uniquely selected su

that for all , , is an extension of to .

(ii) Let be a state of . Moreover, let (a) the state label of be ,

be any symbol of the alphabet (associated with signal of the circuit); by

circuit graph constraints, there must exist a unique module , , such

, (c) be the set of all circuit modules of such that

, iff ; that is, is exactly the set of all modules which are driven b

the signal , (d) be the local state of at ; i.e., . Sim

q QC∈ a AC∈ µC q a,() F=

q0
C QC∈ FAC Mi

λ i q0
i() λC q0

C() Vi=

FAC

FA1 … FAnC, , FAC

FA1 … FAnC, ,

C MC AC VC GC, FAC, , ,〈 〉=

FAC AC VC QC λC T RC, µC q0
C, , , , ,〈 〉=

λC q0
C() q0

C QC∈ FAC

Mi 1 i nC≤ ≤ λC q0
C() λ i q0

i() VC

q QC∈ FAC q λC q()

a AC∈ a

Mi 1 i nC≤ ≤

a Zi∈ M MC⊆ C M j M∈

1 j nC≤ ≤ a Xj∈ M

a qi Qi∈ Mi q λC q() Vi λi qi()=

40

at

.

i-

a

e

,

r

.

cir-

,

ff

t of

tion

of

as an

sly,

rleav-

ange
ilarly, let for any , be the local state of at , (e) be enabled

and be any of the possible state transitions in by symbol

Similarly, let for any , be any of the possible state trans

tions in by symbol . Then is a state of (i.e.,) and is

state transition of (i.e.,) if , the label of , satisfies th

following constraints: (a) for and described above,

(b) for all and described above, , and (c) fo

all , , . ■

The base part of the inductive definition above describes the initial state of

Notice that the initial state, and consequently itself, are well-defined iff the

cuit modules areinitial-state-compatible. That is, let (a) be any circuit signal

(b) be the set of all circuit modules such that , , i

, (c) be the initial state of circuit module . Then

has a unique value over all .

The inductive step of the inductive definition above describes how (the se

states of), (the state labeling function of), and (the state transi

function of) are inductively defined. (the transition labeling function

) is defined based on its description that was given earlier.

The automaton defined as above describes the behavior of the circuit

interleavedbehavior. In other words, no two circuit signals change simultaneou

although they may concurrently be enabled to change; instead, all possible inte

ings of enabled signals are represented in . It is also noted that any signal ch

M j M∈ qj Qj∈ M j q a

qi qi a q'i, ,() TRi∈ FAi a

M j M∈ qj a q' j, ,() TRj∈

FAj a q' FAC q' QC∈ q a q', ,()

FAC q a q', ,() TRC∈ λC q'() q'

Mi q'i Qi∈ λC q'() Vi λi q'i()=

M j M∈ q' j Qj∈ λC q'() V j λ j q' j()=

Mk MC M–∈ 1 k nC≤ ≤ λC q'() Vk λk qk()=

FAC

FAC

a AC∈

M MC⊆ M j M∈ 1 j nC≤ ≤

a Aj∈ q0
j Qj∈ M j M∈ λ j q0

j() a()

M j M∈

QC

FAC λC FAC T RC

FAC µC

FAC

FAC

FAC

41

circuit

e dic-

uit

,

f

ates

per-
will cause a simultaneous and instantaneous change in the internal state of any

module which has that signal as an I/O. Such module internal state changes ar

tated by the automaton of the corresponding module.

Definition 2.4 [Changed variables of a transition] Let be a circuit,

be its automaton, and be

any state transition of . Let be the set of all and only those circ

variables that change by state transition ; i.e., for all

, and for all , . Then we

define . Note that if , then .■

The following recursive procedure forfull reachability analysisof is directly

derived from the inductive definition of .

Procedure 2.1 [Full reachability analysis of a circuit automaton]

Let be a circuit. The state space o

can be fullyconstructedandexploredas fol-

lows:

(i) The initial state of isconstructedsuch that for all , ,

 is an extension of to .

(ii) Let be a previouslyconstructedstate of which has not beenexplored

yet. Then by exploring , we find all possible state transitions from , and all st

reachable from through such state transitions. The state exploration at is

C

FAC AC VC QC λC T RC, µC q0
C, , , , ,〈 〉= q a q', ,() TRC∈

FAC V VC⊆

q a q', ,() v V∈

λC q() v() λC q'() v()≠ w VC V–∈ λC q() w() λC q'() w()=

Changed q a q', ,() V= a ε≠ a Changed q a q', ,()∈

FAC

FAC

C MC AC VC GC, FAC, , ,〈 〉=

FAC AC VC QC λC T RC, µC q0
C, , , , ,〈 〉=

q0
C QC∈ FAC Mi 1 i nC≤ ≤

λC q0
C() λ i q0

i() VC

q QC∈ FAC

q q

q q

42

ld

ed

ted

space

aly-

nsi-

hen

ction

cir-

king

m

f

nable

vide
formed as follows: for all states for which the inductive definition of wou

define as a state transition of , and are add

to the constructed state space of .

The inductive construction of is completed when all previously construc

states of have already been explored; i.e., when the constructed state

reaches afixed point. ■

Failure-freedom of a circuit can be exactly checked during full reachability an

sis of the circuit automaton. As is being constructed, newly explored state tra

tions of are checked for failures. If any failure state transition is ever found, t

the circuit is known to have a failure and there is no need to continue the constru

of . Otherwise, the construction of is continued to completion, and the

cuit would be declared as failure-free.

Since the size of the state space of a circuit can be as big as , chec

failure freedom of a circuit through full reachability analysis would often suffer fro

the state space explosionproblem; i.e., it can be very costly for large circuits, out o

the capacity of even state-of-the-art computers. This is where techniques which e

us to check for failure-freedom without fully exploring the state space, and yet pro

exact results become of great importance.

q' FAC

q a q', ,() FAC q' QC∈ q a q', ,() TRC∈

FAC

FAC

FAC

FAC

FAC

FAC FAC

C O 2 VC()

43

tom-

d of

ehav-

ny

s,

ci-

,

ubset

Note

t to

ts that

ose

rpose

, or
2.4 More on Circuit Automaton and Behavior

In this section, we present the notion of the behavior of a circuit in terms of theruns

of its automaton . We also introduce a set of operations on behaviors and au

ata which are used in following sections. It is to be noted that we use the kin

automaton which was introduced in the previous section to model any abstract b

ior and not just that of a circuit. Thus in what follows, will characterize a

behavior, and not necessarily that of a circuit, unless otherwise specified.

2.4.1 Automaton Behavior and Circuit Behavior

In this section, we define the notion of atrace, as a sequence of automaton state

based on which we then defineautomaton behaviorand circuit behavior. We also

define the notion of an automatonstring,as a sequence of automaton symbols asso

ated with an automaton trace. Finally, we define two functions, and

over traces and behaviors. Function keeps only the prefix of a trace (the s

of a behavior) which is necessary for the purpose of checking failure-freedom.

that checking failure-freedom--the most important property of a circuit and the firs

be verified--is completed as soon as any (single) failure is detected. This sugges

the behavior of a circuit beyond any failure point is of no significance; i.e., only th

traces of a behavior whose prefixes are failure-free are of any interest for the pu

of verification. Function returns the (longest) failure-free prefix of a trace

the failure-free portion of a behavior.

C

FAC

FAC

Red .() FF .()

Red .()

FF .()

44

es

f

hat

;

ll

is

hus

r of its
Definition 2.5 [Trace] Let be any

automaton. A run (or trace) of the automaton is a sequence of stat

such that (i) for all , (ii) for any consecutive pair o

states in the sequence, there exists such t

. is thelengthof such a run3. An initialized runof

the automaton is a run which starts at the initial state of

that is .■

Definition 2.6 [Automaton behavior] Let

be any automaton. Theautomaton behavior, denoted , is defined to be the set of a

initialized runs of . Such a set isprefix-closed; that is, if , then

, for . ■

Definition 2.7 [Failure freedom] Let be

any automaton and be its behavior. We say that () is notfailure-free iff

there exist and , such that ; otherwise, ()

failure-free.■

Definition 2.8 [Circuit behavior] Let be a circuit.

Thecircuit behavioris then defined to be the automaton behavior of , and is t

denoted by . A circuit is failure-free iff is failure-free.■

3. Note that we define the length of a run as the number of its state transitions, and not the numbe

states.

FAC AC VC QC λC T RC, µC q0
C, , , , ,〈 〉=

FAC

t q0q1…qn= qi QC∈ 0 i n≤ ≤

qi q, i 1+ ai AC ε∪∈

qi ai q, , i 1+() TRC∈ Len t() n=

FAC t q0q1…qn= FAC

q0 q0
C=

FAC AC VC QC λC T RC, µC q0
C, , , , ,〈 〉=

BC

FAC q0q1…qn BC∈

q0q1…qi BC∈ 0 i n≤ ≤

FAC AC VC QC λC T RC, µC q0
C, , , , ,〈 〉=

BC FAC BC

q QC∈ a AC∈ µC q a,() F= FAC BC

C MC AC VC GC, FAC, , ,〈 〉=

FAC

BC C BC

45

s of

h a

press

ized

on

first

r,

ne
Example 2.7Figure 2.7 depicts a four-stage FIFO controller. Two possible trace

the circuit behavior are

,

.

Here, a state is an evaluation of . The two traces start wit

common sequence of state transitions which is shown in bold face. Then, they ex

two different orderings of transitions of the two signals and .■

Definition 2.9 [Sub-behavior] Let be any

automaton and be its behavior. We then call any prefix-closed set of initial

traces asub-behavior of . ■

At this point, we are ready to define the function and its operation

traces and behaviors. This function removes from a trace the suffix of it past the

occurrence of a failure.

Definition 2.10 [Reduced trace, prime trace, reduced behavior]

Let be any automaton, be its behavio

and be any automaton trace with . We then defi

t1 000000 100000 110000 111000011000 011100, , , , ,=

t2 000000 100000 110000 111000111100 011100, , , , ,=

r0 a0 a1 a2 a3 a4, , , , ,[]

r0 a2

a0 a2 a4

C C

C

c3
c4c2

c1i1 b1
C

Fig. 2.7A four-state FIFO controller in an abstract environment.

FAC AC VC QC λC T RC, µC q0
C, , , , ,〈 〉=

BC

B BC⊆ BC

Red .()

FAC AC VC QC λC T RC, µC q0
C, , , , ,〈 〉= BC

t BC∈ Len t() n=

46

-

ibly

al-

nd

r,

ne

the

,

ns)

ols
, , to be the longest prefix of such that

for all , where . In other words, is the long

est prefix of with the property that only the last state transition of is poss

a failure transition. Trace is called aprime traceiff . We also define

as the sub-behavior of consisting of all and only the prime initi

ized traces of . In other words, iff and .■

In the following, we define the function and its operation on traces a

behaviors. This function returns the longest prefix of a trace which is failure-free.

Definition 2.11 [Failure-free trace and failure-free sub-behavior]

Let be any automaton, be its behavio

and be any automaton trace with . We then defi

, , to be the longest prefix of such that

for all , . In other words, is the longest prefix

of which is failure-free. Trace is then called afailure-free traceiff . We

also define as the sub-behavior of consisting of all and only

failure-free traces of . In other words, iff and .■

Definition 2.12 [String of a trace] Let be

any automaton, be any trace of the automaton, and

and , be the sequence of symbols (signal transitio

corresponding to trace ; i.e., . Then the sequence of symb

Red t() q0q1…qm= m n≤ t µC qi ai,() S=

0 i m 1–<≤ qi ai q, , i 1+() TRC∈ Red t()

t Red t()

t Red t() t=

Red BC() BC⊆ BC

BC t Red BC()∈ t BC∈ Red t() t=

FF .()

FAC AC VC QC λC T RC, µC q0
C, , , , ,〈 〉= BC

t BC∈ Len t() n=

FF t() q0q1…qm= m n≤ t µC qi ai,() S=

0 i m 1–≤ ≤ qi ai q, , i 1+() TRC∈ FF t()

t t FF t() t=

FF BC() BC⊆ BC

BC t FF BC()∈ t BC∈ FF t() t=

FAC AC VC QC λC T RC, µC q0
C, , , , ,〈 〉=

t q0q1…qn= aε
t a0a1…an 1–=

ai AC ε∪∈ 0 i n 1–≤ ≤

t qi ai q, , i 1+() TRC∈

47

ls

tes,

refore

riables

the

he

argu-

aps

races,

ith the

are

sult-

e

he

maton
obtained from by removing all symbols is called thestring associated with trace

, and is denoted by .■

Note that for we define . Also, if is a sequence of symbo

only, then we define .

2.4.2 Projections of Behaviors

In this section, we define a function and describe its operation on sta

traces, and behaviors. Note that states are the building blocks of traces and the

behaviors. On the other hand, each state is identified by an associated set of va

and the unique values assigned to them. Let be any instant of

application of function to an object of type state, trace, or behavior. T

second argument, , is a state (Q), a trace (T), or a behavior (B), and the first

ment, , is a subset of the variables associated with object . The function m

object to an object of the same type; i.e., it maps states to states, traces to t

and behaviors to behaviors. The states of the resultant object are associated w

variables in and their values, and while information regarding the variables in

preserved, any information regarding the other variables of are lost in the re

ant object .

The function can similarly be applied to strings. Let b

any instant of the application of function to an object of type string. T

second argument, , is a string, and the first argument, , is a subset of the auto

aε
t ε

t at

n 0= aε
t ε= aε

t ε

at ε=

Proj .() .()

Proj V() QTB()

Proj .() .()

QTB

V QTB

QTB

V V

QTB

Proj V() QTB()

Proj .() .() Proj A() S()

Proj .() .()

S A

48

ps a

the

t

,

states

e

nce

f vari-

o

) a

ng

s

.

alphabet . The function maps object to an object of the same type; i.e., it ma

string to another string, by simply removing any symbol which does not belong to

set .

Definition 2.13 [WV-transition] Let be any

automaton, , and . Then if , we

say that is a -transition.■

Definition 2.14 [V-compatibility, state projection]

Let be any automaton, and . Le

be a relation such that for any pair of states

iff ; that is, the labels of the two states

agree on the values that they assign to the variables in . We say that any pair of

related by relation are -compatible. It is easy to see that is an equivalenc

relation over the set of states and partitions that set into equivale

classes, such that each class is associated with a unique function over the set o

ables . We represent the equivalence class of any state with respect t

with . We are now ready to define (i) a new set of states , , (ii

corresponding state labeling function for , and (iii) a mappi

, as follows: for any , maps all state

to a unique state such that

Finally, if , then we say that is theprojection of onto . ■

AC S

A

FAC AC VC QC λC T RC, µC q0
C, , , , ,〈 〉=

V VC⊆ q a q', ,() T RC∈ V Changed q a q', ,() W=∩

q a q', ,() WV

FAC AC VC QC λC T RC, µC q0
C, , , , ,〈 〉= V VC⊆

PV
C QC QC×⊆ qi qj QC∈,

qi qj,() PV
C∈ λC qi() V λC qj() V= qi qj,

V

PV
C V PV

C

QC pV
C 1≥

V qi QC∈ PV
C

qi[]V QV
C QV

C pV
C=

λV
C : QV

C L V()→ QV
C

Proj V() : QC QV
C→ qi QC∈ Proj V()

q qi[]V∈ qV QV
C∈ λV

C qV() λC q() V λC qi() V= =

Proj V() q() qV= qV q V

49

e

of

e a

pped

bse-

iff
So far, we have defined the function . At this point, w

extend our definition of projection over a set of variables to the domain

traces (runs) and behaviors.

Definition 2.15 [Trace projection] Let be

any automaton and be its behavior. Let and (i.e.,

consists of all and only those variables of which belong to). Let b

trace of . Then theprojection of onto , denoted by , will be a

sequence of states of , and is inductively defined as follows:

• if , then ;

• if and , then

In other words, each maximal subsequence of -compatible states in is ma

to a single state in which is the projection of just any of the states of the su

quence.■

Definition 2.16 [Behavior projection] Let

be any automaton and be its behavior. Then for any , theprojection of

onto , denoted by , is the set of traces such that

there exists such that .■

Proj V() : QC QV
C→

Proj V() .()

FAC AC VC QC λC T RC, µC q0
C, , , , ,〈 〉=

BC V VC⊆ A V AC∩= A

V AC t BC∈

BC t V tV Proj V() t()=

QV
C

t q0
C= tV Proj V() q0

C()=

t q0
Cq1…qiqi 1+ t'qi 1+= = Proj V() t'() t'V=

tV

t'VProj V() qi 1+() Proj V() qi() Proj V() qi 1+()≠,

t'V otherwise,

=

V t

tV

FAC AC VC QC λC T RC, µC q0
C, , , , ,〈 〉=

BC V VC⊆ BC

V Proj V() BC() tV Proj V() BC()∈

t BC∈ tV Proj V() t()=

50

v-

at

hat

t

set

the

ular

i.e.,
Definition 2.17 [Exact abstraction of a behavior over a set of variables]

Let be any automaton, and be its beha

ior. Let , and be any set of traces over the set of variables . We say th

is anexact abstraction of over iff . (Note that by this defini-

tion, is itself an exact abstraction of over !).■

Definition 2.18 [String projection] Let be

any automaton, , and be a string of . Then theprojection of onto ,

denoted by is the string obtained from by removing any symbol t

does not belong to . ■

Example 2.8 Let be an automaton with , and le

.

Here, any state of is labeled with an evaluation of the ordered

, and . We have used regular expressions to simplify

description of the behavior. In addition, we imply that all prefixes of the above reg

expression are also in .

Projecting the behavior onto the set would yield:

. Note that

in this projected behavior, two different transitions are possible from state ;

and . However, this two transitions occuronly in an alter-

nate fashion in the projected behavior. This situation has occurred since twosemanti-

FAC AC VC QC λC T RC, µC q0
C, , , , ,〈 〉= BC

V VC⊆ B V B

BC V B Proj V() BC()=

Proj V() BC() BC V

FAC AC VC QC λC T RC, µC q0
C, , , , ,〈 〉=

V AC⊆ at FAC at V

Proj V() at() at

V

FAC VC a b c d e, , , ,{ }=

BC 00001 10001 10101 00101 00100 00000 01000 01010 00010 00011()*=

q QC∈

a b c d e, , , ,[] q0
C 00001=

BC

BC VC e– a b c d, , ,{ }=

Proj VC e–() BC() 0000 1000 1010 0010 0000 0100 0101 0001()*=

0000

0000 1000,() 0000 0100,()

51

of

.

pro-

es

we

ing

s,

of the

ol-
cally differentstates of (i.e., and) are projected onto a single state

, .

Now, consider projecting onto the set :

. This time,

no two different states of are projected onto a single state of ■

We close this section by two lemmas which describe some useful properties of

jections. The lemmas are trivial implications of the definitions of , trac

and strings, and thus their proofs are omitted.

Lemma 2.1 [Successive projection]Let be

any automaton, and . Then for any projectable automaton entity

have .■

Lemma 2.2 [Strings and projections]Let

be any automaton, be its behavior and . Let , be the str

associated with , and . Then . In other word

the string associated with the projection of a trace is the same as the projection

string associated with .■

2.4.3 Sub-automaton and Projection of an Automaton

In this section, we first define the notion of asub-automatonof an automaton. Then we

define the notion ofcollapsingan automaton onto a set of automaton variables f

BC 00001 00000

Proj VC e–() BC() 0000

BC VC a– b c d e, , ,{ }=

Proj VC a–() B() 0001 0101 0100 0000 1000 1010 0010 0011()*=

BC Proj VC a–() BC()

Proj .() .()

FAC AC VC QC λC T RC, µC q0
C, , , , ,〈 〉=

V W VC⊆ ⊆ e

Proj V() Proj W() e()() Proj V() e()=

FAC AC VC QC λC T RC, µC q0
C, , , , ,〈 〉=

BC V VC⊆ t BC∈ at

t tV Proj V() t()= atV Proj V() at()=

t

t

52

, we

n pro-

e

, in

ad of

ly

bset

edure

ched

ub-

ling
lowed by the notion of anautomaton projectionas anycollapsed automatonwhose

behavior is an exact abstraction of the behavior of the original automaton. Finally

present a set of sufficient conditions for a collapsed automaton to be an automato

jection.

Definition 2.19 [Sub-automaton] Let be

any automaton. We then define asub-automatonof to be any automaton

such that (1) , , and for

all , , (2) , , and for

all and , if then , and (3) the

underlying state transition graph of is a connected subgraph of .■

Let be a circuit. The automaton , as we hav

defined, describes the whole state space of the circuit . A sub-automaton

contrast, describes the state space of the circuit only partially. A sub-automaton

can thus be constructed by partially exploring the state space of the circuit, inste

full exploration. The inductive construction of of a circuit was previous

described. In constructing a sub-automaton of , it suffices to explore only a su

of state transitions from any state which is under exploration, and repeat this proc

from any reached state which is not previously explored, until no such state (rea

and unexplored) is left.

Note that while automaton may have failure transitions, we define any s

automaton to be failure-free. A more natural choice for the transition labe

FAC AC VC QC λC T RC, µC q0
C, , , , ,〈 〉=

FAC

FÃC AC VC Q̃C λ̃C TR̃C, µ̃C q0
C, , , , ,〈 〉= Q̃C QC⊆ q0

C Q̃C∈

q Q̃C∈ λ̃C q() λC q()= TR̃C T RC⊆ TR̃C Q̃C AC ε∪() Q̃C××⊆

q q', Q̃C∈ a AC ε∪∈ q a q', ,() TR̃C∈ µ̃C q a,() S=

FÃC FAC

C MC AC VC GC, FAC, , ,〈 〉= FAC

C FA˜ C

FÃC

FAC C

FAC

FAC

FÃC

53

rom

e

ant

ness

a

by

t

e

function of would seem to be one which carries the labels of the transitions f

to ; i.e., one such that for all and , if

then . However, as will become clear in th

coming sections, the choice of the transition labeling function is not critical or relev

to our analysis, and in fact our simplistic choice is indeed sufficient for the correct

of our framework.

Definition 2.20 [Collapsed automaton]

Let be any automaton, , and

. The collapsed automaton of onto , denoted by

 is then defined as follows:

• is the codomain of . Thus iff there exists

such that ; in particular, we have

.

• is such that for any pair of states and related

 we have .

• is such that for any and ,

iff there exists a pair of states such tha

, , and .

• is such that for all and

such that , . That is, is defined to b

failure-free.■

FÃC

FAC FÃC q q', Q̃C∈ a AC ε∪∈

q a q', ,() TR̃C∈ µ̃C q a,() µC q a,()=

FAC AC VC QC λC T RC, µC q0
C, , , , ,〈 〉= V VC⊆

A V AC∩= FAC V

FAV
C A V QV

C λV
C TRV

C, µV
C q0V

C, , , , ,〈 〉=

QV
C Proj V() : QC QV

C→ qV QV
C∈

q QC∈ qV Proj V() q()=

q0V
C Proj V() q0

C()=

λV
C : QV

C L V()→ q qV

qV Proj V() q()= λV
C qV() λC q() V=

TRV
C QV

C A ε∪() QV
C××⊆ a A ε∪()∈ qVi qVj QV

C∈,

qVi a qVj, ,() TRV
C∈ qi qj QC∈,

qVi Proj V() qi()= qVj Proj V() qj()= qi a qj, ,() TRC∈

µV
C : QV

C A ε∪() F S,{ }→× a A ε∪()∈ qVi qVj QV
C∈,

qVi a qVj, ,() TRV
C∈ µV

C qVi a,() S= FAV
C

54

, we

the

ip-

f

to

listic

the

state

ingle

that

psed
Once again, we notice that while automaton may have failure transitions

define its collapsed automaton to be failure-free. A more natural choice for

transition labeling function of would seem to be one with the following descr

tion:

• is such that iff there exists

, such that , and either (i) , or (ii)

there exists such that ,andthere exists a sequence o

signal transitions from , starting with a transition by and leading

a state at which is enabled.

However, similar to the case of a sub-automaton, we have made the simp

choice of letting be failure-free since that would suffice for our analysis.

The definition of a collapsed automaton implies that it can be obtained from

original automaton by the following steps:

(i) take the underlying state diagram of the original automaton and relabel each

by restricting its labeling function to ;

(ii) merge any set of relabeled states that have a common (restricted) label into a s

state with that common label. The resulting diagram will thus have states withunique

labels. (Note that unique state labeling is a requirement of the kind of automaton

we have been using.). The resulting state diagram would represent the colla

automaton.

FAC

FAV
C

FAV
C

µV
C : QV

C A ε∪() F S,{ }→× µV
C qVi a,() F=

qi QC∈ qVi Proj V() qi()= µC qi a,() F=

b AC V–∈ µC qi b,() F=

AC V– qi b

a

FAV
C

V

55

n

,

tion

avior.

al

l has

l. In

ction

rmer

n, to

nal-

that

xam-

ach-

, its

at we

havior
Definition 2.21 [Automaton projection]

Let be any automaton, , and

. We say isprojectable onto and call the collapsed automato

an automaton projectioniff is an exact abstraction of over ; i.e.

. ■

As will be seen in the coming sections of this thesis, in our hierarchical verifica

approach we frequently need to simplify (reduce) and abstract the model of a beh

Such abstractions are obtained byhiding some subset of the variables of the origin

behavior. To prevent false negative/positive verification results, the abstract mode

to precisely capture the behavior of the non-hidden variables in the original mode

other words, the behavior of the abstract model should be equivalent to the proje

of the behavior of the original model onto the same set of variables; i.e., the fo

should be anexact abstraction of the latter.

Although the projection of an automaton behavior is itself an exact abstractio

obtain it we need to first obtain the behavior of the automaton by full reachability a

ysis of its underlying state diagram, and then find the projection of each trace of

behavior. In contrast, to collapse an automaton we simply need to appropriately e

ine the automaton’s underlying state diagram, without the need to perform full re

ability analysis, and if the collapsed automaton is an automaton projection

behavior is indeed an exact abstraction. That considered, along with the fact th

already have chosen automaton over trace sets in modeling circuits and their be

FAC AC VC QC λC T RC, µC q0
C, , , , ,〈 〉= V VC⊆

A V AC∩= FAC V

FAV
C BV

C BC V

BV
C Proj V() BC()=

56

refer

strac-

ction,

Con-

sible

exact

states

s (and

e 2.8

riable

ote

sitions

d .

(See

resent

two

8.c in

s are

ction
(due to the more efficient and compact representation of automaton), we would p

automaton projections over projections of automaton behavior to derive exact ab

tions for specifications.

Note that a collapsed automaton is not always necessarily an automaton proje

and thus may not precisely represent the behavior of the non-hidden variables.

sider the two steps of the outlined procedure for collapsing an automaton. It is pos

for the resulting collapsed automaton to represent a behavior that is not an

abstraction, since the second step of collapsing can map semantically different

of the original automaton onto a single state, creating spurious state sequence

strings) that are not present in the projection of the automaton behavior. Figur

illustrates this condition through a simple example.

Figure 2.8.a depicts the states diagram of an automaton, with a single state va

. The automaton is to be collapsed onto its alphabet, . N

that this automaton represents an alternate behavior in which a sequence of tran

on signals and alternates with a sequence of transitions on signals an

Relabeling the states of the automaton results in two states with similar labels

Figure 2.8.b). Note that the initialized state sequences of state diagram 2.8.b rep

the projection of the (alternate) behavior of the original automaton. Merging the

states of diagram 2.8.b into a single state creates the automaton of Figure 2.

which any interleaving of the two above-mentioned sequence of signal transition

possible. The behavior of the automaton of Figure 2.8.c is a superset of the proje

v1 AC a1 a2 a3 a4, , ,{ }=

a1 a3 a2 a4

57

f that

tion.

ns on

psed

t

et

the
of the behavior of the original automaton, and thus is not an exact abstraction o

behavior. In this case, we say that the original automatonis not projectableonto the

indicated set of variables, or the collapsed automaton is not an automaton projec

Situations such as the above example force us to impose and practice conditio

the projectability of an automaton to guarantee that the behavior of the colla

automaton is indeed an exact abstraction of the original automaton’s behavior.

Consider automaton and any se

. We will call the set ofexternalvariables, and the set ofhidden

variables. We know that the -compatibility relation partitions the s

of automaton states into -compatible equivalence classes. Thus any state

00001

10000

10100

00100

00000

01000

01010

00010

0000

1000

1010

0010

0000

0100

0101

0001

0000

1000

1010

0010 0001

0101

0100

[a1,a2,a3,a4,v1] [a1,a2,a3,a4]

a1

a3

a1

a3 a2

a4

a2

a4 a1

a1

a3

a3 a2

a2

a4

a4 a1

a1

a3

a3

a2

a4

a4

a2

Relabeling Merging
StatesStates

Fig. 2.8When an automaton projection does not exist!
(a) State diagram of an automatonFAC with AC={a1,a2,a3,a4}, VC={a1,a2,a3,a4,v1}. (b) State diagram
with relabeled states, hiding variablev1. Initialized state sequences of this state diagram represent
projection of the behavior of the original automaton.(c) State diagram with the common label states
merged allows state sequences such as0010,0000,1000 which were not possible in state diagram(b).

(a) (b) (c)

Automaton Projection onto {a1,a2,a3,a4}?

[a1,a2,a3,a4]

FAC AC VC QC λC T RC, µC q0
C, , , , ,〈 〉=

V VC⊆ V VC V–

V PV
C QC QC×⊆

V q QC∈

58

ces-

rnal

is

t

t

s

.

rnal)

e

rnal

itions

ve
belongs to a -compatibility class . The following theorem specifies the ne

sary and sufficient conditions for projectability of an automaton onto a set of exte

variables.

Theorem 2.3 [Necessary and sufficient conditions for projectability of an

automaton] Let be any automaton,

be a set ofexternalvariables, and . The collapsed automaton

then an automaton projectioniff for any pair of states such tha

and is a -transition (i.e.,

), and for any pair of states such tha

, , and , there exists a pair of state

, , , such that is a -transition

and there exists a (possibly empty) sequence of -compatible states from to■

The above theorem states that for to be projectable onto , for any (exte

-transition in it must be true that if is any stat

that is -compatible with and is either an initial state or reachable by an exte

transition, then there exists a (possibly empty) sequence of -compatible trans

from to a state , such that a -transition is possible from .

It is straight forward to verify that the following is a reformulations of the abo

necessary and sufficient conditions for projectability of an automaton.

V q[]V

FAC AC VC QC λC T RC, µC q0
C, , , , ,〈 〉= V VC⊆

A V AC∩= FAV
C

qi q'i, QC∈

q'i qi[]V∉ qi a q'i, ,() T RC∈ WV

V Changed qi a q'i, ,()∩ W ∅≠= q' j qj, QC∈

q' j qi[]V∉ qj qi[]V∈ q' j b qj, ,() T RC∈

ql q'l, QC∈ ql qi[]V∈ q'l qi[]V∉ ql c q'l, ,() T RC∈ WV

V qj ql

FAC V

WV qi a q'i, ,() T RC∈ FAC qj QC∈

V qi

V

qj ql WV ql

59

is

an

at

ible

re

ch

d

Conditions 2.22 [Necessary and sufficient conditions for projectability of an

automaton] Let be any automaton,

be a set ofexternalvariables, and . The collapsed automaton

then an automaton projectioniff the following conditions hold:

• Let be any initial state of , or any state to which there exists

external transition from some state such th

. Let be the set of all states such that iff

(i) is reachable from through a (possibly) sequence of -compat

states, and

(ii) there exists ; i.e., an external transition from

 to a state that is not -compatible with .

Then let

be the projection of all external state transitions from the states in .

• Let be any other initial state of , or any other state to which the

exists an external transition from some state su

that and ; i.e., and are -compatible. Define

and similar to and above.

• Then we must have .

If the above conditions hold, then we have an

, for all states as described above.■

FAC AC VC QC λC T RC, µC q0
C, , , , ,〈 〉= V VC⊆

A V AC∩= FAV
C

qj QC∈ QC

q' j b qj, ,() TRC∈ q' j QC∈

q' j qj[]V∉ Qj QC⊆ qk Qj∈

qk qj ε V

qk c qm, ,() TRC∈ qm qj[]V∉,

qk V qk

Wj Proj V() qk c qm, ,() qk c qm, ,() TRC q,∈ k Qj∈ qm qj[]V∉,{ }=

Qj

ql QC∈ QC

q'l d ql, ,() TRC∈ q'l QC∈

q'l qj[]V∉ ql qj[]V∈ qj ql V Ql

Wl Qj Wj

Wj Wl=

QV
C Proj V() qj(){ }=

TRV
C Wj{ }= qj

60

ct if

.

ject-

is a

ed a

n

h is

ran-

a set

on

-

atically
2.5 Safe Abstractions and Observational Sufficiency

In this section, we first define our notion of asafe abstractionas an under approxima-

tion of the behavior of a subset of circuit variables which is guaranteed to be exa

the circuit is failure-free. We also define the notion of anobservationally sufficientset

of circuit variables whose behavior can besafely captured by a safe abstraction

Finally, we present a corollary suggesting that if the automaton of a circuit is pro

able onto a set of circuit variables, then the behavior of the projected automaton

safe abstraction of the circuit behavior over the same set of circuit variables.

Definition 2.23 [Safe abstraction]Let be a circuit

and be its behavior. Then a behavior over a set of variables is call

safe abstractionof over iff (a) is the behavior of some automato

, , (b) , and

(c) if the circuit is failure-free.■

By definition, a safe abstraction of over is an automaton behavior whic

an under-approximation of the behavior of the circuit variables and yet it is gua

teed to be exact if the circuit is failure-free4.

4. By the above definition, if any behavior is a safe abstraction of a circuit behavior over

of circuit variables , then must be the behavior of an automat

, . Thus, throughout this thesis, wher

ever we talk about a safe abstraction, the existence of such a corresponding automaton is autom

assumed.

C MC AC VC GC, FAC, , ,〈 〉=

BC BV V VC⊆

BC V BV

FAV A V QV λV T RV, µV q0
V, , , , ,〈 〉= A V AC∩= BV Proj V() BC()⊆

BV Proj V() BC()=

BC V

V

BV BC

V VC⊆ BV

FAV A V QV λV T RV, µV q0
V, , , , ,〈 〉= A V AC∩=

61

,

les

y’ is

of the

bles

,

f

.

.

t

be

.

Definition 2.24 [Observational sufficiency]Let be a

circuit and be its behavior. Then a set is calledobservationally sufficient

for iff there exists an automaton

, such that is asafe abstraction of over .■

By definition, the behavior of any set of observationally sufficient circuit variab

is safelycaptured by the corresponding safe abstraction. Here, the word ‘safel

used to emphasize that safe abstractions never over-approximate the behavior

corresponding variables. We will refer to an observationally sufficient set of varia

as an OSV set.

Corollary 2.4 [Automata projections and safe abstractions]

Let be a circuit and be its behavior. Let

, and be a sub-automaton o

such that , and is projectable onto

Then is a safe abstraction of over .■

This Corollary directly follows from being an exact abstraction of over

Corollary 2.5 [Automata projections and safe abstractions]

Let be a circuit and be its behavior. Moreover, le

, , be such that is an automaton projection, and let

the behavior of . Then is a safe abstraction of over .■

This Corollary directly follows from being an exact abstraction of over

C MC AC VC GC, FAC, , ,〈 〉=

BC V VC⊆

BC FAV A V QV λV T RV, µV q0
V, , , , ,〈 〉=

A V AC∩= BV BC V

C MC AC VC GC, FAC, , ,〈 〉= BC V VC⊆

A V AC∩= FÃC AC VC Q̃C λ̃C TR̃C, µ̃C q0
C, , , , ,〈 〉=

FAC Proj V() B̃C() Proj V() BC()= FÃC V

B̃V
C BC V

B̃V
C BC V

C MC AC VC GC, FAC, , ,〈 〉= BC

V VC⊆ A V AC∩= FAV
C BV

C

FAV
C BV

C BC V

BV
C BC V

62

tro-

its

se

gth

d

ce of

tely

that

,

ve
2.6 Formal Proofs

In this section, we present our proofs of Theorems 2.3 and Corollary 2.5 by first in

ducing a lemma that is used in the proofs.

Lemma 2.6 [Over approximation by collapsed automata]

Let be any automaton, , and

. Let be the collapsed automaton of onto , and be

behavior. Then .■

Proof (Sketch) We prove this Lemma by way of contradiction. Suppo

is not true. Then, there must exist a trace of shortest len

such that . Let , where

is any trace whose projection onto yields an

whose last transition is by a variable in . Here, any indicated pair of states

of trace , , are -incompatible states that are separated by a sequen

states that are -compatible with . Let state be the state immedia

preceding state on trace . Thus, there exists such

. But then by construction of it follows that

. However, since and are

-compatible, we will have .

Now, since is the shortest trace of interest, we must have

where is a prefix of trace . Now, on one hand we ha

FAC AC VC QC λC T RC, µC q0
C, , , , ,〈 〉= V VC⊆

A V AC∩= FAV
C FAC V BV

C

BV
C Proj V() BC()⊇

BV
C Proj V() BC()⊇

tV Proj V() BC()∈ tV BV
C∉ tV Proj V() t()=

t q0…q1…qn 1– …qn BC∈= V tV

V qj qj 1+,

t 0 j n 1–≤ ≤ V

V qj q QC∈

qn t a A ε∪∈

q a qn, ,() TRC∈ FAV
C

Proj V() q() Proj V() a() Proj V() qn(), ,() TRV
C∈ q qn 1–

V Proj V() qn 1–() Proj V() a() Proj V() qn(), ,() TRV
C∈

tV t'V Proj V() t'() BV
C∈=

t' q0…q1…qn 1– BC∈= t

63

e
, and on the other hand we hav

. It then follows that

, which in turn implies that .

Since the latter result yields a contradiction, is indeed true.■

t'V Proj V() t'() Proj V() q0q1…qn 1–() BV
C∈= =

Proj V() qn 1–() Proj V() a() Proj V() qn(), ,() TRV
C∈

Proj V() q0q1…qn 1– qn() BV
C∈ tV Proj V() t() BV

C∈=

BV
C Proj V() BC()⊇

64

is

t

t

s

.

y

,

old

at

d

hat

.

Theorem 2.3: Necessary and sufficient conditions for projectability of an

automaton] Let be any automaton,

be a set ofexternalvariables, and . The collapsed automaton

then an automaton projectioniff for any pair of states such tha

and is a -transition (i.e.,

), and for any pair of states such tha

, , and , there exists a pair of state

, , , such that is a -transition

and there exists a (possibly empty) sequence of -compatible states from to■

Proof (Sketch) is an automaton projection iff . We alread

know from Lemma 2.6 that . Thus would

hold iff for all , . We will show that the latter condition

holds iff the indicated condition of this theorem holds.

First we show that if the condition of this theorem holds, then for all

. To prove this by contradiction, suppose that the conditions h

but there exists a shortest trace such th

. Considering trace , we must have , an

thus by construction of there must exist two states such t

and is a -transition, and

. Since is the shortest

such trace, for its immediate prefix we have

FAC AC VC QC λC T RC, µC q0
C, , , , ,〈 〉= V VC⊆

A V AC∩= FAV
C

qi q'i, QC∈

q'i qi[]V∉ qi a q'i, ,() T RC∈ WV

V Changed qi a q'i, ,()∩ W ∅≠= q' j qj, QC∈

q' j qi[]V∉ qj qi[]V∈ q' j b qj, ,() T RC∈

ql q'l, QC∈ ql qi[]V∈ q'l qi[]V∉ ql c q'l, ,() T RC∈ WV

V qj ql

FAV
C BV

C Proj V() BC()=

BV
C Proj V() BC()⊇ BV

C Proj V() BC()=

tV BV
C∈ tV Proj V() BC()∈

tV BV
C∈

tV Proj V() BC()∈

tV q0q1…qn 1– qn BV
C∈=

tV Proj V() BC()∉ tV qn 1– a' qn, ,() TRV
C∈

FAV
C qi q'i QC∈,

q'i qi[]V∉ qi a q'i, ,() TRC∈ WV

qn 1– a' qn, ,() Proj V() qi() Proj V() a() Proj V() q'i(), ,()= tV

t'V q0q1…qn 1– Proj V() BC()∈=

65

at

,

states

e

As

nce

air

-

.

ce

en

f

,

d

Thus, there must exist a trace such th

. Here, any indicated pair of states of trace

, are -incompatible states that are separated by a sequence of

that are -compatible with . Thus, . Let be th

state immediately preceding state on trace with .

noted previously, and are -incompatible states. Moreover, si

, we have and . Now

(with) it follows from the conditions of the theorem that there exists a p

of states , , , such that is a

transition, with a (possibly empty) sequence of -compatible states from to

This is equivalent to saying that there exists a tra

, and thus . How-

ever, note that since , and is a -transition, th

, and thus

. But the latter implies

that , which is a contradiction.

Next, we show that if for all , , then the condition o

the theorem holds. To prove this by contradiction, suppose for all

, but there exist a pair of states such that

and is a -transition (i.e.,),

together with a pair of states such that , , an

, but theredoes notexist any pair of states , ,

t' q'0…q'1…q'n 1– BC∈=

t'V Proj V() t'()= q'm q'm 1+, t'

0 m n 1–<≤ V

V q'm t'V Proj V() q'0q'1…q'n 1–()= q' j

q'n 1– t' q' j b q'n 1–, ,() T RC∈

q'n 1– q' j V

Proj V() q'n 1–() Proj V() qi()= q'n 1– qi[]V∈ q' j qi[]V∉

qj q'n 1–=

ql q'l, QC∈ ql qi[]V∈ q'l qi[]V∉ ql c q'l, ,() T RC∈ WV

V q'n 1– ql

t'' q'0…q'1…q'n 1– …qlq'l BC∈= Proj V() t''() Proj V() BC()∈

ql q'n 1–, qi[]V∈ ql c q'l, ,() T RC∈ WV

q'l q'i[]V∈ qn[]V=

Proj V() t''() Proj V() q'0q'1…q'n 1– q'l() q0q1…qn 1– qn= =

tV q0q1…qn 1– qn Proj V() BC()∈=

tV BV
C∈ tV Proj V() BC()∈

tV BV
C∈

tV Proj V() BC()∈ qi q'i, QC∈ q'i qi[]V∉

qi a q'i, ,() T RC∈ WV V Changed qi a q'i, ,()∩ W ∅≠=

q' j qj, QC∈ q' j qi[]V∉ qj qi[]V∈

q' j b qj, ,() T RC∈ ql q'l, QC∈ ql qi[]V∈

66

)

is a

,

ible

be

o

be

te is

,

f

.

at
, such that is a -transition with a (possibly empty

sequence of -compatible states from to . Note that since

-transition, by construction of we have

. Now let

be any trace such that ,

, and is reached from through a sequence of -compat

states, and let . The last state transition of would

, but that cannot ever be equal t

, because isnot

a -transition (note that). Thus, the last state of cannot

, while because of ,

there exists a trace whose prefix is same as that of but its last sta

. It then follows that for such , which is a

contradiction.■

Corollary 2.4: [Automata projections and safe abstractions]

Let be a circuit and be its behavior. Let

, and be a sub-automaton o

such that , and is projectable onto

Then is a safe abstraction of over .■

Proof (Sketch) Since is an automaton projection, we know th

. Now, since , we will have

q'l qi[]V∉ ql c q'l, ,() T RC∈ WV

V qj ql qi a q'i, ,() T RC∈

WV FAV
C

Proj V() qi() Proj V() a() Proj V() q'i(), ,() TRV
C∈

t' q'0…q' jqj…qlq'l BC∈= ql qi[]V∈ q'l qi[]V∉

ql c q'l, ,() T RC∈ ql qj V

t'V Proj V() t'()= t'V

Proj V() ql() Proj V() c() Proj V() q'l(), ,() TRV
C∈

Proj V() qi() Proj V() a() Proj V() q'i(), ,() TRV
C∈ ql c q'l, ,() T RC∈

WV ql qi[]V∈ t'V

Proj V() q'i() Proj V() qi() Proj V() a() Proj V() q'i(), ,() TRV
C∈

t''V BV
C∈ t'V

Proj V() q'i() t''V BV
C∈ t''V Proj V() BC()∉

C MC AC VC GC, FAC, , ,〈 〉= BC V VC⊆

A V AC∩= FÃC AC VC Q̃C λ̃C TR̃C, µ̃C q0
C, , , , ,〈 〉=

FAC Proj V() B̃C() Proj V() BC()= FÃC V

B̃V
C BC V

FÃV
C

B̃V
C Proj V() B̃C()= Proj V() B̃C() Proj V() BC()=

67

t

be

y

; i.e., is an exact abstraction of over . But then

would also be a safe abstraction of over .■

Corollary 2.5: [Automata projections and safe abstractions]

Let be a circuit and be its behavior. Moreover, le

, , be such that is an automaton projection, and let

the behavior of . Then is a safe abstraction of over .■

Proof (Sketch) The proof of this corollary directly follows from Corollary 2.4, b

letting .■

B̃V
C Proj V() BC()= B̃V

C BC V B̃V
C

BC V

C MC AC VC GC, FAC, , ,〈 〉= BC

V VC⊆ A V AC∩= FAV
C BV

C

FAV
C BV

C BC V

FÃC FAC=

68

avior

ior of

rcuit

the

orem

f the

ed-
Chapter 3

Induced Hierarchical Verification of SI, Theoretical

Framework

In the previous chapter, we introduced the notion of a safe abstraction as a beh

over a subset of circuit variables which may under-approximate the actual behav

those variables, but is guaranteed to be exact if the circuit is failure-free. For a ci

that has a safe abstraction, we introduce in this chapter the notion ofsub-circuitsof the

circuit. Such sub-circuits are derived from the safe abstraction and thecircuit blocks,

where circuit blocks are themselves the result of partitioning the circuit using

observationally sufficient variables of the safe abstraction. We prove in a main the

of this chapter that for circuits which have a safe abstraction, failure-freedom o

circuit can be determined based on the failure-freedom of itssub-circuits. This impor-

tant result is the basis of our framework for induced hierarchical verification of spe

independence, as will be seen in this chapter.

69

ing

e

ff

a

at

the

f

et of

es,
3.1 Partitioning a Circuit into Circuit-Blocks

In this section, we describe the notion of partitioning a circuit into circuit blocks us

a selected set of circuit signals.

Definition 3.1 [Circuit block] Let be a circuit and

be a non-empty subset of circuit signals which we callexternalsignals. We

call as the set of hidden signals of the circuit. Let b

a relation such that for any two circuit modules , i

. In other words, and are related by iff there exists

circuit signal which is a common I/O signal of the two modules. Note th

is a reflexive and symmetric relation. Let be the transitive closure of

relation ; that is, and for any modules , i

and then . Since is a

reflexive, symmetric, and transitive relation, it is an equivalence relation over the s

circuit modules, and partitions that set into equivalence class

, each called acircuit block. ■

Let , , be any circuit block. We define

• as the set ofexternal inputsof circuit

block ;

• as the set ofexternal outputsof circuit

block ;

• as the set ofstate variablesof circuit

C MC AC VC GC, FAC, , ,〈 〉=

EC AC⊆

HC AC EC–= RE
C MC MC×⊆

M
i

M
j

MC∈, M
i

M
j,() RE

C∈

Ai Aj HC ∅≠∩ ∩ M
i

M
j

RE
C

a HC∈

RE
C RE

* C

RE
C RE

* C RE
C⊇ M

i
M

j
M

k, MC∈,

M
i

M
j,() RE

* C∈ M
j

M
k,() RE

* C∈ M
i

M
k,() RE

* C∈ RE
* C

rE
C 1≥

ME 1,
C … ME rE

C,
C, ,

ME i,
C 1 i r E

C≤ ≤

XE i,
C a EC ∃ M j ME i,

C a Xj∈,∈∈{ }=

ME i,
C

ZE i,
C a EC ∃ M j ME i,

C a Zj∈,∈∈{ }=

ME i,
C

YE i,
C y VC ∃ M j ME i,

C y Yj∈,∈∈{ }=

70

uit

er-

i.e.,

ks

e fact

cir-

is a

als

O

d

o

e

block ;

• as the set ofhidden (internal) signals

of circuit block ;

• as the set ofsignals of circuit block ;

• as the set ofvariables of circuit block ;

By definition, the equivalence relation which partitions the circuit into circ

blocks is such that for any pair of circuit modules and belonging to two diff

ent circuit blocks (i.e.,), if feeds through a common I/O sig-

nal (i.e.,) then the common I/O signal must be an external signal (

). In other words, circuit modules which belong to different circuit bloc

would never feed each other through internal signals. This further emphasizes th

that the circuit modules of any circuit block can communicate with the rest of the

cuit only through external signal transitions.

It is to be noted that in general, the set of external signals of a circuit block

subset of the external signals of the circuit; i.e., . Thus some sign

in may be neither an input nor an output of a circuit block.

Example 3.1 Figure 3.1 shows three different partitions of a four-stage FIF

controller. For Figure 3.1(a), , for Figure 3.1(b), , an

for Figure 3.1(c), . , for example, partitions the circuit int

two blocks, a left block and a right block . Thus we hav

ME i,
C

HE i,
C a HC ∃ M j ME i,

C a Aj∈,∈∈{ }=

ME i,
C

AE i,
C XE i,

C ZE i,
C HE i,

C∪ ∪= ME i,
C

VE i,
C AE i,

C YE i,
C∪= ME i,

C

RE
* C

M
i

M
j

M
i

M
j,() RE

* C∉ M
j

M
i

zk
j

xl
i,() KC∈

zk
j

EC∈

XE i,
C ZE i,

C∪ EC⊆

EC

E1 r0 a0,{ }= E2 a1 a2,{ }=

E3 r0 a0 a3 a4, , ,{ }= E2

ME2 1,
C ME2 2,

C

71

t

cted

cir-

-

the

f its
, and , ,

, and . Note that a circuit block may no

have any hidden signals, as is the case with the left circuit block induced by . ■

3.2 Safe Abstractions and Sub-circuits of a Circuit

In this section, we define our notion ofsub-circuitsof a circuit. This notion is defined

only in association with a safe abstraction for the behavior of a circuit over a sele

set of its signals. A sub-circuit of such a circuit is the closed circuit composed of a

cuit block and its abstractenvironment module,where an environment module of a cir

cuit block is themirror of a safe specificationof the circuit block, and a safe

specification is in turn obtained from the safe abstraction of the circuit. We show in

next section how the failure-freedom of a circuit is related to the failure-freedom o

sub-circuits.

(a)

Fig. 3.1Three different partitions of the four-stage FIFO controller.

r0

a0

a1

a2

a3

a4

C C

C

c3
c4

c2
c1i1 b1

C

r0

a0

a1

a2

a3

a4

C C

C

c3
c4c2

c1i1 b1
C

(b)

(c)

r0

a0

a1

a2

a3

a4

C C

C

c3
c4c2

c1i1 b1
C

i1 c1 c2, ,{ } ME2 1,
C∈ XE2 1,

C a2{ }= ZE2 1,
C a1{ }= YE2 1,

C ∅=

HE2 1,
C r0 a0,{ }= AE2 1,

C r0 a0 a1 a2, , ,{ }=

E1

72

,

is

of

r of

r

et

it

n.

to
3.3 Environment Module of a Circuit Block

Let be a circuit and be its behavior. Let

, and be an

automaton whose behavior is a safe abstraction of over (thus

observationally sufficient for). We call the set ofexternal variables, the

corresponding set ofexternal signals, and the set ofexternal state variables.

Let be the set of circuit blocks of as it is partitioned by the set

signals . The safe abstraction which is an approximation of the behavio

the circuit variables ,specifiesfor each circuit block how its I/O signals

interact with each other and with (possibly) other external circuit variables.

Definition 3.2 [Safe specifications, and safe specification sets]

Let be any circuit for which there exists a behavio

that is a safe abstraction of over some , and . L

be any circuit block of induced by . Let be any set of circu

variables satisfying the following conditions:

• ; i.e., includes all external inputs of circuit block ;

• ; i.e., includes all external outputs of circuit block ;

• , the collapsed automaton of onto is a projection automato

We then define a new automaton by applying the following modifications

:

C MC AC VC GC, FAC, , ,〈 〉= BC WC VC⊆

EC AC WC∩= FAWC EC WC QWC λWC T RWC, µWC q0
WC, , , , ,〈 〉=

BWC BC WC WC

BC WC EC

WC EC–

ME 1,
C … ME rE

C,
C, , C

EC BWC

WC ME i,
C

C MC AC VC GC, FAC, , ,〈 〉=

BWC BC WC VC⊆ EC AC WC∩=

ME i,
C C EC V̂W i,

C WC⊆

XE i,
C V̂W i,

C⊆ V̂W i,
C ME i,

C

ZE i,
C V̂W i,

C⊆ V̂W i,
C ME i,

C

FA
V̂W i,

C
WC FAWC V̂W i,

C

FÂW i,
C

FA
V̂W i,

C
WC

73

te

t of

ation.

ins

ions

, it

safe

de

pected

. In

n to

tput

om-

ces,
• for any and , if there exists no such that

, then (a) add state transition to , where sta

 (that needs to be added to) is such that

 and for all other ,

, and (b) let .

Then we say that , the behavior of automaton , is asafe specificationfor

circuit block , derived from the safe abstraction . We call as the se

inputs of the safe specification, and as the set of outputs of the safe specific

We also call the (non-empty) set of all possible safe specifications of as thesafe

specification set of and denote it by .■

Note that while automaton is failure-free, is not, and conta

newly introduced failure state transitions. Specifically, the failure state transit

introduced into the safe specification of imply that for to be failure-free

should not produce any output transitions that are not originally present in

abstraction . Note that since and hence do not originally inclu

those failure transitions, and the behaviors of those automata beyond such unex

failure transitions are not specified, we had to furnish with that information

doing so, we simply specify the state entered immediately after a failure transitio

be one which differs from the preceding state only in the value of the changed ou

signal. These modifications introduce new traces into the behavior of , c

pared to that of . However, all the newly introduced traces are failure tra

a ZE i,
C∈ q Q

V̂W i,
C

WC∈ q' Q
V̂W i,

C
WC∈

q a q', ,() TR
V̂W i,

C
WC∈ q a q', ,() TR̂W i,

C

q' Q̂W i,
C

λ̂W i,
C q() a() λ

V̂W i,
C

WC q() a() λ̂W i,
C q'() a()≠= b V̂W i,

C b a≠,∈

λ̂W i,
C q() b() λ

V̂W i,
C

WC q() b() λ̂W i,
C q'() b()= = µ̂W i,

C q a,() F=

B̂W i,
C FÂW i,

C

ME i,
C BWC XE i,

C

ZE i,
C

ME i,
C

ME i,
C BW i,

C

FA
V̂W i,

C
WC FÂW i,

C

ME i,
C ME i,

C

BWC FAWC FA
V̂W i,

C
WC

FÂW i,
C

FÂW i,
C

FA
V̂W i,

C
WC

74

.8 in

ck

omata

tion

ifica-

s of

ro-

nto

re

. As

s for

any

tput

f the

e safe

ns).

cified

ction.
and their failure-free prefixes are already in the behavior of (see Lemma 3

the formal proof section of this chapter).

The definition of a safe specification of a circuit block implies that a circuit blo

can potentially have many safe specifications, as long as the alphabet of their aut

satisfies the indicated conditions. It also implies that is itself a safe specifica

for any circuit block it induces. Although can always be used as a safe spec

tion for any circuit block, reducing it to other smaller safe specifications by mean

projecting its automaton will often speed up the overall hierarchical verification p

cess.

Example 3.2Figure 3.2.a depicts a four-stage FIFO controller that is partitioned i

two circuit blocks by the set of external signals (Figure 3.2.b). Figu

3.2.c depicts the state diagram of a safe abstraction of the circuit behavior over

indicated in Figure 3.2.d, the safe abstraction is used to derive safe specification

each of the two circuit blocks. While the signals of the safe abstraction do not have

input/output attribute, an explicit distinction is made between the input and ou

signals of each of the two safe specifications. In this example, the graph o

automaton of each safe specification contains that of the safe abstraction (here, th

abstraction, and not a projection of it, is used to derive the safe specificatio

However, each safe specification also has additional transitions identifying unspe

output transitions; i.e., any output transition that is not present in the safe abstra

■

FA
V̂W i,

C
WC

BWC

BWC

E a1 a2,{ }=

E

75

ver

d

et

ate
Definition 3.3 [Environment module] Let be any

circuit for which there exists a behavior that is a safe abstraction of o

some , and . Let be any circuit block of induce

by , and let be any safe specification for . Finally, l

be the subset of consisting of circuit signals only and no st

variables. Then theenvironment module of

 corresponding to is defined as follows:

• ;

• ;

[a1,a2]

00

10

11

01

(c) A safe abstraction

Fig. 3.2Deriving safe specifications for circuit blocks from a safe abstraction.
Illegal output transitions of the safe specifications are illustrated with dotted arrows.

[a1,a2]

00

10 11

01

[a1,a2]

00

10 11

01

(d) Safe Specifications

r0

a0

a1

C

C
c2

c1 i1

a2

a1

a2

a3

a4

C

C
c4

c3 b1

Block 1

Block 2

(e) Corresponding circuit blocks

r0

a0

a1

a2

a3

a4

C C

C

c3
c4c2

c1i1 b1
C

E = {a1,a2}
Circuit partitioninga0 a2 a4

C C

C

c3
c4c2

c1i1 b1
C

(b) Partitioned circuit(a) A four-stage FIFO controller
 in an abstract environment

C MC AC VC GC, FAC, , ,〈 〉=

BWC BC

WC VC⊆ EC AC WC∩= ME i,
C C

EC B̂W i,
C BW i,

C∈ ME i,
C

ÂW i,
C V̂W i,

C⊆ V̂W i,
C

M̂W i,
C X̂W i,

C ẐW i,
C ŶW i,

C FÂW i,
C, , ,〈 〉=

ME i,
C B̂W i,

C

X̂W i,
C ZE i,

C=

ẐW i,
C ÂW i,

C X̂W i,
C–=

76

uit

ctly

ron-

ibly

od-

ecifi-

ent

ns of

rms

oton-

ork,

heir

ons

d in

the

safe
• .

is in fact a virtual circuit module abstracting the environment of circ

block .■

It is easy to verify that (a) the input signals of the environment module are exa

the external output signals of the circuit block, (b) the output signals of the envi

ment module include all the external input signals of the circuit block, and poss

some additional signals from , and (c) the state variables of the environment m

ule are a subset of the circuit’s external state variables.

Since an environment module of a circuit block is defined based on a safe sp

cation of the circuit block, a circuit block may have many possible environm

modules each corresponding to a different element of . The safe specificatio

a circuit block (and thus the corresponding environment modules) may differ in te

of the size of their representation (e.g., automaton size) which is generally a mon

ically increasing function of the number of automaton variables. In our framew

although the safe specifications of a circuit block are all equivalent in terms of t

utility for hierarchical verification, we prefer the ones with smaller representati

over others.

The environment module of defined above is in fact themirror of the

safe specification derived from the safe abstraction [27]. As indicate

the definition of , its set of input signals is exactly the set of output signals of

safe specification; its set of output signals includes the set of input signals of the

ŶW i,
C V̂W i,

C ÂW i,
C–=

M̂W i,
C

ME i,
C

EC

ME i,
C

BW i,
C

M̂W i,
C ME i,

C

B̂W i,
C BWC

M̂W i,
C

77

f the

cifica-

ifica-

safe

le.

t are

uffi-

a

ach

n of
specification; its set of internal state variables consists of all the state variables o

safe specification, and its automaton is the same as the automaton of the safe spe

tion. Thus not only the role of inputs and outputs have changed from the safe spec

tion to the environment module, but also failure state transitions of the

specification that corresponded to unexpectedoutput transitions of the circuit block

are mapped to illegalinput transitions (input chokes) of the environment modu

These changes exactly characterize a mirroring procedure.

We need to emphasize that environment modules of circuit blocks of a circui

defined only given a safe abstraction of circuit behavior over the (observationally s

cient) set of external variables .

Example 3.3 An example of deriving environment modules for circuit blocks of

partitioned circuit from their safe specifications is shown in Figure 3.3. E

environment module is simply the mirror of the corresponding safe specificatio

WC

(a) A safe abstraction

Fig. 3.3Deriving safe specifications for circuit blocks from a safe abstraction.
Illegal input transitions of the environment modules are illustrated with dotted arrows.

(b) Automaton of the (c) Environment modules

a1

a2

a1

a2

 environment modules

[a1,a2]

00

10

11

01

[a1,a2]

00

10 11

01

[a1,a2]

00

10 11

01

78

are

this

urns

lock

cre-

r

for

l

or

e

Figure 3.2. Thus, unexpected output transitions of each safe specification

translated to illegal input transitions at the corresponding environment module. In

example, the automaton of the environment module of the above circuit block t

out to be isomorphic to the automaton of a buffer, and that of the bottom circuit b

turns out to be isomorphic to the automaton of an inverter.■

3.4 Subcircuits

In this section, we show how a circuit block together with its environment module

ate asub-circuit of the original circuit.

Definition 3.4 [Sub-circuit] Let be a circuit and , , and

be an automaton whose behavio

is a safe abstraction of over (thus is observationally sufficient

). We then call and as the set ofexternalvariables, and the set of externa

signals of , respectively. Let be the set of circuit blocks of . F

any circuit block , , and any environment module of it, w

can devise asub-circuit as follows:

• ;

• ;

• ;

• is such that

C WC VC⊆ EC AC WC∩=

FAWC EC WC QWC λWC T RWC, µWC q0
WC, , , , ,〈 〉=

BWC BC WC WC

BC WC AC

C ME 1,
C … ME rE

C,
C, , C

ME i,
C ME i,

C nE i,
C= M̂W i,

C

CW i,
C C' MC' AC' VC' GC', FAC', , ,〈 〉= =

MC' ME i,
C M̂W i,

C∪=

AC' ÂW i,
C AE i,

C∪=

VC' AC' V̂W i,
C YE i,

C∪ ∪=

GC' NC' KC',〈 〉=

79

e

ck

ote

ey

ro-

ible

he

uit

t is

As

the

an

n, no
• and is representative of circuit modul

;

•

,

where signals of are identified by a ;

• is the composition of the automata

. ■

Thus, informally speaking, sub-circuit is devised by cutting circuit blo

out of and connecting it to environment module accordingly. We n

that (a) since the circuit modules of circuit block also belong to circuit , th

are all initial-state-compatible, and (b) since --driven from by way of p

jecting its automaton--is a safe specification, the initial state of is compat

with the initial state of , and therefore with that of all circuit modules in . T

initial-state-compatibility of all circuit modules of guarantee that the circ

automaton is well-defined.

Example 3.4Figure 3.4.a depicts the four-stage FIFO controller of Figure 3.2 tha

partitioned into two circuit blocks by the set of external signals .

mentioned in Example 3.3, the environment module of the left circuit block has

automaton of a buffer, while that of the right circuit block has the automaton of

inverter (remember that in deriving those specifications from the safe abstractio

NC' N1 … NnE i,
C 1+, ,{ }= N j

M j MC'∈

KC' zk
j

xl
h,() KC∈ M j Mh ME i,

C∈,{ } ẑk
i

xl
h,() Mh ME i,

C ẑk
i

xl
h

=,∈{ }∪=

zk
j

x̂l
i,() M j ME i,

C zk
j

x̂l
i

=,∈{ }∪

M̂W i,
C ˆ

FAC' AC' VC' QC' λC' T RC', µC' q0
C', , , , ,〈 〉=

FA1 … FAnE i,
C

FÂW i,
C, , ,

CW i,
C

ME i,
C C M̂W i,

C

ME i,
C C

B̂W i,
C BWC

FÂW i,
C

C ME i,
C

CW i,
C

FAC'

E a1 a2,{ }=

80

ent

t ,

can

d to

el of

ond-

th

p to

the

and
projection was performed). The combination of each circuit block and its environm

module has defined a sub-circuit as shown in Figure 3.4.d.■

We have shown how given a safe abstraction for the behavior of a circui

over a set of observationally sufficient variables , the sub-circuits of the circuit

be constructed. In our hierarchical verification framework, the original circuit is sai

be at the 1st level of hierarchy, while its sub-circuits are said to be at the 2nd lev

hierarchy. Given a safe abstraction of the behavior of circuit over a corresp

ing set of signals , the subcircuits of can be similarly constructed. The

sub-circuit of is thus denoted by . This procedure can be repeated u

any finite level of hierarchy at which the size of a sub-circuit is small enough for

purpose of flat verification. The relationship between the verification of a circuit

that of its sub-circuits is the topic of the following section.

[a1,a2]

r0

a0

a1

a2

a3

a4

C C

C

c3
c4c2

c1i1 b1
C

00

10

11

01

(c) A safe abstraction

r0

a0

a1

C

C
c2

c1 i1

a2

a1

a2

a3

a4

C

C
c4

c3 b1

Block 1

Block 2

E = {a1,a2}

Fig. 3.4A four-stage FIFO controller and its sub-circuits.

Subcircuit extraction
Circuit partitioning

r0

a0

a1

a2

a3

a4

C C

C

c3
c4c2

c1i1 b1
C

(b) Partitioned circuit

(a) A four-stage FIFO controller

(d) Derived subcircuits

 in an abstract environment

BWC C

WC

CW i,
C

WCW i,
C

CW i,
C j

CW i,
C CW j,

CW i,
C

81

rar-

prob-

ion

uit.

ase

h are

pro-

safe

ircuit

ose

d its

rems

r

.

t of a

il-
3.5 Circuit Failure-freedom and Sub-circuits’ Failure-freedom

In this section, we present a key result which is the basis of our framework for hie

chical verification of speed-independent circuits and systems. We show how the

lem of verifying failure-freedom of a circuit can be recursively broken into a collect

of smaller problems of verifying the failure-freedom of the sub-circuits of the circ

Since verification of failure-freedom has computational complexity that is worst-c

exponential in the number of circuit variables, such hierarchical approaches whic

basically divide and conquer techniques can significantly speed up the verification

cess.

The two theorems of this section collectively suggest that if there exists a

abstraction of the behavior of a circuit over a set of external variables, then the c

is failure-free iff all of its corresponding sub-circuits are failure-free. For the purp

of clarity, we first present each theorem, its implications, and some intuition behin

proof. We then present a more comprehensive sketch of the proofs of the two theo

for the interested reader.

Theorem 3.1 [Circuit versus sub-circuit failure-freedom, I]

Let be any circuit for which there exists a behavio

that is a safe abstraction of over some , and

Then, if any sub-circuit is not failure-free, then is not failure-free.■

The above theorem states that a negative verification result for any sub-circui

circuit is always indicative of the failure of the circuit itself. Thus, verifying the fa

C MC AC VC GC, FAC, , ,〈 〉=

BWC BC WC VC⊆ EC AC WC∩=

CW i,
C C

82

alse

is

rre-

nput

d by

e at

nt in

is

ctual

ule

od-

tion,

uit

r

If

ts is

il-
ure-freedom of a circuit by way of verifying its sub-circuits can never generate a f

negative result.

The intuition behind the proof of this theorem is as follows. A sub-circuit failure

an illegal input signal transition either at some ordinary circuit module of the co

sponding circuit block (e.g. a hazard), or at the environment module (i.e., an i

choke to the environment module, or equivalently, an output transition unexpecte

the safe specification of the corresponding circuit block). However, (a) any failur

an ordinary circuit module of the sub-circuit is guaranteed to be identically prese

the original circuit; this is true since a sub-circuit is actually a circuit block which

operated in an abstract environment that is never an over-approximation of the a

environment of the circuit block, and (b) any input choke to the environment mod

of the sub-circuit indicates that the safe abstraction, from which the environment m

ule is derived, is an under-approximation; however, by definition of a safe abstrac

this can be true only if the original circuit was not failure-free. Thus, any sub-circ

failure is always indicative of some circuit failure.

Theorem 3.2 [Circuit versus sub-circuit failure-freedom, II]

Let be any circuit for which there exists a behavio

that is a safe abstraction of over some , and .

all sub-circuits are failure-free, then , itself, is failure-free.■

The above theorem states that positive verification results for all sub-circui

always indicative of the failure-freedom of the circuit itself. Thus, verifying the fa

C MC AC VC GC, FAC, , ,〈 〉=

BWC BC WC VC⊆ EC AC WC∩=

CW 1,
C … CW rE

C,
C, , C

83

alse

an

ner-

an

en

ing

ilure

ling

ox-

the

cir-

sub-

an

ven

ck

tured

ree,

ther

ing
ure-freedom of a circuit by way of verifying its sub-circuits can never generate a f

positive result.

The intuition behind the proof of this theorem is as follows. A circuit failure is

illegal signal transition at the input of some circuit module (a driven module), ge

ated by another circuit module (a driving module). This failing signal is either

external signal or an internal signal of the circuit. If the failing signal is external, th

either its failing transition is captured in the safe abstraction or it is not. If a fail

external signal transition is captured in the safe abstraction, then an identical fa

must have manifested itself in the sub-circuit containing the driven module. If a fai

external signal transition isnotcaptured in the safe abstraction, then the under-appr

imated behavior of the driving module would have manifested itself as a choke to

environment module of the sub-circuit containing the driving module. Thus, any

cuit failure on an external signal is guaranteed to be captured as a failure in some

circuit. On the other hand, if the failing signal is an internal circuit signal, then

identical failure would have manifested itself in the sub-circuit containing the dri

(and the driving) circuit module, if the specification of the corresponding circuit blo

is exact; thus, any circuit failure on an internal signal is also guaranteed to be cap

as a failure in some sub-circuit. Hence, if all sub-circuits are verified as failure-f

then the circuit must have been failure-free itself.

Before we present our proofs of Theorems 3.1 and 3.2, we would like to fur

signify the dual role of external variables in our verification framework; i.e., (a) be

84

) con-

safe

nship

are

f our

hip

o

e

s:

uit

the

,

tu-

as
the set of variables whose behavior is approximated by a safe abstraction, and (b

taining the set of external signals that partition the circuit into circuit blocks.

As indicated by the two theorems of this section, for any circuit which has a

abstraction over a set of external circuit variables, there exists a particular relatio

between the failure-freedom of the circuit and that of its induced sub-circuits. We

specifically interested in this particular relationship because it is the foundation o

hierarchical verification framework. Here, we would like to show that the relations

of our interest do not generally exist if the set of circuit blocks werearbitrary.

We define anarbitrary circuit block as any subset of circuit modules. We als

define anarbitrary set of circuit blocksto be any set of arbitrary circuit blocks. Th

input andoutputsignals of the circuit blocks of an arbitrary set are defined as follow

any signal that is driven by a circuit module in one circuit block and drives a circ

module in another circuit block is an output of the first circuit block and an input of

second circuit block.

Consider Figure 3.5 which depicts twooverlappingarbitrary circuit blocks

and . Assume that signal is driven by the common portion of and

and drives modules in each of and . Our definition ofinput signals, given

above, would not label as an input signal of either of or , since is ac

ally driven from within both circuit blocks. On the other hand, for to be labeled

an outputsignal of either of the two circuit blocks, has to be an inputsignal of a

third circuit block; in such a case, would be an output of both and .

CB1

CB2 a CB1 CB2

CB1 CB2

a CB1 CB2 a

a

a

a CB1 CB2

85

ircuit

ship

i.e.,

raint

s is

t.

to

the

ernal

of a

that

m-

ular

rary
Next, we describe a set of necessary conditions that an arbitrary set of c

blocks has to satisfy before their failure-freedom can have any significant relation

to that of the circuit.

(i) An arbitrary set of circuit blocks must be a covering set for the circuit modules;

each circuit module must belong to at least one arbitrary circuit block. This const

is to guarantee that verification of a circuit by means of verifying its sub-circuit

inclusive and there is no circuit module which is not verified within any sub-circui

(ii) Input signals of any arbitrary circuit block must all be external. This constraint is

guarantee that the environment module of the circuit block which is obtained from

safe abstraction--and thus lacks direct information regarding the behavior of int

signals--can appropriately drive all inputs of the circuit block. Since input signals

circuit block are output signals of other circuit blocks, this constraint also implies

output signals of any arbitrary circuit block must all be external.

(iii) If two circuit blocks overlap, then any signal which is driven by a module co

mon to the two circuit blocks has to be external. This constraint is to avoid a partic

problem that is illustrated in Figure 3.6. Figure 3.6 depicts two overlapping arbit

a

CB1

CB2

Fig. 3.5Two overlapping arbitrary circuit blocks

86

s of

in

nly

origi-

d

ee

that

ould

rma-

nals

ule of

.

ld

rs
circuit blocks and . Assume that and are (external) output signal

and , respectively, and is an internal signal driven by a circuit module

the common portion of the two circuit blocks. Moreover, assume that the o

sequence of transitions that can possibly occur on the signals , , and in the

nal circuit is , such that is required for , is require

for , and is required for . Assume that the lower level circuit is failure-fr

and that there exists a safe abstraction over the set of its external signals (note

and belong to the set of external signals, but not). Such a safe abstraction w

have the sequence of transitions . This new sequence lacks any info

tion about the relative order of transitions on signal with respect to those of sig

and . As an example, this sequence suggests that (the environment mod

) can produce a transition right after a transition is produced by

Thus, in the sub-circuit which is the composition of and , a wou

enable not only (through) but also (through); however if occu

before , it would enable (through), which is equivalent to disabling

CB1 CB2

a

CB1

CB2

Fig. 3.6Overlapping arbitrary blocks with a non-external common signal.

b

c

b c

CB1 CB2 a

a b c

c+ a+ b+ a- b- c-, , , , , c+ a+ a+

b+ b+ a-

b

c a

c+ b+ b- c-, , ,

a

b c CBˆ 2

CB2 b+ c+ CB2

CB2 CBˆ 2 c+

a+ CB2 b+ CBˆ 2 b+

a+ a- CB2 a+

87

with

o fire.

uit

n of

rnal

Fig-

on-

ative

itions.

et of

that

s and

ver
which was already enabled by . In other words, in the sub-circuit associated

, signal can become enabled and then disabled without having a chance t

This situation will be detected as a failure in that sub-circuit, while the original circ

was in fact failure-free. In such a case, taking the sub-circuit failure as an indicatio

a circuit failure would generate nothing but a false negative verification result.

In general, overlapping pairs of arbitrary circuit blocks that have non-exte

common signals do not always satisfy the particular conditions of the example of

ure 3.6 which led to false negative verification results. However, by disallowing n

external common signals all together, the possibility of generating such false neg

verification results is removed.

It can easily be seen that any set of circuit blocks created bypartitioning a circuit

by a set of external signals happens to satisfy our indicated set of necessary cond

As proved next, such circuit blocks, together with the safe abstraction over the s

external variables, define sub-circuits whose failure properties do in fact relate to

of the circuit in the ways suggested by Theorems 3.1 and 3.2.

3.6 Formal Proofs

We present our proofs of Theorems 3.1 and 3.2 by first introducing some lemma

corollaries which are used in the proofs.

Lemma 3.3 [Projection of safe specifications]Let be

any circuit for which there exists a behavior that is a safe abstraction of o

c+

CB2 a

C MC AC VC GC, FAC, , ,〈 〉=

BWC BC

88

d

e

te

we

n

at

en
some , and . Let be any circuit block of induce

by , and be a safe specification of . Then

and .■

Proof (Sketch) --the automaton of --is obtained from --th

projection of automaton onto --by solely introducing new failure sta

transitions, which in turn introduce new failure traces into behavior . Thus,

have and . On the other hand, by definition of a

automaton projection we know that . It then follows th

. ■

Lemma 3.4 [Under approximation of the I/O behavior of a circuit block] Let

be any circuit for which there exists a behavior

that is a safe abstraction of over some , and . Let

be a circuit block of , and be its environment module. Th

. ■

Proof (Sketch) Since is a safe abstraction of over , we have

, (1)

and by applying function to both sides of relation (1) we have

. (2)

However, by Lemma 2.1 we have

. (3)

WC VC⊆ EC AC WC∩= ME i,
C C

EC B̂W i,
C ME i,

C Proj V̂W i,
C() BWC() B̂W i,

C⊆

FF B̂W i,
C() Proj V̂W i,

C() BWC()=

FÂW i,
C B̂W i,

C FA
V̂W i,

C
WC

FAWC V̂W i,
C

B̂W i,
C

B
V̂W i,

C
WC B̂W i,

C⊆ FF B̂W i,
C() B

V̂W i,
C

WC=

B
V̂W i,

C
WC Proj V̂W i,

C() BWC()=

FF B̂W i,
C() Proj V̂W i,

C() BWC()=

C MC AC VC GC, FAC, , ,〈 〉= BWC

BC WC VC⊆ EC AC WC∩= ME i,
C

C M̂W i,
C

Proj ÂW i,
C() BWC() Proj ÂW i,

C() BC()⊆

BWC BC WC VC⊆

BWC Proj WC() BC()⊆

Proj .() .()

Proj ÂW i,
C() BWC() Proj ÂW i,

C() Proj WC() BC()()⊆

Proj ÂW i,
C() Proj WC() BC()() Proj ÂW i,

C() BC()=

89

et

sts

,

ully

en

,

o --

to

est

I/O

ck
From (2) and (3) we conclude that

. ■ (4)

Lemma 3.5 [Properties of traces captured in a safe specification]Let

be any circuit for which there exists a behavior

that is a safe abstraction of over some , and . L

be any sub-circuit of , and be any trace for which there exi

such that . Then . Moreover

if is any trace such that , then .

Informally speaking, Lemma 3.5 states that if a circuit trace is successf

abstracted within the safe specification of circuit block (i.e. by trace), th

not only (the projection of) trace will be (locally) present in sub-circuit

but also any other trace of sub-circuit that adheres to trace --and thus t

will be (globally) present in circuit .■

Proof (Sketch) We know that the I/O signals of circuit block (corresponding

sub-circuit) via which interacts with its actual environment (i.e., the r

of the circuit) are all external signals; that is,

, (5)

where is the set of external circuit signals. We also know that , the

signals of environment module via which interacts with circuit blo

, are all external signals, and in particular

Proj ÂW i,
C() BWC() Proj ÂW i,

C() BC()⊆

C MC AC VC GC, FAC, , ,〈 〉= BWC

BC WC VC⊆ EC AC WC∩=

C' CW i,
C= C t BC∈

tV̂W i,
C

B̂W i,
C∈ Proj V̂W i,

C() t() tV̂W i,
C

= Proj VC'() t() BC'∈

t' BC'∈ Proj V̂W i,
C() t'() tV̂W i,

C
= t' Proj VC'() BC()∈

t

ME i,
C tV̂W i,

C

t C' CW i,
C=

t' C' tV̂W i,
C

t

C

ME i,
C

CW i,
C ME i,

C

XE i,
C ZE i,

C EC⊆∪

EC WC⊆ ÂW i,
C

M̂W i,
C M̂W i,

C

ME i,
C

90

ec-

on

n-

n-

nd

the

lock

e

e

. (6)

Since , from (6) have

. (7)

From (7) and , and by using Lemma 2.1 we have

(8)

Let and be the strings associated with traces and , resp

tively. Then from (8) we have

. (9)

In equation (9), corresponds to a sequence of transitions

the I/O signals of circuit block when it is operating within its actual enviro

ment, circuit ; equivalently, is a sequence of I/O signal tra

sitions of the actual environment of circuit block . On the other ha

corresponds to a sequence of I/O signal transitions of

safe specification of circuit block -- ; equivalently,

is a sequence of I/O signal transitions of the abstract environment of circuit b

-- .

By a similar argument, if is such that then we hav

, (10)

and if we let be the string associated with trace then from (10) we hav

. (11)

XE i,
C ZE i,

C∪() ÂW i,
C EC WC⊆ ⊆ ⊆

ÂW i,
C V̂W i,

C WC⊆ ⊆

XE i,
C ZE i,

C∪() ÂW i,
C V̂W i, WC⊆ ⊆ ⊆

Proj V̂W i,
C() t() tV̂W i,

C
=

Proj XE i,
C ZE i,

C∪() t() Proj XE i,
C ZE i,

C∪() tV̂W i,
C

()=

at atv t BC∈ tV̂W i,
C

B̂W i,
C∈

Proj XE i,
C ZE i,

C∪() at() Proj XE i,
C ZE i,

C∪() atv()=

Proj XE i,
C ZE i,

C∪() at()

ME i,
C

C Proj XE i,
C ZE i,

C∪() at()

ME i,
C

Proj XE i,
C ZE i,

C∪() atv()

ME i,
C B̂W i,

C Proj XE i,
C ZE i,

C∪() atv()

ME i,
C M̂W i,

C

t' BC'∈ Proj V̂W i,
C() t'() tV̂W i,

C
=

Proj XE i,
C ZE i,

C∪() t'() Proj XE i,
C ZE i,

C∪() tV̂W i,
C

()=

at' t' BC'∈

Proj XE i,
C ZE i,

C∪() at'() Proj XE i,
C ZE i,

C∪() atv()=

91

ons

vi-

al

the

th

aton

, the

he

here

t of

tions.

ave

ust
In equation (11), corresponds to a sequence of transiti

on the I/O signals of circuit block when it is operating within its abstract en

ronment, ; equivalently, is a sequence of I/O sign

transitions of the abstract environment of circuit block , as also confirmed by

right side of equation (11).

From equations (9) and (11) we conclude that

. (12)

Now, consider circuit block interacting via its--all external--I/O signals wi

(a) its actual environment, and (b) its abstract environment whose autom

behavior is . Equations (12) suggest that circuit block can experience

same sequence of I/O signal transitions within both environments.

Naturally then, the original environment of is not distinguishable from t

abstract environment of when their sequence of interactions with ad

to (as well as). On the other hand, the behavior of any circuit block (i.e., its se

all possible traces) is inherently unique per any unique sequence of I/O interac

Intuitively, it then follows that

• (i) the same sequence of transitions of (the collection of variables of

and) along trace of the original circuit must also be observable in

(the sub-circuit composed of and). In other words, we must h

;

• (ii) the same sequence of transitions of along trace of sub-circuit m

Proj XE i,
C ZE i,

C∪() at'()

ME i,
C

M̂W i,
C Proj XE i,

C ZE i,
C∪() at'()

ME i,
C

Proj XE i,
C ZE i,

C∪() at'() Proj XE i,
C ZE i,

C∪() at()=

ME i,
C

M̂W i,
C

B̂W i,
C ME i,

C

ME i,
C

ME i,
C ME i,

C

t t'

VC' ME i,
C

M̂W i,
C t C'

ME i,
C M̂W i,

C

Proj VC'() t() BC'∈

VC' t' C'

92

he

of

ake

ir-

nd

tial

h of

w

r

o

e the

that

ing

ave

last
also be observable in . In other words, we must have .

Claim (i) above (and similarly, claim (ii)) can be proven by an induction on t

length of trace (and that of) and the enabling conditions of circuit modules

. The inductive proofs of the two claims are very similar. However, for the s

of completeness, we present both of them in what follows.

• (i) Consider the original circuit and its sub-circuit . Let be any c

cuit trace. The circuit modules of have a unique initial state in both a

; that is, the two circuits are initial-state-compatible. Now, since the ini

state of any circuit uniquely defines the trace of that circuit which has a lengt

one, for the base case of we have . No

assume that holds for any trace of length fo

which . (Note that trace , corresponding t

trace , is not necessarily of length , and the subscript is only to emphasiz

correspondence.). We show that any trace of length , such

is the prefix of and will satisfy the

condition . To see this, if the last state transition of

involves no variables of , then obviously

. Otherwise, any variable of

involved in the last state transition of is either driven by a module in

or by one outside . First consider the case in which drives a chang

variable of the last state transition of : since the modules of h

experienced the same set of signal transitions in both and , up to the

C t' Proj VC'() BC()∈

t t'

ME i,
C

C C' t BC∈

ME i,
C C

C'

Len t() 1= Proj VC'() t() BC'∈

Proj VC'() tn() BC'∈ tn BC∈ n

Proj V̂W i,
C() tn() tn

V̂W i,
C

B̂W i,
C∈= tn

V̂W i,
C

tn n

tn 1+ BC∈ n 1+

tn tn 1+ Proj V̂W i,
C() tn 1+() tn 1+

V̂W i,
C

B̂W i,
C∈=

Proj VC'() tn 1+() BC'∈ tn 1+

C'

Proj VC'() tn 1+() Proj VC'() tn() BC'∈= C'

tn 1+ ME i,
C

ME i,
C ME i,

C

tn 1+ ME i,
C

C C'

93

oth

lso

in

e

trace

nges

vari-

uit,

ol-

ny

case

t

-

ly to

ngth

,

by

a

state transition of , their state prior to the last transition is the same in b

circuits, and thus at that point any signal of which is enabled in is a

enabled in . Secondly, consider the case in which a changing variable of

the last state transition of is driven by a module outside : since

is the automaton behavior of and , th

transitions of any such variable (who has to be an external variable) along

are preserved in the automaton of ; that is, any such variable cha

are also enabled in . Thus in both cases we observe that any change of

ables of that occurs at the last state transition of in the original circ

is also enabled at the last state of in sub-circuit . It then f

lows that .

• (ii) Consider the original circuit and its sub-circuit , and let be a

sub-circuit trace. Since and are initial-state-compatible, for the base

of we have . Now assume tha

holds for any trace of length for which

, where . (Note that trace , corre

sponding to trace , is not necessarily of length , and the subscript is on

emphasize the correspondence.).We show that any trace of le

, such that is the prefix of , , and

, will satisfy the condition . To see this

any variable of involved in the last state transition of is either driven

a module in or by . First consider the case in which drives

tn 1+

ME i,
C C

C' C'

tn 1+ ME i,
C B̂W i,

C

M̂W i,
C Proj V̂W i,

C() tn 1+() tn 1+
V̂W i,

C
B̂W i,

C∈=

tn 1+ M̂W i,
C

C'

VC' tn 1+

Proj VC'() tn() C'

Proj VC'() tn 1+() BC'∈

C C' t' BC'∈

C C'

Len t'() 1= t' Proj VC'() BC()∈

t'n Proj VC'() BC()∈ t'n BC'∈ n

Proj V̂W i,
C() t'n() tn

V̂W i,
C

= tn
V̂W i,

C
B̂W i,

C∈ tn
V̂W i,

C

t'n n

t'n 1+ BC'∈

n 1+ t'n t'n 1+ Proj V̂W i,
C() t'n 1+() tn 1+

V̂W i,
C

=

tn 1+
V̂W i,

C
B̂W i,

C∈ t'n 1+ Proj VC'() BC()∈

C' t'n 1+

ME i,
C M̂W i,

C ME i,
C

94

o the

e in

is

le of

in

s we

sition

for

e

e

ully

n of)

of
changing variable of the last state transition of : since the modules of

have experienced the same set of signal transitions in both and , up t

last state transition of , their state prior to the last transition is the sam

both circuits, and thus at that point any signal of which is enabled in

also enabled in . Secondly, consider the case in which a changing variab

in the last state transition of is driven by and is thus a variable

: from and we

know that , suggesting that any

changes in and along are also enabled in . Thus in both case

observe that any change of variables of that occurs at the last state tran

of in sub-circuit , is also enabled (possibly after a sequence of non-

signal transitions) in . It then follows that .■

Corollary 3.6 [Properties of traces captured in a safe abstraction] Let

be any circuit for which there exists a behavior

that is a safe abstraction of over some . Let be any trace

which there exists such that , and let b

any sub-circuit of . Then . Moreover, if is any trac

such that , then .

Informally speaking, Corollary 3.6 suggests that if a circuit trace is successf

abstracted by a safe abstraction (i.e. by trace), then not only (the projectio

trace will be locally present in any sub-circuit of the circuit, but also any trace

t'n 1+ ME i,
C

C C'

t'n 1+

ME i,
C C'

C

C' t'n 1+ M̂W i,
C

V̂W i,
C tn 1+

V̂W i,
C

Proj V̂W i,
C() BC()∈ Proj V̂W i,

C() t'n 1+() tn 1+
V̂W i,

C
=

Proj V̂W i,
C() t'n 1+() Proj V̂W i,

C() BC()∈ V̂W i,
C

C' t'n 1+ C

VC'

t'n 1+ C' VC'

C t'n 1+ Proj VC'() BC()∈

C MC AC VC GC, FAC, , ,〈 〉= BWC

BC WC VC⊆ t BC∈

tWC BWC∈ Proj WC() t() tWC= C' CW i,
C=

C Proj VC'() t() BC'∈ t' BC'∈

Proj V̂W i,
C() t'() Proj V̂W i,

C() tWC()= t' Proj VC'() BC()∈

t

tWC

t t'

95

ent

ve
any sub-circuit that adheres to trace --and thus to --will be (globally) pres

in circuit . ■

Proof (Sketch) Since and , by Lemma 2.1 we ha

. (13)

Since , we have

. (14)

From (13) and (14) we have

. (15)

From Lemma 3.3 we have

. (16)

From (15) and (16) we have

. (17)

It then follows from (17) and Lemma 3.5 that .

On the other hand, from and (13) we have

, (18)

and then from (17) and (18) we have

. (19)

It then follows from (19) and Lemma 3.5 that .■

C' tWC t

C

Proj WC() t() tWC= V̂W i,
C WC⊆

Proj V̂W i,
C() t() Proj V̂W i,

C() tWC()=

tWC BWC∈

Proj V̂W i,
C() tWC() Proj V̂W i,

C() BWC()∈

Proj V̂W i,
C() t() Proj V̂W i,

C() BWC()∈

Proj V̂W i,
C() BWC() B̂W i,

C⊆

Proj V̂W i,
C() t() tV̂W i,

C
= B̂W i,

C∈

Proj VC'() t() BC'∈

Proj V̂W i,
C() t'() Proj V̂W i,

C() tWC()=

Proj V̂W i,
C() t'() Proj V̂W i,

C() t()=

Proj V̂W i,
C() t'() tV̂W i,

C
=

t' Proj VC'() BC()∈

96

r

let

hav-

lly

ited

re

e

r

,

of a

on of
Note that condition of Corollary 3.6 is

equivalent to .

Corollary 3.7 [Circuit and sub-circuit behaviors]

Let be any circuit for which there exists a behavio

that is a safe abstraction of over some , and

 be any sub-circuit of . Then .■

Informally speaking, Corollary 3.7 suggests that if a safe abstraction of the be

ior of a circuit is exact, then the projection of the circuit behavior will be loca

present in any sub-circuit of the circuit. That is, there is no circuit trace not exhib

by each sub-circuit.

Proof (Sketch) For the special case of , for any the

exists a such that , and thus by Corollary 3.6 w

have . It then follows that .■

Lemma 3.8 [Under approximation of reduced sub-circuit behaviors] Let

be any circuit for which there exists a behavio

that is a safe abstraction of over some

, and let be any sub-circuit of . Then

. ■

Informally speaking, Lemma 3.8 suggests that the behavior of any sub-circuit

circuit with a safe abstraction, when reduced, is completely present in the projecti

Proj V̂W i,
C() t'() Proj V̂W i,

C() tWC()=

Proj V̂W i,
C() t'() Proj V̂W i,

C() BWC()∈

C MC AC VC GC, FAC, , ,〈 〉=

BWC Proj WC() BC()= BC WC VC⊆

C' CW i,
C= C Proj VC'() BC() BC'⊆

BWC Proj WC() BC()= t BC∈

tWC BWC∈ Proj WC() t() tWC=

Proj VC'() t() BC'∈ Proj VC'() BC() BC'⊆

C MC AC VC GC, FAC, , ,〈 〉=

BWC Proj WC() BC()⊆ BC WC VC⊆

EC AC WC∩= C' CW i,
C= C

Red BC'() Proj VC'() BC()⊆

97

d by

efix

;

an

that

ly

of

ted

al

r

,

afe

avior

not

tion

ince

ime
the circuit behavior. That is, there is no prime trace of the sub-circuit not exhibite

the circuit. Note that a prime trace, if not failure-free itself, has an immediate pr

that is failure-free.

Proof (Sketch) By Lemma 3.4, we know that

thus, the possible interactions of circuit-block with the rest of the circuit c

only be under-approximated by environment module . To see this, note

environment module is directly derived from (a projection of) by sole

labeling unexpected signal transitions at theinputs of as failure transitions;

thus, the behavior of theoutputsignals of --who serve as the input signals

circuit block --exactly adhere to . Now, within such an under-approxima

abstract environment , the (reduced or prime) behavior of circuit block

can only be an under-approximation of the behavior of within its re

environment; i.e., . This relation is stated ove

, and not . The reason is that if contains an input choke to

since the reaction of to that choke is not originally specified by the s

abstraction, any behavior beyond that failure point can be a spurious beh

(introduced by our arbitrary choice of the destination state of a failure transition),

necessarily present in the original circuit. However, the fact that the above rela

holds for and not does not make it any less attractive. This is true s

only the first fault along any trace is significant to us; i.e., we only care about pr

traces and behaviors.

Proj ÂW i,
C() BWC() Proj ÂW i,

C() BC()⊆

ME i,
C

M̂W i,
C

M̂W i,
C BWC

M̂W i,
C

M̂W i,
C

ME i,
C BWC

M̂W i,
C ME i,

C

ME i,
C

Red BC'() Proj VC'() BC()⊆

Red BC'() BC' BC' M̂W i,
C

M̂W i,
C

Red BC'() BC'

98

.

.

at

e

ule

re

the

local

at

r

e

the

me

this
More formally, consider any prime trace and let

There are two cases; either or

In case of , Corollary 3.6 immediately suggests th

. So, consider the case of , wher

must be a failure trace of ending with an input choke to environment mod

. Let be the immediate prefix of . Note that since is a prime failu

trace, its prefix will be failure-free, and we will have

. But then by Corollary 3.6 we will

have . This suggests that the modules of can experience

same sequence of signal transitions of in both and , reaching a common

state in at the end of . But then, any signal of which is enabled in

the end of is also enabled in ; that is, the last (failure) statetransitionof along

is also enabled in , although thereachedstates may not be compatible. In othe

words, for the case of (again, not

that the last signal transition of is present in , but probably not

last state of). Thus we have shown that holds for any pri

trace , which is equivalent to saying .■

At this point we are ready to present the proof of the main two theorems of

section, Theorem 3.1 and Theorem 3.2.

t' BC'∈ t'
V̂W i,

C Proj V̂W i,
C() t'()=

t'
V̂W i,

C Proj V̂W i,
C() BWC()∈ t'

V̂W i,
C Proj V̂W i,

C() BWC()∉

t'
V̂W i,

C Proj V̂W i,
C() BWC()∈

t' Proj VC'() BC()∈ t'
V̂W i,

C Proj V̂W i,
C() BWC()∉

t'
V̂W i,

C C'

M̂W i,
C t'' BC'∈ t' t'

t''

t''
V̂W i,

C Proj V̂W i,
C() t''() Proj V̂W i,

C() BWC()∈=

t'' Proj VC'() BC()∈ ME i,
C

t'' C C'

ME i,
C t'' ME i,

C C'

t'' C C'

t' C

t' Proj VC'() BC()∈ t'
V̂W i,

C Proj V̂W i,
C() BWC()∉

t' Proj VC'() BC()

t' t' Proj VC'() BC()∈

t' BC'∈ Red BC'() Proj VC'() BC()⊆

99

r

.

e.,

r

ce

n

sider

ion.

is

ent

is

the

iling

e to

der

f the

mber

is

afe

is
Theorem 3.1. [Circuit versus sub-circuit failure-freedom, I]

Let be any circuit for which there exists a behavio

that is a safe abstraction of over some , and

Then, if any sub-circuit is not failure-free, then is not failure-free.

Proof (Sketch) Let be any (shortest) failure trace of which is prime; i.

. By Lemma 3.8 we have , which togethe

with suggest that . Thus, there must exist a tra

such that ; that is, the variables of sub-circuit ca

observe the same sequence of transitions (that of) in both and . Now, con

the last state transition of trace which is by assumption a failure transit

The failing circuit module of (experiencing an illegal input signal transition)

either an ordinary module of (and thus a module of), or it is environm

module . If the failing module of is an ordinary module, then the failure

obviously a failure of as well, since the failing module can experience exactly

same sequence of events in both and . On the other hand, if is the fa

module of (i.e., the transition of an external signal is causing an input chok

), then the actual output behavior of circuit block must have been un

estimated by safe specification ; but this can happen only if the behavior o

external variables was under-approximated by safe abstraction . (Reme

that safe specification which defines the expected input transitions of

obtained via a projection of safe abstraction .). However, by definition of a s

abstraction, is obliged to exactly resemble the behavior of if circuit

C MC AC VC GC, FAC, , ,〈 〉=

BWC BC WC VC⊆ EC AC WC∩=

C' C= W i,
C C

t' BC'∈ C'

t' Red BC'()∈ Red BC'() Proj VC'() BC()⊆

t' Red BC'()∈ t' Proj VC'() BC()∈

t BC∈ t' Proj VC'() t()= C'

t' C C'

t' BC'∈

C'

C' C= W i,
C C

M̂W i,
C C'

C

C C' M̂W i,
C

C'

M̂W i,
C ME i,

C

B̂W i,
C

WC BWC

B̂W i,
C M̂W i,

C

BWC

BWC WC C

100

ce,

our

uit
failure-free; in other words, if is not exact, then is not failure-free. Hen

input chokes to are always indicative of circuit failure. This completes

proof that any failure in any sub-circuit is always an indication of failure of circ

. ■

BWC C

M̂W i,
C C

C'

C

101

r

If

ose

afe

r

s

iable

epa-

s one

xt to

h is

ique

is

-

.).
Theorem 3.2. [Circuit versus sub-circuit failure-freedom, II]

Let be any circuit for which there exists a behavio

that is a safe abstraction of over some , and .

all sub-circuits are failure-free, then is, itself, failure-free.■

Proof (Sketch): We prove the failure-freedom of by way of contradiction. Supp

is not failure-free. Under this assumption, and by the definition of a s

abstraction, we must have ; that is, eithe

 or .

If is the case (i.e., under-approximate

), then there must be a shortest trace

such that . Here,

all and only those states of trace which are entered with some external var

change are labeled as , . Thus any pair of states and are s

rated by maximal non-observable sub-traces of . (A non-observable sub-trace i

which does not contain any external variable () changes.). State is the ne

last state of trace , and there must be an external signal whic

involved in the transition from state to state . There must then exist a un

circuit block such that signal is an external output signal of ; that

. Now consider , the immediate prefix of , and its pro

jection . (Note that the projection

of the last maximal non-observable sub-trace of is the same as

C MC AC VC GC, FAC, , ,〈 〉=

BWC BC WC VC⊆ EC AC WC∩=

CW 1,
C … CW rE

C,
C, , C

C

C

BWC Proj WC() BC()⊆

BWC Proj WC() BC()⊂ BWC Proj WC() BC()=

BWC Proj WC() BC()⊂ BWC

Proj WC() BC() t q0…q1…qn…rqn 1+ BC∈=

tWC Proj WC() t() Proj WC() q0…q1…qn…rqn 1+() BWC∉= =

t

qj 0 j n 1+≤ ≤ qj qj 1+

t

WC r

t a EC WC⊆∈

r qn 1+

ME i,
C a ME i,

C

a ZE i,
C∈ t' q0…q1…qn…r= t

t'WC Proj WC() t'() Proj WC() q0…q1…qn()= =

t' Proj WC() qn()

102

ma

les

t of

ig-

nd

tate

at

te

safe

od-

re-

ure-

e of

ce

e

hat

ill

ption
Since is the shortest trace of interest, we must have ; but then by Lem

3.5 we must have , where . Hence, the circuit modu

of block can experience the same sequence of transitions (tha

) in both and . But this suggests that external output s

nal of is enabled at state . On the other ha

, the safe specification of , specifies any transition of signal at s

as a failure transition; this is true because implies th

. Now, since on one hand is enabled at sta

of , and on the other hand it is not expected to be enabled by

specification , any transition of will cause an input choke to environment m

ule , suggesting that is not failure-free. But all sub-circuits of are failu

free by the conditions of Theorem 3.2. Thus, the assumption of not being fail

free leads to a contradiction in the case of .

Next, under the assumption of not being failure-free, consider the cas

. Then, there must exist a shortest (prime) failing tra

, an internal signal , a unique circuit modul

of circuit , such that signal has a transition from state to

which is illegal. There must also exist a unique circuit block such t

. By Corollary 3.7, implies that

. This implies that the above failure at circuit element w

also be present in , suggesting that is not failure-free. Thus, the assum

t t'WC BWC∈

Proj VC'() t'() BC'∈ C' C= W i,
C

ME i,
C

Proj VC'() t'WC() C C' C= W i,
C

a ME i,
C Proj VC'() qn() Proj VC'() r()=

B̂W i,
C ME i,

C a

Proj VC'() r() tWC BWC∉

Proj VC'() tWC() Proj VC'() BWC()∉ a

Proj VC'() r() C'

B̂W i,
C a

M̂W i,
C C' C

C

BWC Proj WC() BC()⊂

C

BWC Proj WC() BC()=

t q0…q1…qn…r 'r BC∈= a HC∈

M j MC∈ C a Xj∈ r ' r

ME i,
C

M j ME i,
C∈ BWC Proj WC() BC()=

Proj VC'() t() BC'∈ M j

CW i,
C CW i,

C

103

of

ould

ith

cir-
of not being failure-free leads to a contradiction in the case

.

We have just shown that the assumption of not being failure-free always w

imply the presence of some failure in some sub-circuit which is in contradiction w

the conditions of Theorem 3.2. Thus circuit must be failure-free if all of its sub-

cuits are failure-free.■

C

BWC Proj WC() BC()=

C

C

104

tion

how

tions

at are

ance

ical

ver-

and/

dent

ca-
Chapter 4

Induced Hierarchical Verification of Speed-Independence,

Issues

In this section, we first compare our proposed framework for hierarchical verifica

of speed-independent circuits with that of complex-gate verification, in terms of

the two frameworks choose the set of external variables over which safe abstrac

are found. Next, we discuss the issue of choosing sets of external variables th

observationally sufficient (OSV sets), and how the choice can affect the perform

of hierarchical verification. Finally, we introduce the concept of sequential hierarch

verification (SHV) as a heuristic that can improve the performance of hierarchical

ification through better informed decisions; on the selection of external variables,

or on the order in which sub-circuits are verified.

4.1 Circuit Blocks Versus Complex-Gates

Our proposed framework for induced hierarchical verification of speed-indepen

circuits is a generalization of a previous technique for two-level hierarchical verifi

105

oth

rnal

this

ction

d per-

safe

ircuit

bina-

ach-

t of

each

each

ived

ls, its

of

tion

per-
tion of speed-independent circuits, called complex-gate verification [64, 65]. B

frameworks try to find a safe abstraction of the circuit behavior over a set of exte

variables which is then used to induce hierarchy in verification of the circuit. In

subsection, we compare the two frameworks in terms of their constraints for sele

of sets of external variables, and how such constraints affect the requirements an

formance of the two frameworks.

In complex-gate verification, the set of external circuit variables over which a

abstraction is found is taken as a superset of all output signals of sequential c

modules. Then, for any module with external outputs, the module and the com

tional cone of logic driving it are collapsed into a complex-gate and complete re

ability analysis is performed on the collapsed circuit to find the behavior of its se

external signals. Such sets of external signals partition a circuit into circuit blocks

of which containing one or more complex-gates. Once a safe abstraction is found,

circuit block can then be checked for conformance to its specification which is der

from the safe abstraction. Note that since the complex-gate circuit has less signa

full reachability analysis is less expensive than that of the flat circuit.

First of all, note the limitation of this technique in not being able to hide outputs

sequential modules. This limitation is not present in our more general verifica

framework. Being able to hide more signals, our framework can potentially out

form this technique when deriving safe abstractions.

106

id-

(See

ere

f two

erifi-

den,

that a

two

et of

sin-

nals,

is to

way

tput

ircuit

cks
A second limitation of this approach is concerned with the verification of indiv

ual complex-gates. It very often is the case that complex-gates of a circuit overlap

Figure 4.1). Overlapping arbitrary circuit blocks and their associated problems w

discussed in a previous section. We noted that any signal in the common portion o

overlapped arbitrary circuit blocks has to be external. However, in complex-gate v

cation approach, all signals of the common portion of two complex-gates are hid

since they are internal signals of each of the two complex-gates. This suggests

complex-gate with overlapped logic cannot be verified individually. There are

ways to solve this problem (See Figure 4.2). The first solution is to add to the s

external signals, any signal which would have otherwise forked into two different (

gle output) complex-gates. This solution will increase the number of external sig

and thus add to the complexity of deriving safe abstractions. Another solution

combine overlapping complex-gates into multiple output complex-gates in such a

that no two multiple output complex-gates overlap. (Note that such multiple-ou

complex-gates are in fact same as the circuit blocks induced by partitioning the c

by the set of external signals.). This solution can potentially result large circuit blo

C a5

a6

a7

a1

a2
a3

a4

C a5

a6

a1

a2

a3

a4

(a)(b)

Fig. 4.1A portion of a circuit with a multiple fan-out signal a7.
(b) Complex-gate circuit. (c) Equivalent overlapped circuit blocks.

C a5

a6

a7

a1

a2
a3

a4

(a)

107

may

into

solu-

o cor-

les

ver

neral

s the

gen-

erent

cks,
cing
whose verification would be more expensive than smaller ones. Such large blocks

need to be further partitioned into smaller blocks by choosing the signals that fork

multiple complex-gates as the external signals of the next level of hierarchy. This

tion can be less expensive than the first one. However, both solutions reveal that t

rectly verify the circuit in this framework, not all outputs of combinational modu

can always be effectively hidden. This limitation, together with not being able to e

hide the outputs of sequential modules, highlights the advantage of our more ge

framework.

4.2 Selection of OSV Sets for Hierarchical Verification

One of the most controversial issues with our hierarchical verification technique i

problem of choosing the set of external variables. While this problem, in its most

eral form, can be an interesting subject for future research, some ad hoc and inh

solutions are already available for it.

C a5

a6

a7

a1

a2
a3

a4

(a)

C a5

a6

a7

a1

a2
a3

a4

C a5

a6

a1
a2
a3
a4

(b) (c)

Fig. 4.2Two solutions to the problem of overlapping complex-gates.
(b) Including signal a in the set of external signals, and thus increasing the number of circuit blo
(c) Combining the two single-output complex-gate into a larger two-output complex-gate, redu
the number of circuit blocks.

108

afe

ince

, espe-

rob-

tional

action

lved

n be

a safe

well,

uld

set is

erly-

set of

hand,

t will

vari-

n of a

set
Very often, observationally sufficient sets of circuit variables--over which s

abstractions exist--have high correlations with handshake signals of the circuit. S

full handshake protocols are an essential part of any speed-independent design

cially at higher levels of design hierarchy, coming up with OSV sets is not a hard p

lem, and designers can easily make an initial guess for an OSV set. If the observa

sufficiency of such a set can not be proven (e.g., an attempt to find a safe abstr

over that set fails), it is often easy to figure out which signals/variables were invo

in violating the safety of the abstract behavior. Such signals/variables can the

added to the set of external variables, and this procedure can be repeated until

abstraction, and thus an OSV set, is found. This approach usually works very

unless the initial guess is not a good one.

It is to be noted, that failure in finding a safe abstraction over an OSV set wo

cause a failure in recognizing its observational sufficiency. We can ensure that a

OSV only when we are successful in finding a safe abstraction (i.e., when the und

ing sub-automaton is projectable); otherwise, we had better choose another

external signals and see if we can find a safe abstraction over them. On the other

increasing the size of a set of external signals is not always a guarantee that i

eventually become OSV, and stay OSV from that point on. In general, a set of

ables which is an unrecognized OSV set can easily loose the property by inclusio

new variable(s), or it may retain the property but not be recognized as an OSV

again.

109

es

resent

-gate

ases.

cuit

map-

posi-

ent

ince

ginal

e set

uen-

uits.

lex-

osed,
As the circuit is broken up into smaller and smaller circuit blocks, it becom

harder to choose sets of external signals, since not much handshaking may be p

inside small pieces of the circuit. As we discussed in the section about complex

verification, the output signals of combinational gates can be hidden in many c

Exceptions can include cases where the output of a sequential gatehave to beabsent

from an external set of handshake signals.

To solve the problem of which sequential module outputs to hide, the cir

designers can once again come to help. An example of this case is in technology

ping of SI circuits using sequential decomposition [21, 25, 46]. Sequential decom

tion substitutes a multi fan-in gate with a functionally and behaviorally equival

cone of logic that is composed of gates with smaller fan-ins (See Figure 4.3). S

only the output of the new cone is expected to behave exactly as that of the ori

gate, and in that case, the behavior of the newly introduced signals connecting th

of modules is insignificant, they can all be hidden, even if they are outputs of seq

tial gates (See Figure 4.4). This is very similar to the case of complex-gate circ

First, remember that for any circuit, the set of signals of the corresponding comp

gate circuit is always an OSV set. Secondly, note that when a module is decomp

C a5

a6

a7

a1

a2
a3

a4

(a)

C a5

a6

a1
a2
a3
a4

(c)

Fig. 4.3An example of technology mapping

110

if the

o-

d up

ce-

n of

er of

arge.

cost

ernal

t rep-

aller

com-
the resulting modules can be thought of as collapsing into the original module, as

original module is apseudocomplex-gate. It then follows that the new signals intr

duced by sequential decomposition can all be hidden.

4.3 Sequential Hierarchical Verification, SHV

In this section, we present some general directives which can potentially spee

hierarchical verification. We will also discuss the issues involved with such pro

dures.

As was mentioned in the previous section, OSV sets are very often a collectio

handshake signals of the circuit. For circuits that are composed of a large numb

communicating circuit blocks, the number of handshake signals can be very l

(This can also be true at lower levels of the design hierarchy.). However, since the

of finding a safe abstractions is exponential in the size of the selected set of ext

variables, we are much more interested in smaller sets. Smaller OSV sets may no

resent all the circuit blocks of a particular level of the design hierarchy; i.e., a sm

OSV set usually represents larger circuit blocks, and a larger circuit block may en

Environment Environment

z z
z’

C
CC Decomposition

Fig. 4.4An example of sequential decomposition in technology mapping.
The newly introduced signal Z’ can be hidden during hierarchical verification.

111

sets

ircuit

ica-

that

SV

into

chical

e off

pth of

a sub-

ith a

veri-

the

the
rger
the
pass a couple of circuit blocks associated with a larger OSV set. Smaller OSV

very often include the handshake variables among subsets of communicating c

blocks, where the circuit blocks within each subset have direct mutual commun

tions. Thus, smaller OSV sets tend to partition the circuit into circuit blocks, such

each circuit block is collection of adjacent circuit blocks associated with a larger O

set. Now, given a small OSV set, its circuit blocks can be further partitioned

smaller ones. This suggests that smaller OSV sets increase the depth of hierar

verification, but speed up the derivation of safe abstractions. There is a trad

between the speed up of deriving safe abstractions and the increase in the de

hierarchy. However, since the former has an exponential cost and the latter has

exponential cost, smaller OSV sets are better preferred.

Now, consider the case in which the size of the circuit blocks associated w

small OSV are not balanced; i.e., some of the circuit blocks are small and can be

fied in fewer levels of hierarchy. If such OSV sets exist for a given circuit and

1
2

3 4

5

6

Fig. 4.5An abstract illustration of Sequential Hierarchical Verification.
SHV can be directed by the knowledge of possible failure locations. Blocks of the circuit at
highest level are ordered by the possibility of failure existence. At each level of hierarchy, the la
circuit block is further partitioned into two circuit blocks, a small one and a large one, such that
location of the next highly possible failure falls in the smaller block.

112

ocks,

cks,

ilure-

fash-

prob-

ue

any

for

ons.

cir-

f the

all

that

ash-

eed-

ible

pen-

veri-
designer is most concerned about design errors located in the smaller circuit bl

the verification procedure can be sped up by first verifying those small circuit blo

and proceeding to other circuit blocks only once the small ones are found to be fa

free. In this paradigm, the larger blocks are broken into smaller ones in a similar

ion; that is, OSV sets are chosen in such a way that culprit design errors are most

ably located in smaller circuit blocks. We call this verification paradigmsequential

hierarchical verification, or SHV (See Figure 4.5). Note that although this techniq

can potentially speed up finding failures, a final decision on failure-freedom of

block of the circuit cannot me made until all blocks are verified as failure-free.

Knowledge of the possible location of design errors is not the only motivation

SHV. Another motivation for SHV can be the relative ease of finding safe abstracti

For example, consider a circuit which is to be verified against a specification. The

cuit can be thought of as a collection of cones of logic, each driven by the inputs o

circuit and driving one output of the circuit. Now, if there exists a (reasonably) sm

cone of logic and a small OSV set containing the I/O signals of that cone, then

cone can be verified quickly, and the rest of the circuit can be verified in a similar f

ion, sequentially (See Figure 4.6). Here, the SHV paradigm is directed towards sp

ing up the verification, without necessarily having the knowledge of the poss

location of design errors.

Finally, it is to be noted that the performance of any SHV procedure is very de

dent on the choice of appropriate OSV sets (and their existence), and ordering of

113

l as

ising

ic
uit
fication of the circuit blocks at each level of hierarchy. While designers (as wel

their intuition) should be able to guide such SHV approaches in many cases, dev

heuristics for SHV verification can be an interesting subject for future research.

1

2 3
4

Cones of Logic

Circuit inputs

Circuit outputs

Fig. 4.6An abstract illustration of Sequential Hierarchical Verification.
SHV can be directed by the ease of deriving safe abstractions for cones of logic. Cones of log
are verified in the specified order. At each step, the next cone constitutes a single small circ
block, while the remaining cones constitute a large circuit block(s).

114

long

or of

that

hier-

strac-

ct of

artial

rtially

aton

-

. By

, then

ehav-

state
Chapter 5

Finding Safe Abstractions

Our hierarchical verification framework was presented in a previous chapter, a

with a proof of its correctness. In this framework, a safe abstraction of the behavi

a circuit over a set of external variables is used to verify sub-circuits of the circuit

are induced by the safe abstraction--in a recursive and hierarchical fashion. This

archical approach, assuming that there are efficient techniques to derive safe ab

tions, can speed up the verification process.

Safe abstractions and efficient techniques to actually find them are the subje

this chapter. We use a partial order technique to find safe abstractions. This p

order technique constructs a subtle sub-automaton of the circuit automaton by pa

exploring the state space of the circuit in a delicate fashion. The circuit sub-autom

is constructed with the goal of preservingall external variable transitions and main

taining as little number of interleavings of internal variable transitions as possible

construction, if the sub-automaton is projectable onto the set of external variables

the behavior of its projection is guaranteed to be a safe abstraction of the circuit b

ior. Since partial order techniques are reduction techniques that mitigate the

115

d our

ermi-

show

spe-

ing a

les of

n is

safe

, we

we

ating

.3, we

safe

-the-

algo-

f the

for
explosion problem, by using them in deriving safe abstractions we have achieve

goal of efficient hierarchical verification.

This chapter is organized as follows. In Section 5.1 the general concepts and t

nology associated with partial order reductions are introduced. In Section 5.2 we

how a particular class of partial order reduction techniques can be utilized for our

cific problem of finding safe abstractions. This technique is capable of construct

sub-automaton of circuit automaton that preserves the behavior of external variab

failure-free circuits. We know from the previous chapter that if such sub-automato

also projectable onto the set of external variables, its projection would be a

abstraction. Based on the requirements of this particular partial order technique

then derive a set of constraints for the set of external circuit variables. Finally,

present a first partial order reduction algorithm and proof its correctness in gener

reduced state spaces that can be used for finding safe abstractions. In Section 5

present an enhanced partial order algorithm as a complete solution for finding

abstractions. This algorithm is also furnished with an embedded procedure for on

fly projection of the constructed sub-automaton. The correctness of the enhanced

rithm is proven, and the chapter is closed by presenting an optimized version o

algorithm which can further improve the performance of partial order reduction

finding safe abstractions.

116

often

pace

are

l ()

s are

ame

ering

esen-

ntly,

duc-

chro-

safe

us

hus

thus,

safe
5.1 Some Background

Formal verification paradigms that are based on state space exploration can

greatly benefit from partial order reduction techniques that help attack the state s

explosion problem [1, 62, 63, 32, 33, 81, 82]. In asynchronous systems, which

highly concurrent systems, one source of state space explosion is the exponentia

number of possible interleavings of concurrent events. If the concurrent event

independent, then all such interleavings are equivalent since they all lead to the s

state. Now, if the property of the system to be verified does not depend on the ord

of such concurrent (independent) events, it would suffice to explore just one repr

tative interleaving of them from the set of all possible interleavings. Conseque

during state space exploration, at each state it suffices to explore anample set of

enabled transitions, rather than all of them. This can usually lead to significant re

tion in the size of the explored state space, especially for highly concurrent asyn

nous systems. In our framework, we use partial order reduction in finding a

abstraction of the behavior of a set ofexternalcircuit variables. As we will see, our

partial order reduction, assuming that theexternalvariables areindependentof the

internal variables, explores in a failure-free circuit only one interleaving ofindepen-

dent internal transitions, while exploring all possible external transitions (and th

their interleavings). The explored sub-automaton of the circuit automaton will t

preserve the exact behavior of the external variables of a failure-free circuit, and

if it is also projectable onto the set of external variables, its projection would be a

n!

n

117

s of

for

tead

occa-

tion.

tion

aved

pre-

uc-

L

ions.

the

be

) cir-

are

hat is
abstraction. The details of this approach are the subject of the following section

this chapter.

In the following subsections, we review the portion of the general framework

partial order reductions [1, 62, 63, 32, 33, 81, 82] that is relevant to our work. Ins

of presenting the associated concepts in their original (general) form, we have

sionally tailored some of them into our own framework, only to ease the presenta

5.1.1 Partial Order Reductions

Peled [62] gives a very concise and yet complete overview of partial order reduc

techniques for the analysis of concurrent systems that are modeled with interle

semantics. In his overview, the general concepts in partial order reductions are

sented first, followed by different sets of conditions that must be met for valid red

tions in formalisms that include among others LTL (Linear Time Logic), CT

(Computational Tree Logic), and process algebra.

In our framework, a two step procedure is proposed for finding safe abstract

The first step involves finding a sub-behavior of a circuit that would preserve

behavior of external variables of a failure-free circuit. This problem is shown to

equivalent to the problem of generating a reduced state space of the (failure-free

cuit such that for each trace in the full state space, there is astuttering equivalent trace

in the reduced one. Partial order reductions for LTL (Linear Temporal Logic)

claimed to precisely generate what we are looking for; a reduced state space t

118

,

ding

, and

ly

us

kip

rad-

ring

ing

t

, the
equivalent to the full oneup to stuttering. Thus, even without going over LTL logics

we have been able to prove the correctness of our partial order technique for fin

safe abstractions by showing that it satisfies all the necessary conditions (for LTL)

that it is thus valid by construction.

Our following overview of partial order reduction techniques is according

restricted to the domain of reductions for LTL [62]. However, since we directly foc

on conditions for stuttering equivalence (and not general LTL properties) we will s

an overview of LTL logics.

We will introduce the relevant concepts, and give specific examples that will g

ually form the connection between the general reduction technique (for stutte

equivalence), and our quest for finding safe abstractions.

Definition 5.1 [Finite transition system] [62] A finite transition system is a triple

, where is a finite state

automaton, is a finite set ofpropositions, and is anassignment

function. For any sequence of states , we define the correspond

propositions sequence as . ■

Example 5.1 Let be a circuit and be a se

of external variables. We can then define transition system

as follows: , and . Thus,

the transition system simply assigns to each state of the circuit automaton

projection of that state onto the set of external variables, .■

FTS FA AP L, ,〈 〉= FA A V Q λ TR, µ q0, , , , ,〈 〉=

AP L:Q 2AP→

t q0q1q2…=

Prop t() L q0()L q1()L q2()…=

C MC AC VC GC, FAC, , ,〈 〉= WC VC⊆

FTSC FAC APC LC, ,〈 〉=

APC Proj WC() q() q QC∈{ }= LC q() Proj WC() q()=

FAC

WC

119

tions

first

63,

ticu-

t

t

ot

nsi-

itions

two

ays

e of

tions,

dence

also
As mentioned in [62], partial order reduction is based on several observa

about the nature of concurrent computations and specification formalisms. The

observation is that concurrently executed transitions are oftencommutative. This is

usually formalized in the definition ofindependence.

In the following, we have tailored the general notion of independence [1, 62,

32, 33, 81, 82] to our own framework, so that it appropriately accounts for the par

lar way that we label the states of a transition system.

Definition 5.2 [Independent variables] [62]

Let be a circuit automaton. A pair of distinc

variables areindependent, written if for all states , if

, then for all transitions that change but no

, is enabled in , and for all transitions that change but n

, is enabled in , and there exists a unique state such that all -tra

tions (there has to exist at least one) from state that change , and all -trans

(there has to exist at least one) from state that change lead to ; i.e., any

strings and from state that change and (in different orders) alw

lead to a single state (here,). ■

Intuitively, two variables are independent if no transition that changes only on

them can disable the other one, and any order of execution of two signal transi

each changing one of the variables, leads to the same global state. The indepen

relation on the variables of a circuit automaton is irreflexive and symmetric. It is

FAC AC VC QC λC T RC, µC q0
C, , , , ,〈 〉=

v w VC∈, v w∼ q QC∈

v w Enabled q()∈, q a q', ,() T RC∈ v

w w q' q b q'', ,() T RC∈ w

v v q'' q''' QC∈ a

q'' v b

q' w q'''

a b, b a, q v w

q''' a b AC ε∪∈,

120

ange

at .

d

e

in

ns of

e of

iffer-

ight

le

able

or

les

n

ged

re

ges
notable that by the above definition of independence, two variables that can ch

simultaneously by a single state transition, are not necessarily dependent.

Let be any state, and and be any two enabled independent variables

Then if is any transition changing but not , an

are any pair of transitions changing but not , then w

must have is also changing . If a specification is only interested

the first and last states, and , then we do not need to explore the transitio

both and from . Otherwise, one must consider the possibility that the valu

propositions might be different at the intermediate states and , and even be d

ent from those at or , and if so, the transitions of both variables and m

need to be explored from state for a valid partial order reduction.

Example 5.2Let be any module of a circuit such that ; i.e., the modu

has internal variables. Assume that all (local) states of module are reach

within a given circuit. Let and be any pair of module variables f

which there exists a transition that changes both variab

(), then and are simply changing simultaneously at . O

the other hand, if is enabled in but disabled in without being chan

(), then and are dependent. Similarly, if and a

enabled in and there exists a transition , , that chan

 and disables , then again and are dependent.■

q v w q

q a q', ,() T RC∈ v w

q b q'', ,() q' b q''', ,(), T RC∈ w v

q'' a q''', ,() T RC∈ v

q q'''

v w q

q' q''

q q''' v w

q

Mi C Yi ∅≠

Mi

v Ai∈ w Vi Ai–∈

q v q', ,() TRC∈

λC q() w λC q'() w≠ v w q

w q q'

λC q() w λC q'() w= v w v w

q q u q', ,() TRC∈ u Ai ε∪∈

w v v w

121

the

xists

nding

are

ver,

.

,

E)

of a

d

Example 5.3Figure 5.1 shows the module automaton of a fair arbiter . From

module automaton, it can be seen that if is a module in a circuit , and there e

such that , , and and

cannot disable each other at , then different states can be reached from depe

on which signal or makes its transition first. Thus, signals and

dependent in circuit . Note that variable is also enabled at state , howe

transition of signal will disable it. Thus, variables and are dependent in

Finally, can simultaneously change with all other three signals , and

without being dependent with any of them.■

Example 5.4Figure 5.2 shows the module automaton of a mutual exclusion (M

module . From the module automaton, it can be seen that if is a module

circuit , and there exists such that an

r1

r2

a1

a2
ME

Fig. 5.1Module description of a fair arbiter element.
(a) A fair arbiter element. (b) The module automaton of the fair arbiter.

(a)

00000

10000

10100

00100

11000

11100

01100

01001

01011

00011

11001

11011

10011

[r1,r2,a1,a2,p]

r1 r2

a1 a2

r1 r2

r2 r1

a1 a2

r1 r2

r2

r2

r1

r1

a1 a2

a1 a2

(b)

Mi

Mi C

q QC∈ Proj Vi() q() 00000= r1 r2 enabled q()∈, r1 r2

q q

r1 r2 r1 r2

C p q

r1 p r1 C

p r2 a1 a2

Mi Mi

C q QC∈ Proj Vi() q() 0000=

122

ke

ng the

nals

(e.g.,

xists

ut

dent,

rized
, then regardless of the order in which signals and ma

their transitions, a unique state can be reached if no other variable changes alo

two transitions and and do not disable each other at . Thus, the two sig

can (possibly) be independent. However, if one of them can disable the other one

if the circuit has a failure), then the two will be dependent. Now, assume there e

such that . Then both and are enabled at , b

transition of either of them disables the other one. and are thus depen

however, this output choice is not considered a failure.■

A taxonomy of all possible dependencies between circuit variables is summa

in the following.

r1 r2 enabled q()∈, r1 r2

r1 r2 q

q QC∈ Proj Vi() q() 1100= a1 a2 q

a1 a2

r1

r2

a1

a2
ME

Fig. 5.2Module description of a Mutual-Exclusion element.
(a) A Mutual-Exclusion element. (b) The module automaton of the ME element.

0000

0100

0101

0001 1001

1101

1100

1000 1010

1110 0110

0010

a1

a1

a1

r1

r1

a1

r1

r1

r1

r1

r2r2r2r2

r2r2

a2 a2 a2 a2

(a) (b)

[r1,r2,a1,a2]

123
v
w

v
w

v

w

v w

v
w

v w

v wu1

(b) an input v that can legally disable an output w.

(c) output choice between two outputs v and w.

(g) two internal variables v and w of a module. One of them

(f) two I/O signals v and w whose order can affect the

(a) an input v that can illegally disable an output w, a failure.

u
(h) two internal variables v and w of separate modules. One of them

u2
(i) an internal variable v and a signal w,
w and u2 are dependent as in (b), (c) or (f),
u2 and v can change simultaneously.

Fig. 5.3Classification of dependency between any two circuit variablesv andw.

u

 one is dependent on u as in (d) or (e).

u

v w
(e) an internal variable v that can change in a transition that disables
 an output signal w, without simultaneously changing w.

 simultaneously changes with common I/O signal u, and the other

 internal state of the corresponding module differently. One of them

 simultaneously changes with I/O signal u, and the other one
 is dependent on u as in (d) or (e).

 simultaneously changes with u, and the other one disables u as in (d).

v w
(d) an I/O signal w that can disable an internal variable v,
 without v changing simultaneously.

v wu1u2
(j) an internal variable v and a signal w,
v and u1 are dependent as in (h),
u1 and w can change simultaneously.

124

-

((a)

dule.

c)) is

ut; it

signal

inter-

, then

from

ther;

f the

with

ade

f any

ulta-

pen-

ation

of

bles
Observation 5.1 [Classification of dependencies between circuit variables]

Let be a circuit. A classification of all kinds of depen

dencies between circuit variables is depicted in Figure 5.3. In the first two cases

and (b)), dependency is due to an input being able to disable an output of a mo

The incurred non-determinism can be associated with either alegal (acceptable)

behavior (case (b)), or an undesirable failure (case (a)). Output choice (case (

another form of legal non-determinism where an output can disable another outp

thus creates dependency between the two outputs (see Example 5.4). If any I/O

of a module can disable an internal state variable (case (d)), or conversely, if the

nal state variable can change in a transition that disables the I/O signal (case (e))

the I/O signal and the internal state variable are dependent. Case (f) is different

case (b) or (c) in that the two signals and do not necessarily disable each o

rather, the module might reach different local states by different interleavings o

two variables. As indicated in Figure 5.3.f, dependence of an internal variable

one I/O signal , and its simultaneous transition with another I/O signal has m

the two I/O signals dependent. The four last cases are similar to case (f) in that i

two variables and are dependent, then any third variable that can sim

neously change with () is also dependent on (). There might be other de

dency types that are missed in Figure 5.3, but the important result of this classific

is that any kind oflegal dependency between two circuit variables is the result

dependencies of types (b), (c), (d), or (e) between (possibly other) pairs of varia

that are extended to other variables by means of simultaneity of transitions.■

C MC AC VC GC, FAC, , ,〈 〉=

v w

u

v w

v u w

v u u v

125

ge

the

s that

posi-

m

d

an
Definition 5.3 [Simultaneity, prime, and failure-free dependency conditions]

Based on Observation 5.1, we define the set ofprime dependency conditionsas the set

containing conditions (b), (c), (d), and (e) of Figure 5.3. We define thesimultaneity

condition to exist between any two circuit variables that can ever chan

simultaneously. We call the union of prime dependency conditions and

simultaneity condition asfailure-free dependency conditions. ■

A second observation about concurrent systems with interleaved semantics i

often the transitions of only a few variables can change the truth values of the pro

tional variables, and thus be visible.

Definition 5.4 [Invisible variables] [62] Let be a finite

transition system. A variable isinvisible if for all transitions

that change variable , we have .■

Example 5.5Let be a circuit, be a set of

external circuit variables, and be a finite transition syste

as described in Example 5.1 (i.e.,). Then all variables of

are visible. If in addition, is such that no pair of variables an

can change simultaneously, then any would be

invisible variable.■

FTS FA AP L, ,〈 〉=

v VC∈ q a q', ,() TR∈

v L q() L q'()=

C MC AC VC GC, FAC, , ,〈 〉= WC VC⊆

FTSC FAC APC LC, ,〈 〉=

LC q() Proj WC() q()= WC

WC v WC∈

w VC WC–∈ w VC WC–∈

126

tor

here

ropo-

m

ce

lected

ning

a state

of
Definition 5.5 [Stuttering equivalence] [62]

Let be a finite transition system. The stutter removal opera

applied to a propositions sequence results in a sequence w

each consecutive repetition of labeling is replaced by a single occurrence. Two p

sition sequences and areequivalent up to stutteringif .

Two sequence of states and arestutter equivalent if

. ■

Example 5.6Let be a circuit, be a set of

external circuit variables, and be a finite transition syste

as described in Example 5.1 (i.e.,). Then for any tra

 we have .■

The next notion that is defined in [62] is that of apersistent function. In partial

order state exploration, the subset of enabled variables whose transitions are se

to be explored from a state should be independent, not only of all the remai

enabled variables in state , but also of any variable that can become enabled in

reachable from by transitions of variables not in the selected set.

Definition 5.6 [Persistent functions and sets] [62]

Let be a circuit automaton. A function

is persistentif for every state the following holds: for all vari-

ables , (a) is enabled in (), and (b) for any sequence

FTS FA AP L, ,〈 〉=

Stutt .() ρ Stutt ρ()

σ ρ Stutt σ() Stutt ρ()=

t t'

Stutt Prop t()() Stutt Prop t'()()=

C MC AC VC GC, FAC, , ,〈 〉= WC VC⊆

FTSC FAC APC LC, ,〈 〉=

LC q() Proj WC() q()=

t q0q1q2…= Proj WC() t() Stutt Prop t()()=

q

q

q

FAC AC VC QC λC T RC, µC q0
C, , , , ,〈 〉=

∆:QC VC→ q QC∈

v ∆ q()∈ v q v Enabled q()∈

127

ent

alled

e a

istent.

s of a

e per-

wever

rtial

on

f

ly

also
state transitions from that changes variables in only, is independ

of all variables that can ever change (or become enabled) along . is then c

apersistent set of variables at .■

As we will see in the following subsection, for partial order reduction we requir

selected set of enabled transitions that are explored from a given state to be pers

Note that by definition of a persistent set, a set that includes all enabled variable

state would be persistent at . In general, we can possibly have more than on

sistent set of variables at each state . The choice of the persistent set can ho

affect not only the structure of the explored state space, but also, the validity of pa

order reduction.

The last definition of this section is that of a TMSCC.

Definition 5.7 [Terminal Maximal Strongly Connected Component, TMSCC]

Let be an automaton (e.g., a sub-automat

of a circuit automaton). A subset is astrongly connected component o

iff within , all states in are reachable from all states in . A strong

connected component in ismaximalif it is not properly included in any other

strongly connected component, and it isterminal if there is no outgoing transitions

from it; i.e., there is no state not in that is reachable from a state in .■

By the above definition, a strongly connected component that is terminal is

maximal, and thus a TMSCC.

t q VC ∆ q()⁄ v

t ∆ q()

q

q q

q

FAC AC VC QC λC T RC, µC q0
C, , , , ,〈 〉=

FAC Q̂C QC⊆

FAC FAC Q̂C Q̂C

FAC

Q̂C Q̂C

128

set

y

have

Note

ion

the

leave

ansi-

fully

d state

ative

tate

te a

stutter-

used

sets
Definition 5.8 [Internal TMSCC] Let be a circuit,

and be a set of external circuit variables. A -compatible sub

is called aninternal TMSCCiff there exists a state such that for an

state that is reachable from by any sequence of -compatible states, we

and there exists a sequence of -compatible states from back to .

that by the above definition, is an internal TMSCC iff the above condit

holds for all states . Moreover, this definition implies that is closed, in

sense that no sequence of -compatible states from any state can

. ■

5.1.2 Partial Order Reduction for Stuttering Equivalence

In partial order exploration of the state space of a system (e.g., a circuit), the tr

tions of only a subset of enabled variables at any state are explored. By care

choosing this subset, the properties of interest can be checked over the reduce

space instead of the full state space, without incurring any false positive or neg

results. Under such conditions, the properly selected subset of variables at any s

is usually called anample set, and denoted by .

We are particularly interested in a partial order reduction that would genera

reduced state space such that for each trace of the full state space, there exists a

ing equivalent trace in the reduced one. Assuming that depth first search (DFS) is

for state space exploration, there exists a set of conditions for selection of ample

C MC AC VC GC, FAC, , ,〈 〉=

WC VC⊆ WC

Q̂C QC⊆ q Q̂C∈

q' q WC

q' Q̂C∈ WC q' q

Q̂C QC⊆

q Q̂C∈ Q̂C

WC q Q̂C∈

Q̂C

q

q

Ample q() Enabled q()⊆

129

s [62].

clos-

ton

of

m

en

ore it

s on

sult

in
that guarantee stuttering equivalence between the full and reduced state space

Note that during DFS, reaching a state that is already on the search stack implies

ing a cycle.

Conditions 5.9 [Ample sets for stuttering equivalence] [62]

Let be a finite transition system. To generate a sub-automa

(using DFS) that is stuttering equivalent to , it is sufficient for ample sets

variables at each state to satisfy the following conditions.

C1: is a persistent set.

C2: If (i.e.; is not fully expanded), then all variables in

 are invisible.

C3: For every TMSCC in , there exists at least one fully expanded state [81].■

To better understand conditionC1, consider any subtrace in that starts fro

state . Two possible situations can happen [62]:

Case 1.Let be the first variable from that changes along . Th

conditionC1 guarantees that is independent of all the variables that change bef

on . Thus by applying the definition of independence repeatedly, all the transition

prior to the transition by can be commuted with the transition by . The re

would be a trace starting from whose first transition changes a variable

.

FTS FA AP L, ,〈 〉=

FÃ FA

q Q∈

Ample q()

Ample q() Enabled q()≠ q

Ample q()

FÃ

t FA

q

v Ample q() t

v

t

t v v

t' q v

Ample q()

130

n

.

by

ran-

tate

from

stut-

ne

not

l

it is

se

m

that

le
Case 2.If no transition by a variable in occurs on , then by conditio

C1, any variable is independent of all variables that change along

Thus by definition of independence, one can form subtrace(s) starting from

first firing any transition(s) changing variable , and then consecutively firing the t

sitions of .

The above two cases suggest that for any sequence of transitions from a s

of , there exists a sequence that starts by the transitions of a variable

.

ConditionC2 is to make the two subtraces and in both of the above cases

tering equivalent. First consider the case that . Then no

of the variables in are visible. Now, moving a transition, that does

change any visible variable, to the beginning of trace (Case 1), or inserting such a

transition at the beginning of trace (Case 2), would not change the propositiona

sequence of , and as a result, and will be stutter equivalent. In this case,C1 and

C2 together suggest that would contain all the properties of ; confirming that

sufficient to explore from only transitions of . Next, consider the ca

that ; then we already explore all enabled transitions fro

state .

When , the transitions of any variable

are deferred (note that stays enabled in any state

is reached from by a transition of a variable from). ConditionC3 is to

prevent a situation in which and the transition of a variab

Ample q() t

v Ample q()∈ t

t' q

v

t

t q

FA t'

Ample q()

t t'

Ample q() Enabled q()≠

Ample q()

t

t

t t t'

t' t

q Ample q()

Ample q() Enabled q()=

q

Ample q() Enabled q()≠

w Enabled q() Ample q()⁄∈ w

q Ample q()

Ample q() Enabled q()≠

131

tes

does

exist a

by any

orc-

nded,

of

ace is

safe

ircuit

ction

as a

ace of

gen-

actions.
can be deferred forever along a closed cycle of sta

containing state . Note that if a variable that is enabled everywhere in a TMSCC

not appear in the selected persistent sets of any of those states, then there could

trace in the full state space that is not represented in the reduced state space

stuttering equivalent trace, which can lead to incorrect verification results. By enf

ing at least one state of each TMSCC of the reduced state space to be fully expa

this latter situation would be avoided.

An ample set that satisfies the above conditions insists on exploringall enabled

transitions from a state,or exploring the transitions of a persistent and invisible set

variables only, such that at least one state of each TMSCC in the reduced state sp

fully expanded.

5.2 A First Partial Order Technique to Find Safe Abstractions

In this section, we present our first partial order reduction technique to find

abstractions. This partial order technique constructs a sub-automaton of the c

automaton such that, if it is projectable onto the set of external variables, its proje

would be a safe abstraction of the circuit behavior.

We first show how the first step in finding a safe abstraction can be formalized

search for a reduced state space that is stuttering equivalent with the full state sp

the circuit. This would assert that the partial order reduction of section 5.1.2, that

erates stutter equivalent reduced state spaces, can be used in finding safe abstr

w Enabled q() Ample q()⁄∈

q

132

ective

ondi-

the

n be

erive

it

th

g

e

e of

ts a
Then we propose a set of conditions on external variables, and a strategy for sel

search (when using DFS state space exploration) that satisfy all the ample set c

tions for stutter equivalence (Conditions 5.9, Section 5.1.2). By construction,

resultant partial order reduction would automatically be a valid one, and thus ca

used towards finding a safe abstraction.

5.2.1 Feasibility

In this subsection we show why and how partial order reductions can be used to d

safe abstractions.

Theorem 5.2 [Behavior projections and stutter equivalence] Let

be a circuit, be a set of external circu

variables, and be a finite transition system wi

. If is any sub-automaton of that is stutterin

equivalent with (with respect to), then we hav

. ■

Proof The above proposition is an immediate result of the following facts: becaus

stuttering equivalence of and , for any trace there always exis

trace such that , and since

, we have . The

latter result directly implies that .

C MC AC VC GC, FAC, , ,〈 〉= WC VC⊆

FTSC FAC APC LC, ,〈 〉=

LC q() Proj WC() q()= FÃC FAC

FAC FTSC

Proj WC() B̃C() Proj WC() BC()=

FÃC FAC t BC∈

t̃ B̃C∈ Stutt Prop t()() Stutt Prop t̃()()=

Stutt Prop t()() Proj WC() t()= Proj WC() t() Proj WC() t̃()=

Proj WC() B̃C() Proj WC() BC()=

133

it

th

on

able

.4.

the

tegy

neral

le set

l

th

ing

ton
Corollary 5.3 [Safe abstractions and stutter equivalence] Let

be a circuit, be a set of external circu

variables, and be a finite transition system wi

. If partial order reduction for stuttering equivalence (Secti

5.1.2) is used to construct a sub-automaton of , and is also project

onto , then is a safe abstraction of over .■

Proof The above corollary is a direct implication of Proposition 5.2 and Corollary 2

It implies that partial order reduction for stuttering equivalence has indeed

potentialof finding safe abstractions. For this purpose, we need to devise an stra

for selection of ample sets that satisfy Conditions 5.9 of Section 5.1.2.

Before we present our strategy for selection of ample sets, we present our ge

procedure to construct a sub-automaton of a circuit automaton using any amp

strategy.

Procedure 5.1 [Construction of circuit sub-automaton by partial order reduction]

Let be any circuit, be a set of externa

circuit variables, and be a finite transition system wi

. Given any strategy for selection of ample sets for stutter

equivalent partial order reduction, a corresponding sub-automa

of

is constructed using the following steps:

(i) let , and ;

C MC AC VC GC, FAC, , ,〈 〉= WC VC⊆

FTSC FAC APC LC, ,〈 〉=

LC q() Proj WC() q()=

FÃC FAC FÃC

WC B̃WC
C

BC WC

C MC AC VC GC, FAC, , ,〈 〉= WC VC⊆

FTSC FAC APC LC, ,〈 〉=

LC q() Proj WC() q()=

FÃC AC VC Q̃C λ̃C TR̃C, µ̃C q0
C, , , , ,〈 〉= FAC AC VC QC λC T RC, µC q0

C, , , , ,〈 〉=

Q̃C q0
C= TR̃C ∅=

134

e.,

tion

strat-

ma-

thm

-

les,

ence

lica-

hem.

sent
(ii) for any state transition that is explored from a state , (i.

) let , ,

, and .■

We need to emphasize that usually is computed on the fly as a func

of the partially constructed sub-automaton .

The above procedure is independent of any ample set strategy, or any search

egy for that matter (DFS or BFS); it simply specifies how to construct the sub-auto

ton as the state space of the circuit automaton is partially explored. Algori

Construct_subautomaton of Figure 5.4, implements step (ii) of the above pro

cedure.

In the following subsections, we first derive a set of criteria for external variab

based on conditions for ample sets in partial order reduction for stuttering equival

(Conditions 5.9 of Section 5.1.2). These conditions, in turn, have a number of imp

tions about the independence of circuit variables and persistency of sets of t

Finally, assuming that external variables satisfy our specified conditions, we pre

q a q', ,() TRC∈ q Q̃C∈

q a q', ,() Ample q()∈ Q̃C Q̃C q'∪= λ̃C q'() λC q'()=

TR̃C TR̃C q a q', ,()∪= µ̃C q a,() S=

Ample q()

FÃC

Construct_subautomaton(){

;

;

;
;

}

q a q', ,
Q̃C Q̃C q'∪=

λ̃C q'() λC q'()=
TR̃C TR̃C q a q', ,()∪=
µ̃C q a,() S=

Fig. 5.4Constructing partial order sub-automaton.
States and transitions are added to sub-automaton as is being partially explored.FÃC FAC

135

tutter

ased

et of

are

nd

y

l-

tion

.

nd

si-

ully

ther

uit
our first strategy for selective search that satisfy the ample set conditions for s

equivalence (Conditions 5.9 of Section 5.1.2).

5.2.2 Conditions on the Set of External Variables

In this section, we first introduce some new propositions and definitions. Then, b

on the conditions for ample sets (Conditions 5.9 of Section 5.1.2), we derive a s

conditions for the set of external variables. The implications of these conditions

studied in the next subsection.

Proposition 5.4 [Visibility of external variables] Let

be a circuit, be a set of external circuit variables, a

be a finite transition system with

. Then all variables in are visible. Moreover, an

variable in that is not simultaneous with any variable in is invisible.■

The above proposition directly follows from the definitions of visibility and simu

taneity. It implies that to satisfy our ample set conditions (Conditions 5.9 of Sec

5.1.2), if a state is not fully expanded, then we must have

As seen in Example 5.5, if is such that no pair of variables a

are simultaneous, then any varaible would be an invi

ble variable, and thus can be included in of any state that is not f

expanded. If in addition, contains any variable that is dependent on any o

variable, then any variable would be independent of all other circ

C MC AC VC GC, FAC, , ,〈 〉=

WC VC⊆

FTSC FAC APC LC, ,〈 〉=

LC q() Proj WC() q()= WC

VC WC– WC

q Ample q() WC∩ ∅=

WC v WC∈

w VC WC–∈ w VC WC–∈

Ample q() q

WC v

w VC WC–∈

136

iable

rea-

g ,

d. The

set of

sets.

-

th

es

y

itions,

ble

and
variables. Under these latter conditions, consider any state , and any var

that is enabled at state ; then is always a persistent set. The

son is that there is no sequence of state transitions from that, without changin

can lead to a state at which a variable that depends on can become enable

reason: no variable that depends on exists.

Based on the above observations, we have devised a set of conditions on the

external variables that would then lead to a trivial strategy for selection of ample

Definition 5.10 [Closure under failure-free dependence]

Let be a circuit, be its set of external vari

ables, and be a finite transition system wi

. Assume that includes the subset of circuit variabl

that areprime dependent. That is, for all signals , if there exists an

variable such that and are dependent under the prime dependency cond

then we must have . Assume that is alsoclosedunder the simultaneity

dependency condition in the following sense: for all variables , any varia

that can ever change simultaneously with must also be included in

(i.e.,). Then, we call such a set of external signalsclosed under failure-free

dependence. ■

Theorem 5.5 [Persistency and invisibility by closure under failure-free

dependence]Let be a circuit, be a set of

external variables that is closed under failure-free dependence,

q

v VC WC–∈ q v{ }

q v

w v

w v

C MC AC VC GC, FAC, , ,〈 〉= WC VC⊆

FTSC FAC APC LC, ,〈 〉=

LC q() Proj WC() q()= WC

VP
C VC⊆ v VC∈

w v w

v w WC∈, WC

v WC∈

w VC∈ v WC

w WC∈

C MC AC VC GC, FAC, , ,〈 〉= WC VC⊆

137

al

s

le

h a

, we

is a

we

that

uence

der

ent, or

ables

et of

not

f this

ari-

ether
be a finite transition system with

. Then for any state and any enabled internal sign

, a persistent and invisible set at i

. ■

Proof (Sketch) First, we show that is invisible. If there exists a variab

that is visible, then it must be capable of simultaneously changing wit

variable . But then, since is closed under failure-free dependence

must have , and by the same token, we must have which

contradiction. As a result, we must have is an invisible set. Next,

show that is persistent. If it is not, then there must exist a variable

is dependent on a variable , and can become enabled through a seq

of transitions not involving . But, since is assumed to be closed un

failure-free dependence, no such pairs of variables, and can ever be depend

otherwise which is a contradiction. Thus is persistent.■

Note that by closure under failure-free dependence, a set of external vari

might include independent variables as well. Also, under those conditions, the s

internal variables can include pairs of simultaneous variables, if they are

dependent or simultaneous to any external variables. Another interesting results o

condition is that if any I/O signal of any module is made external, then all internal v

ables of the module that are simultaneous with it must also be made external, tog

with any other I/O of the module that is, recursively, simultaneous with them.

FTSC FAC APC LC, ,〈 〉=

LC q() Proj WC() q()= q

v Enabled q() AC∩() WC–∈ q

P q() v{ } w w Enabled q() w can simultaneously change withv,∈{ }∪=

P q()

w P q()∈

u W∈ C WC

w W∈ C v W∈ C

P q() VC WC–⊆

P q() u P q()∉

w P q()∈ u

P q() WC

u w

u w WC∈, P q()

VC WC–

138

tut-

nd-

the

s the

f

nce,

-

t-

9 of

nt

the
In the following subsection, we will present our procedure for construction of s

tering equivalent circuit sub-automaton (for a failure-free circuit) and the correspo

ing strategy for selection of ample sets.

5.2.3 A First Partial Order Reduction

We are now ready to introduce our first algorithm for partial order exploration of

state space of a failure-free partitioned circuit; a selective search that satisfie

ample set conditions for stuttering equivalent partial order reduction.

Algorithm 5.2 [DFS_1, a first algorithm for partial order reduction]

Let be a failure-free circuit, be a set o

external circuit variables that is closed under failure-free depende

, and be a finite transition system with

. Algorithm DFS_1 of Figure 5.5 is a DFS algorithm that con

structs a sub-automaton of that is stu

tering equivalent with ; i.e., its ample set strategy satisfies Conditions 5.

Section 5.1.2.■

Partial order reduction starts by calling procedurePartial_Order of Figure 5.6,

that would callDFS_1 for (each of) the initial state(s) of the circuit.

Before we prove that AlgorithmDFS_1 indeed constructs a stuttering equivale

sub-automaton of the circuit automaton of a failure-free circuit, we explain how

C MC AC VC GC, FAC, , ,〈 〉= WC VC⊆

EC AC WC∩= FTSC FAC APC LC, ,〈 〉=

LC q() Proj WC() q()=

FÃC AC VC Q̃C λ̃C TR̃C, µ̃C q0
C, , , , ,〈 〉= FAC

FAC

139
Fig. 5.5Algorithm DFS_1.
An algorithm for generation of a stutter equivalent reduced state space of an SI circuit.

1 DFS_1(){ /* DFS on circuit block */

2 Pop();

3 if or then
4 return ;

5 /* try to explore a single internal transition of block
6 to a state that is not on the search stack */

7 for each {

8 /* is an enabled internal signal of block */

9 if and then {

10 Construct_subautomaton();

11 Push();

12 DFS_1();
13 return ;
14 }
15 }

16 /* if all internal transitions of block lead to states on

17 the search stack, move on to the next block and try
18 to explore an internal transition of that block */

19 if then { /* not the last block */

20 Push();

21 DFS_1();
22 return ;
23 }

24 /* if this was the last block, then fully expand state */
25 else {
26 /* */

27 /* explore all transitions from state */

28 for each {

29 /* is any enabled signal */

30 for each {

31 Construct_subautomaton();
32 /* continue the DFS search from each

33 un-explored state */

34 if then {

35 Push();

36 DFS_1();
37 }
38 }
39 }
40 }
41 }

i i
q

q Q̃C∈ Enabled q() ∅=

i

v Enabled q() WC–() VE i,
C∩∈

v i
q v q', ,() TRC∈ q' Stack∉

q v q', ,
q'
i

i
i 1+

i r E
C≠

q
i 1+

q

q
v Enabled q()∈

v
q v q', ,() TRC∈

q v q', ,

q'

q' Q̃C∉
q'
1

140

ll of

o be

ini-

revi-

of

lored

less

rcuit

ed

ircuit

uced

essed

maller

tates,
algorithm works. The circuit blocks are numbered from 1 to . Each recursive ca

the algorithm receives as an argument the number of a circuit block which is t

searched for an ample (internal) transition. The search stack is initialized with an

tial state, andDFS_1 is called with the first circuit block. Then,DFS_1 repeatedly does

the following: assuming that the current state (popped from the stack) is not p

ously explored, if there exists any transition by an internal signal

current block such that state is not on the search stack, that transition is exp

and the search is continued from state and within circuit block ; otherwise, un

this is the last block, the search is continued from state and within the next ci

block ; if on the other hand, this is the last circuit block, then is fully explor

and the search is continued from each of the reached states and from within c

block 1. As any DFS search, previously explored states that are already in the red

state space, or states not having any outgoing transitions, are not further proc

once they are popped from the stack. For reduced state spaces of possibly s

sizes, one can enforce exploration of internal transitions to previously explored s

assuming that they are not on the search stack.

Fig. 5.6Partial order reduction using AlgorithmDFS_1.

1 Part i al_Order(){

2 ;

3 for each initial state {

4 Push();

5 DFS_1();
6
7 }

Q̃C TR̃C ∅= =
q0

q0

1

rE
C

q

q v q', ,() TRC∈

i q'

q' i

q

i 1+ q

141

l

ion.

lved

its

ernal

ose a

e a

from

all

their

l sig-

). In

abled

r the

g

signal

t are

nsient
A more intuitive analysis of the behavior of AlgorithmDFS_1 is as follows. The

goal of the algorithm is to direct the circuit into anon-transientstate where the interna

variables of the circuit are either stabilized or involved in a non-transient oscillat

To do this, the algorithm successively directs each circuit block into alocal non-

transient state where the internal variables of the block are either stabilized or invo

in a non-transient oscillation. In directing a circuit block from a state to

non-transient state, at any intermediate state if there exists any (arbitrary) int

transition to any state that is not on the DFS stack (and hence does not cl

cycle) then our partial order explores only that transition by letting to b

singleton set containing the corresponding variable. Thus, the goal is to explore,

a single interleaving of internal signal transitions leading to a state at which

internal signals of the block are stabilized (or more generally, have made all of

transitions); however, in the presence of internal oscillations, an arbitrary interna

nal transition might lead to a state on the DFS path, and close a cycle (oscillation

such a case, a valid partial order should avoid a case in which a variable that is en

everywhere along a cycle is never included in any ample set. This is required fo

satisfaction of conditionC3 of Section 5.1.2 for ample sets. That is why, in stabilizin

the internal signals of a circuit block, AlgorithmDFS_1 tries to avoid closing cycles

as much as possible. Eventually, a state is reached at which either no internal

of circuit block is enabled, or all transitions of such signals lead to states tha

on the DFS stack. It is easy to see that any such state would be a local non-tra

state of block . At this point, AlgorithmDFS_1 starts directing circuit block

ME i,
C

ME i,
C q0

i

q

q'

Ample q()

q0
i

q

ME i,
C

q

ME i,
C

142

cir-

an be

from

at can

rithm

ver,

of the

red,

n the

s a
to its local non-transient states, starting from state . Once all

cuit blocks are successively directed to their local non-transient states, and (as c

proven) the whole circuit is in a global non-transient state, all enabled transitions

such a state are explored, and the DFS search is continued from each state th

be reached by such transitions, such that was not previously explored.

Proof [Algorithm 5.2, DFS_1, generates a stuttering equivalent sub-automaton

of a failure-free circuit]

(Sketch) We need to show that the selectively explored sets of transitions in algo

DFS_1 satisfy the ample set conditions of Section 5.1.2.

C1: We note that from each state that is visited byDFS_1, either a single internal

transition (lines 7-15) or all enabled transitions are explored (lines 28-39). Howe

since the set of external variables is closed under failure-free dependence, both

above situations characterize a persistent set, and thus persistency conditionC1 for an

ample set is satisfied.

C2: Since external transitions are explored only from states that are fully explo

visibility conditionC2 is also satisfied by the selective search ofDFS_1.

C3: We note that unless a state is fully explored,DFS_1 does not explore any of its

enabled transitions to states that are on the search stack. On the other hand,DFS_1, as

an ordinary DFS algorithm (that does not re-explore states), can close a cycle i

searched spaceonly by exploring transitions to states on the search stack [24]. A

result,all cycles in the reduced state space that is explored byDFS_1 have a state that

ME i 1+,
C q0

i 1+ q=

q

q

q

143

pair

, then

hat is

a-

are

uiva-

the

on-

to

pre-

e we

uch

algo-

rac-

e-fly

t sec-
is fully explored. Since any TMSCC consists of states with cycle(s) between any

of them, if all cycles of the reduced state space have a state that is fully explored

all TMSCCs of the reduced state space (if there exists any) will also have a state t

fully explored. Thus, the selective search ofDFS_1 also satisfies conditionC3 for

ample sets.

Since all the three conditions are met,DFS_1 indeed generates a stuttering equiv

lent reduced state space for a failure-free circuit (i.e., if the internal variables

indeed failure-free independent of all other variables).■

Algorithm DFS_1 simply generates a reduced state space that is stuttering eq

lent to the full state space of a failure-free circuit. To find a safe abstraction of

behavior of a circuit, whether it is failure-free or not, the sub-automaton that is c

structed by AlgorithmDFS_1 (automaton of the partially explored state space) has

be projected onto the set of external variables. We will end this section without

senting any algorithm for projection of the sub-automaton constructed byDFS_1. The

reason is that such an algorithm would not be a simple one, and since in practic

will not useDFS_1 to find safe abstractions, our efforts for devising or presenting s

an algorithm would be wasted. In the following section, we present an enhanced

rithm for partial order reduction that is a close representative of what we use in p

tice. The enhanced algorithm has automatically provided a way for simple on-th

projection of the constructed sub-automaton that would be discussed in the nex

tion.

144

order

pro-

-fly.

nced

arch

. In

find-

(sub-

ce, if

atis-

ree,

ction

o-

on-

rated

These

, these

trac-
5.3 An Enhanced Partial Order Reduction

In this section, we present an enhanced algorithm for stuttering equivalent partial

reduction (for a failure-free circuit) that has an embedded procedure to check the

jectability of the partial order sub-automaton and compute its projection, on-the

The new algorithm is thus capable of directly finding a safe abstraction. This enha

algorithm, instead of the authentic DFS used in algorithmDFS_1, uses what we call

parallel DFS. Parallel DFS can be regarded as a special kind of breadth first se

(BFS), which can in turn be implemented using symbolic techniques and BDDs

this section, we first present the new algorithm, and then prove its correctness in

ing a safe abstraction in the following way. We prove that the reduced state space

automaton) generated by the algorithm is stuttering equivalent to the full state spa

the circuit is failure-free. This is proven by showing that ample set conditions are s

fied by the algorithm’s selective search. We also prove that if the circuit is failure-f

then the embedded procedure for on-the-fly projection finds an automaton proje

of the constructed sub-automatoniff it is projectable, and otherwise it aborts the alg

rithm. In the same regard, we also prove that if the circuit is not failure-free and the

the-fly projection procedure does not abort, then for all the traces of its gene

automaton, there exist a stuttering equivalent trace in the reduced state space.

properties are proven based on properties of failure-free independence. Together

results would imply the correctness of the overall approach in finding a safe abs

tion.

145

that

dent

f

nce,

at

.9 of
In Section 5.3.3, a further optimized version of the new algorithm is presented

can further speed up and reduce the size of the explored state space.

5.3.1 A Complete Solution to Finding a Safe Abstraction

In this section we present a new partial order algorithm incorporating indepen

DFS searches that can be performed in parallel.

Algorithm 5.3 [DFS_2, an enhanced algorithm for finding safe abstractions]

Let be a failure-free circuit, be a set o

external circuit variables that is closed under failure-free depende

, and be a finite transition system with

. Algorithm DFS_2 (Figure 5.8) is aparallel DFS algorithm

that constructs a sub-automaton of th

is stuttering equivalent with ; i.e., its ample set strategy satisfies Conditions 5

Section 5.1.2. Moreover, its embedded procedureConstruct_projection (Figure

5.10) finds an automaton projection of the constructed sub-automatoniff it is project-

1 Safe_abstraction()

2 for each initial state {

3 Push();

4 DFS_2();

5 }
6 }

q0

q0 q0,
q0 1,

Fig. 5.7Finding a safe abstraction using AlgorithmDFS_2.

C MC AC VC GC, FAC, , ,〈 〉= WC VC⊆

EC AC WC∩= FTSC FAC APC LC, ,〈 〉=

LC q() Proj WC() q()=

FÃC AC VC Q̃C λ̃C TR̃C, µ̃C q0
C, , , , ,〈 〉= FAC

FAC

146

it. It

Fig. 5.8Algorithm DFS_2.
An enhanced algorithm for generation of a stutter equivalent reduced state space of an SI circu
fully expands the terminal states of each independent DFS search.

1 DFS_2() /* DFS on the stack of state and circuit block */

2 Pop (); /* pop a state from the stack of state */

3 if then
4 return ;

5 /* try to explore a single internal transition of block

6 to a state that is not on the stack of */

7 for each {

8 /* is an enabled internal signal of block */

9 if and then {

10 Construct_subautomaton();

11 Push();

12 DFS_2();
13 return ;
14 }
15 }

16 /* if all internal transitions of block lead to states on

17 the search stack of , move on to the next block and
18 try to explore an internal transition of that block */

19 if then { /* not the last block */

20 Push();

21 DFS_2();
22 return ;
23 }

24 /* the end of the DFS path from state is reached */
25 else {

26 Construct_projection();

27 Explore_internal_trans();

28 for each {/* explore external trans */

29 /* is an enabled external signal */

30 for each {

31 Construct_subautomaton();
32 /* initiate a new DFS search from each

33 un-explored state */

34 if then {

35 Push();

36 DFS_2();
37 }
38 }
39 }
40 }
41 }

p i, p i
q p, q p

Enabled q() ∅=

i
p

v Enabled q() WC–() VE i,
C∩∈

v i
q v q', ,() TRC∈ q' Stack p()∉

q v q', ,
q' p,

p i,

i
p i 1+

i r E
C≠

q p,
p i 1+,

p

q
p q,

v Enabled q() WC∩∈
v

q v q', ,() TRC∈
q v q', ,

q'

q' Q̃C∉
q' q',
q' 1,

147

re

ut

uit is

y

e

t are

bel of
able, and otherwise it aborts the algorithm. Finally, if procedu

Construct_projection does not abort the algorithm, then the behavior of its outp

automaton is always a safe abstraction of the circuit behavior, even when the circ

not failure-free.■

To find a safe abstraction, procedureSafe_abstraction of Figure 5.7 is called,

which would callDFS_2 for (each of) the initial state(s) of the circuit. For on-the-fl

projection and projectability check of the constructed sub-automaton,DFS_2 calls pro-

cedureConstruct_projection of Figure 5.10.

Before we prove the above mentioned properties of AlgorithmDFS_2, we explain

how the algorithm works. AlgorithmDFS_2, instead of a single stack, utilizes multipl

DFS stacks that are initiated either from the initial state(s) or from states tha

entered after an external variable transition. These stacks are identified by the (la

Fig. 5.10On-the-fly projection and projectability check of the sub-automaton.

Construct_projection (){

Temp = ;

for each s.t

Temp = Temp ;

if then

if Temp then

exit (“Not a safe abstraction”);
else

return ;
else {

;

Temp;
}

}

q
∅

q v q', ,() TRC∈ v Enabled q() WC∩∈
Proj WC() q v q', ,()∪

Proj WC() q() Q̃V
C∈

r a s, ,() TR̃V
C∈ r Proj WC() q()={ }≠

Q̃V
C Q̃V

C Proj WC() q()∪=

TR̃V
C TR̃V

C ∪=

148

umber

case

arch

t

from

S

the) state from which they were initiated. The recursive function,DFS_2 has thus two

parameters: the first parameter is the stack identifier, and the second one is the n

of the circuit block from which the DFS search has to be continued (similar to the

of Algorithm DFS_1). Each DFS stack is associated with an independent DFS se

of the circuit state space that is started from theinitial state of the stack (the state a

which the stack was initiated and which identifies the stack), and ends at a state

1 Explore_internal_trans() {

2 for each and {

3 Construct_subautomaton();

4 /* if is the circuit block that drives signal

5 then explore the same sequence of signal transitions

6 that was previously explored in block along

7 the DFS path of the stack of */

8 if then {

9 if s.t. then {

10 repeat {

11 /* is on top of on the stack of */

12 ;

13 if and then {

14 if then {

15 Construct_subautomaton();

16 ;

17 ;
18 }
19 else

20 /* at this point we should have */
21 break ; /* quit the repeat loop */
22 } until 0;
23 }
24 }
25 }
26 }

p q,
v Enabled q() WC–∈ q v q', ,() TRC∈

q v q', ,
ME i,

C v

ME i,
C

p
v HE i,

C∈
s Stack p()∈ Proj HE i,

C() s() Proj HE i,
C() q'()=

s' s p

s' Top s p,()=

s w s', ,() TR̃C∈ w HE i,
C∈

q' w q'', ,() TRC∈
q' w q'', ,

q' q''=
s s'=

q' q=

Fig. 5.9Algorithm Explore_internal_trans .
An algorithm for exploration of internal transitions from the terminal states of independent DF
paths of AlgorithmDFS_2.

149

lores

ck,

inde-

r

se a

l.

ates it

abled

is ini-

le-free

hich

re

state

rch of

tate

path

also
which all enabled transitions are explored, called theterminal stateof that DFS. Each

independent DFS search goes through all the circuit blocks in order, and exp

in each block amaximalcycle-free sequence of internal signal transitions of the blo

by never exploring a transition to a state that is on its own stack. Eventually, each

pendent DFS search reaches aterminalstate in the last circuit block from which eithe

no internal transition is possible, or the transition of any internal signal would clo

cycle of signal transitions in thelocal state of the circuit block that drives that signa

At the terminal state of each DFS path, procedureExplore_internal_trans of Fig-

ure 5.9 explores all enabled internal transitions, and from each of the reached st

finds a sequence of internal transitions back to the same terminal state. All en

external transitions of the terminal state are also explored and a new DFS search

tiated from each new state that is reached. Thus each DFS search explores a cyc

sequence (path) of states from the initial state of its stack to a terminal state at w

all enabled transitions are explored.

The DFS searches of AlgorithmDFS_2 are independent in the sense that they a

free to re-explore states that were previously explored (added to the reduced

space) by preceding DFS searches. This is different from the authentic DFS sea

Algorithm DFS_1 which avoids re-exploring states that are already in the reduced s

space (compare lines 3 of the two algorithms). This redundancy ofDFS_2 is only to

force each independent DFS path tocompleteexploration of a maximal cycle-free

sequence of internal transitions before it is terminated, even if parts of this

(sequence) overlap with paths that were explored previously. The same thing is

rE
C

150

t

t

n to

c)

es of

ore

that

ween

that

rated

s can

s not

cles

case
true about the selective search of procedureExplore_internal_trans ; i.e., it is free

to re-explore states of the reduced state space.

Comparing the two algorithmsDFS_1 andDFS_2, line by line, one can observe tha

they are quite similar, with the following differences (a)DFS_2 uses local stacks tha

are initiated at the initial state(s) of the circuit or after each external signal transitio

a new state, whileDFS_1 uses a global stack that is initiated just once, (b)DFS_2 might

re-explore states, whileDFS_1 avoids that (compare lines 3 of the two algorithms), (

after exploring maximal sequences of internal transitions (i.e., at the terminal stat

independent DFS paths),DFS_2 uses a directed independent DFS search to expl

internal transitions (compare lines 27 and 28 of the two algorithms), in the sense

the explored paths are led back to the terminal state, and (d)DFS_2 also carries a pro-

cedure for on-the-fly projection of the reduced state space (line 26).

One major consequence of the first three above mentioned differences bet

algorithmsDFS_2 andDFS_1, in terms of the structure of the reduced state spaces

they create, is the possibility of existence of extra cycles in the state space gene

by DFS_2 that are not fully expanded at the state that closes the cycle. These cycle

be the result of exploring an internal transition to a previously explored state that i

on the current local stack of AlgorithmDFS_2, but is on the global path from the lastly

explored initial state of the circuit to the initial state of the current stack. Such cy

reside on the single stack of AlgorithmDFS_1, without the closing state being fully

explored, although the cycle does have a fully expanded state. An example of this

is illustrated in Figure 5.11 where the DFS path from stateq3 to q4 does not close any

151

itial

he

lly

at

(DFS

ve no

.11.

rt-
cycle on itself; however, it closes a cycle on the global stack that starts from in

stateq0 and passes throughq1, q2, q3, q2, etc. The cycle is closed at stateq2 which is an

ancestor of stateq3, the initial state of the local stack. Although the state at which t

cycle is closed (q2) is not fully expanded, the cycle does have a state that is fu

expanded, i.e.,q3. Algorithm DFS_2 can also create cycles of internal transitions th

are not on a global DFS path, but are created by independently explored paths

paths or paths of internal transitions explored byExplore_internal_trans) that hap-

pen to cross each other more than once, in certain ways. Such cycles might ha

state that is fully expanded. Two example of this case are illustrated in Figure 5

The cycle containing statesq10 andq12 is created by two independent DFS paths sta

ing from statesq4 andq6, respectively. The cycle containing stateq8 andq9 is created by

q0

q1
q2

q3

q4
q5

q6

q7

q11

q9
q8

q10

Fig. 5.11Algorithm DFS_2 can create additional cycles.
The reduced state space generated byDFS_2 can have cycles that are not possible by
Algorithm DFS_1.

an external transition followed
by a sequence of internal trans.

a sequence of internal trans.

a subsequence in a cycle.

a fully-expanded state
a partially expanded state

Legend

q12

152

t sat-

ddi-

rithm

te is

et of

t

s the

a

hm.

of

f

a DFS path starting from stateq6 crossing a cycle of internal transitions from stateq11

to itself. In both of these examples, no state on the cycles is fully expanded.

In the rest of this section, we will prove that AlgorithmDFS_2 indeed generates

stuttering equivalent reduced state spaces for failure-free circuit by showing that i

isfies all the ample set conditions of Section 5.1.2. We will show that none of the a

tional cycles that can be introduced in the reduced state space generated by Algo

DFS_2 are TMSCCs, and thus the fact that they might not have a fully expanded sta

harmless. Moreover, we show that the persistency condition for the selected s

transitions from each state explored by AlgorithmDFS_2 is satisfied. We also prove the

ability of the embedded procedureConstruct_projection in finding a safe abstrac-

tion, if one exists.

5.3.2 Proof of Correctness

To prove the correctness of AlgorithmDFS_2 for generation of a stuttering equivalen

partial order sub-automaton of circuit automaton, we need to show that it satisfie

three ample set conditions of Section 5.1.2.

ProcedureExplore_internal_trans that is illustrated in Figure 5.9 performs

selected search that is different in style from the one within the body of the Algorit

Before we explain how procedureExplore_internal_trans works, we make the

following observations about any path from the initial state to the terminal state

a local DFS. At line 27 of AlgorithmDFS_2, where terminal state of the stack o

p q

q

153

free)

o

s of

aths of

the

ternal

er-

.

y that

nal

(e.g.,

ernal

ake

y an

to
state is going to be fully expanded, the stack of state contains a (cycle-

sequence of states from state t

state , where we have , , and . This sequence consist

possibly empty subsequences of states , . Each

is a sequence of unique states (because , and hence , are cycle-free p

states), and only internal signals of circuit block change along . Moreover,

last state of any subsequence has the property that the transition of any in

signal of block from state would lead to a state of . Finally, since no int

nal signal of block changes along after state is explored, for all

we have , and for any transition , if

then there exists a state such that

These properties of trace and its subtraces are the result of the particular wa

Algorithm DFS_2 explores internal transitions of the circuit before reaching a termi

state of the stack of state . Intuitively, along trace , at any state and beyond

at terminal state), each circuit block is in a maximallocal cycle of states, and

no matter what transitions happen outside of block , and as long as no ext

transitions occur, any transition by an enabled internal signal of block will t

the circuit to a state that waslocally visited before (in block), along .

At this point we are ready to explain how procedureExplore_internal_trans

works. For each internal transition from a terminal state to a state , b

internal signal of a circuit block (),Explore_internal_trans

explores transition followed by a sequence of transitions from back

p p

t qn0

0 q1
1q2

1…qn1

1 q1
2q2

2…qn2

2 ……q1
mq2

m…qnm

m= p

q m rE
C= qn0

0 p= qnm

m q=

rE
C ti qni 1–

i 1– q1
i q2

i …qni

i= 1 i r E
C≤ ≤ ti

ni 1+ t ti

ME i,
C ti

qni

i ti

ME i,
C qni

i ti

ME i,
C t qni

i 1 i r E
C≤ ≤

Proj HE i,
C() q() Proj HE i,

C() qni

i()= q v q', ,()

v HE i,
C∈ s ti∈ Proj HE i,

C() s() Proj HE i,
C() q'()=

t ti

p t qni

i

q ME i,
C

ME i,
C

ME i,
C

ME i,
C ti

q v q', ,() q q'

v ME i,
C v HE i,

C∈

q v q', ,() q'

154

nce

t

d

e

l

and

l

any

ignal

al

dure

er,
state . This is achieved by exploring the same sequence ofsignal transitions that

were previously explored to state from a state along subseque

, where has the property tha

. Existence of such a state an

are guaranteed by properties of trace that w

had just discussed.

The above observation about the terminal states of DFS paths of AlgorithmDFS_2

can be summarized in the following lemma.

Lemma 5.6 [Internal transitions from terminal states of DFS paths] Let

be a failure-free circuit, be a set of externa

circuit variables that is closed under failure-free dependence, ,

be a finite transition system with

. Let Algorithm DFS_2 be used for partial exploration of the

state space of . At line 27 of AlgorithmDFS_2, where state would be the termina

state of the DFS path started from state , state has the following property: for

state that is reachable from state by the transition of an enabled internal s

(i.e.,), there exists a sequence of intern

transitions from state back to state .■

Each of the sequences of states that are explored by proce

Explore_internal_trans from terminal state , close a cycle at that state. Howev

q

qni

i s

ti qni 1–

i 1– q1
i q2

i …qni

i= s

Proj HE i,
C() s() Proj HE i,

C() q'()= s

Proj HE i,
C() qni

i() Proj HE i,
C() q()= t

C MC AC VC GC, FAC, , ,〈 〉= WC VC⊆

EC AC WC∩=

FTSC FAC APC LC, ,〈 〉=

LC q() Proj WC() q()=

C q

p q

q' q

v Enabled q() WC–∈ q v q', ,() TRC∈

q' q

q

155

ave a

nal

nce,

n

oned

Algo-

d by
all such cycles (even if associated with a TMSCC in the reduced state space) h

common state, , that is fully expanded.

Having explained the operation of procedureExplore_internal_trans , we are

now ready to prove that the reduced state space explored by AlgorithmDFS_2 is stut-

tering equivalent with the full state space, if the circuit is failure free (i.e., the inter

signals are actually failure-free independent).

Theorem 5.7 [Algorithm 5.3, DFS_2, generates a stuttering equivalent sub-

automaton] Let be a failure-free circuit, be

a set of external circuit variables that is closed under failure-free depende

, and be a finite transition system with

. Then Algorithm DFS_2 constructs a sub-automato

of that is stuttering equivalent with

. ■

Proof (Sketch) To prove the correctness of AlgorithmDFS_2 in generating a reduced

state space that is stuttering equivalent with the full state space of the partiti

circuit, we show that it satisfies all three conditions for selection of ample sets.

C1: This condition is satisfied by the selective search of AlgorithmDFS_2 for the fol-

lowing reasons. At each state of the reduced state space that is generated by

rithm DFS_2, the set of enabled variables whose transitions are explored, denote

 has (only) one of the following forms:

q

C MC AC VC GC, FAC, , ,〈 〉= WC VC⊆

EC AC WC∩= FTSC FAC APC LC, ,〈 〉=

LC q() Proj WC() q()=

FÃC AC VC Q̃C λ̃C TR̃C, µ̃C q0
C, , , , ,〈 〉= FAC

FAC

q

Ample q() Enabled q()⊆

156

n

rent

is

ions

ly

for a

rches,

at

rea-

(since

also

is

that is

such
(a) , where . This condition happens whe

state is explored just once, or when it is explored multiple times (along diffe

paths), but each time the same internal transition from it is explored.

(b) . This condition happens when state

explored multiple times (along different paths), but not the same internal transit

are explored each time.

(c) . This condition happens when state is ful

expanded at the terminal state of at least one DFS path. Note that it is possible

state to be fully expanded by one DFS search, while other independent DFS sea

or Explore_internal_trans , might have explored only single transitions from th

state.

The set is thus a persistent set in each of the above situations. The

son is that any non-empty subset of internal transitions is always a persistent set

is assumed to be closed under failure-free dependence), and is

always a persistent set.

C2: This condition is satisfied by the selective search of AlgorithmDFS_2 because the

only place that any visible (i.e., external) transition is explored by that algorithm

when a state is fully expanded.

C3: To prove that this condition is satisfied by AlgorithmDFS_2, we need to show that

any TMSCC in the reduced state space generated by that algorithm has a state

fully expanded. A TMSCC in the reduced state space is a subset

Ample q() v{ }= v Enabled q() WC–∈

q

Ample q() Enabled q() WC–⊆ q

Ample q() Enabled q()= q

Ample q()

WC Enabled q()

FÃC QCˆ Q̃C⊆

157

ce of

e

s a

also

able

CC,

of a

hat is

tes that

-

f

nce,
that (a) each state can reach any other state through a sequen

states in ,and (b) there existsno transition from any state to any stat

. By condition (a) above, for each pair of states , there exist

cycle of states within that contains the two states. The above two conditions

imply that if any state belongs to a TMSCC, then any state that is reach

from state also belongs to the same TMSCC. To prove conditionC3, it is sufficient

to prove foreverystate of the reduced state space that if belongs to a TMS

then that TMSCC has a state that is fully expanded (note that by definition

TMSCC, each state can belong to at mostoneTMSCC). It is thus sufficient to show

that fromeverystate of the reduced state space, there exists a path to a state t

fully expanded. But this is exactly what is enforced by AlgorithmDFS_2; i.e., any

independent DFS search is stretched to a state that is fully expanded, and the sta

are explored by procedureExplore_internal_trans also have paths to the originat

ing state that is also fully expanded. Thus, AlgorithmDFS_2 indeed satisfies condition

C3. ■

To prove that procedureConstruct_projection that is embedded inDFS_2 can

find a safe abstraction, we need to first present some lemmas.

Lemma 5.8 [The terminal state of any DFS path belongs to an internal TMSCC]

Let be a failure-free circuit, be a set o

external circuit variables that is closed under failure-free depende

, and be a finite transition system with

q QCˆ∈ q' QCˆ∈

QCˆ q QCˆ∈

q' QCˆ∉ q q' QCˆ∈,

QCˆ

q Q̃C∈

q

q q

C MC AC VC GC, FAC, , ,〈 〉= WC VC⊆

EC AC WC∩= FTSC FAC APC LC, ,〈 〉=

158

from

an

e of

to ,

all

,

is a

its

).

ome

ce of
. Also let AlgorithmDFS_2 be used for partial exploration of

the state space of . Then the terminal state of any DFS path, that is started

any state , belongs to an internal TMSCC of . That is--by definition of

internal TMSCC--from any state that is reachable from through a sequenc

internal transitions, there exists a sequence of internal transitions from back

and all such states belong to the internal TMSCC.■

Proof (Sketch) We prove this lemma by first showing that for all , and

sequences of internal transitions from any terminal state

there exists a sequence of internal transitions from to . Since this

recursive property, it also implies that any state on , , can reach

preceding state, , through a sequence of internal transitions (note that

Thus, it also implies that any on , and in particular , can reach through s

sequence of internal transitions.

We prove the above property using an induction on the length of the sequen

internal transitions from a terminal state to any other state .

LC q() Proj WC() q()=

C q

p FAC

q' q

q' q

q'

n 1≥

tn qq1q2…qn 1– qn= q

qn qn 1–

qi tn 1 i n≤<

qi 1– q0 q=

qi tn qn q

q

qn-1

qn

qn+1

w

vuq’n+1

Fig. 5.12Illustration of the inductive case of Lemma 5.8.

tqn

sequence of internal transitions

a single transition

Legend

n

q qn

159

ernal

y

any

that

rnal

of

state

,

th

.

nce

dia-

ransi-

by
Basis step: If is any state reached from terminal state by a sequence of int

transitions of length one; i.e., and , then b

Lemma 5.6 there exists a sequence of internal transitions from back to .

Inductive hypothesis: let be any state that is reachable from terminal state by

sequence of internal transitions of length , and assume

there exists a sequence of internal transitions from to .

Inductive step: for any state that is reachable from by any sequence of inte

transitions of length , there exists a sequence

internal transitions from to .

To prove this, for any state described in the inductive hypothesis, and any

that is reachable from by an internal transition (i.e.,

, and is reachable form by a sequence of leng

), we show that there exists a sequence of internal transitions from to

As illustrated in Figure 5.12, let be the presumed seque

of internal transitions from to , ,

, , and .

Next consider the following two possible cases:

(a) makes a transition along trace . Then as illustrated by the commutative

gram of Figure 5.13, and because of the presumed independence of all internal t

tions, there must exist a sequence from to whose first transition is

q1 q

q v q1, ,() TRC∈ v Enabled q() WC–∈

q1 q

qn q

tn qq1q2…qn 1– qn= n

qn qn 1–

qn 1+ q

tn 1+ qq1q2…qn 1– qnqn 1+= n 1+

qn 1+ qn

qn

qn 1+ qn qn v qn 1+, ,() TRC∈

v Enabled qn() WC–∈ qn 1+ q tn 1+

n 1+ qn 1+ qn

tqn
qnq'n 1+ …qn 1–=

qn qn 1– qn u q'n 1+, ,() TRC∈

u Enabled qn() WC–∈ qn 1– w qn, ,() TRC∈ w Enabled qn 1–() WC–∈

v tqn

t'qn
qn qn 1–

160

to

,

of

e

of all

ran-

al

of
signal to state . But this means that the suffix of this sequence is from

, and hence there exists a sequence from to .

(b) does not make a transition along trace , and thus

and . By the inductive hypothesis, there must exist a cycle

internal transitions from . But then, as illustrated by th

commutative diagram of Figure 5.14, and because of the presumed independence

internal transitions, there must exist a sequence from to whose first t

sition is by signal to state . But this again means that the suffix of sequence

is from to , and hence there exists a sequence from to .

v qn 1+ qn 1+

qn 1– qn 1+ qn

qn u q’n+1

v v
u

qn+1

v

qn-1

v v v......

Fig. 5.13Illustration of case (a) in the proof of Lemma 5.8.
If signal makes a transition along sequence , then there exists a sequence of intern
transitions from to .

v tqnqn 1+ qn 1–

a sub-sequence of trace tq

a transition by signal v

Legend

n

a sub-sequence of trace t’qn

a signal transition on trace tqn

a signal transition on trace t’qn

v tqn
v Enabled qn 1–() WC–∈

qn 1– v q'n, ,() TRC∈

tqn 1–
qn 1– q'n…qn 1–= qn 1–

t'qn
qn qn 1–

v qn 1+ t'qn

qn 1+ qn 1– qn 1+ qn

qn u q’n+1

v v
u

qn+1

v

qn-1

v v v......

q’n qn-1

a sub-sequence of trace tq n-1
a signal transition on trace tqn-1

Legend

Fig. 5.14Illustration of case (b) in the proof of Lemma 5.8.
If signal does not make a transition along sequence , then there exists a sequence
internal transitions from to .

v tqnqn 1+ qn 1–

a sub-sequence of trace tq

a transition by signal v

n

a sub-sequence of trace t’qn

a signal transition on trace tqn

a signal transition on trace t’qn

161

inter-

]

f

nce,

any

the

hable

t

e

ree

n

itial

two
Conditions (a) and (b) above indicate that there always exists a sequence of

nal transitions from state to , and as a result a sequence back to .■

Lemma 5.9 [Convergence of sequences of internal transitions from a single state

Let be a failure-free circuit, be a set o

external circuit variables that is closed under failure-free depende

, and be a finite transition system with

. Also let AlgorithmDFS_2 be used for partial exploration of

the state space of . Let be any state (in particular, the initial state of

independent DFS path), and be any pair of states (in particular,

terminal states of any two independent DFS paths) such that and are reac

from by sequences of internal transitions. Then, there must exist a state

that is reachable from both and through sequences of internal transitions.■

Proof (Sketch) This lemma directly follows from Keller’s result [43] abou

independent signals and transitions.■

Lemma 5.10 [Terminal states reachable from a single state belong to the sam

internal TMSCC] Let be a failure-free circuit,

be a set of external circuit variables that is closed under failure-f

dependence, , and be a finite transitio

system with . Also let AlgorithmDFS_2 be used for partial

exploration of the state space of . Let be any state (in particular, the in

state of any independent DFS path), and be the terminal states of any

qn 1+ qn q

C MC AC VC GC, FAC, , ,〈 〉= WC VC⊆

EC AC WC∩= FTSC FAC APC LC, ,〈 〉=

LC q() Proj WC() q()=

C p Q̃C∈

q q' Q̃C∈,

q q'

p p' QC∈

q q'

C MC AC VC GC, FAC, , ,〈 〉=

WC VC⊆

EC AC WC∩= FTSC FAC APC LC, ,〈 〉=

LC q() Proj WC() q()=

C p Q̃C∈

q q' Q̃C∈,

162

es of

rom

state

ust

ate

nce

l

and

nal

nal

are

ree

ure-
independent DFS paths such that and are reachable from by sequenc

internal transitions. Then and belong to the same internal TMSCC.■

Proof (Sketch) By Lemma 5.9, there exists a state that is reachable f

both and through sequences of internal transitions. By Lemma 5.8, terminal

must belong to an internal TMSCC, , and similarly, terminal state m

belong to an internal TMSCC, . By the definition of an internal TMSCC, st

that is reachable from both and must belong to both of and . But si

the internal TMSCC to which a state belongs is unique, we must have .■

Lemma 5.11 [Internal transitions cannot disable external transitions] Let

be a failure-free circuit, be a set of externa

circuit variables that is closed under failure-free dependence, ,

be a finite transition system with

. Then no internal transition can ever disable any exter

variable.■

Proof (Sketch) Assume that there exists an internal transition by a sig

that can disable an external variable . Then, either and

legally dependent, which would contradict the closure of under failure-f

dependence, or the internal transition is a failure, which would contradict the fail

freedom of the circuit.■

q q' p

q q'

p' QC∈

q q'

q Q̂ QC⊆ q'

Q'ˆ QC⊆

p' q q' Q̂ Q'ˆ

Q̂ Q'ˆ=

C MC AC VC GC, FAC, , ,〈 〉= WC VC⊆

EC AC WC∩=

FTSC FAC APC LC, ,〈 〉=

LC q() Proj WC() q()=

v VC WC–∈ w WC∈ v w

WC

163

l

nce,

CC,

n

an

.

bled,

f all

-free

l

and

g

it
Lemma 5.12 [Uniqueness of the set of enabled external variables in an interna

TMSCC] Let be a failure-free circuit, be a

set of external circuit variables that is closed under failure-free depende

, and be a finite transition system with

. Let be an internal TMSCC. Then for all , the

set of enabled external variables, , is unique.■

Proof (Sketch) Assume there exists a pair of states in the internal TMS

such that . Then there must exist a

external variable that is enabled in but is not enabled in . Since is

internal TMSCC, there must exist a sequence of internal transitions from to

Now, along any such sequence, external variable must have become disa

without being fired. This suggests that external variable is not independent o

internal signals, contradicting our assumption about closure of under failure

dependence.■

Theorem 5.13 [DFS_2 and finding a safe abstraction for a circuit] Let

be a failure-free circuit, be a set of externa

circuit variables that is closed under failure-free dependence, ,

be a finite transition system with

. Let AlgorithmDFS_2 be used for construction of a stutterin

equivalent sub-automaton, . Then, embedded procedureConstruct_projection

(Figure 5.10) constructs iff is projectable onto , and otherwise

C MC AC VC GC, FAC, , ,〈 〉= WC VC⊆

EC AC WC∩= FTSC FAC APC LC, ,〈 〉=

LC q() Proj WC() q()= Q̂ QC⊆ q Q̂∈

Enabled q() WC∩

q q' Q̂∈,

Enabled q() WC Enabled q'() WC∩≠∩

v WC∈ q q' Q̂

q q'

v

v

WC

C MC AC VC GC, FAC, , ,〈 〉= WC VC⊆

EC AC WC∩=

FTSC FAC APC LC, ,〈 〉=

LC q() Proj WC() q()=

FÃC

FÃWC
C FÃC WC

164

on of

hen

t)

t--is

is

an

at

ati-

n

aborts the algorithm. Moreover, if procedureConstruct_projection does not abort

the algorithm, then the behavior of its output automaton is always a safe abstracti

the circuit behavior, even when the circuit is not failure-free.■

The first part of the above theorem implies that for a failure-free circuit, ifDFS_2

constructs a sub-automaton that is projectable onto , t

Construct_projection constructs nothing but , and is a safe (exac

abstraction of over ; otherwise,Construct_projection simply aborts. The

second part of the theorem implies that the algorithm’s output--if it does not abor

always a safe abstraction.

Proof (Sketch) By Conditions 2.22 for projectability of an automaton,

projectable onto iff the following conditions hold:

• Let be any initial state of , or any state to which there exists

external transition from some state such th

. Let be the set of all states such that iff

(i) is reachable from through a (possibly) sequence of -comp

ble states in , and

(ii) there exists ; i.e., an external transitio

from to a state that is not -compatible with .

Then let

be the

projection of all external state transitions from the states in .

FÃC WC

FÃWC
C B̃WC

C

BC WC

FÃC

WC

qj Q̃C∈ Q̃C

q' j b qj, ,() TR̃C∈ q' j Q̃C∈

q' j qj[]
WC∉ Qj Q̃C⊆ qk Qj∈

qk qj ε WC

Q̃C

qk c qm, ,() TR̃C∈ qm qj[]
WC∉,

qk WC qk

Wj Proj WC() qk c qm, ,() qk c qm, ,() TR̃C q,∈ k Qj∈ qm qj[]
WC∉,{ }=

Qj

165

re

ch

e

d

state

ro-

m

e

m

• Let be any other initial state of , or any other state to which the

exists an external transition from some state su

that and ; i.e., and are -compatible. Defin

 and similar to and above.

• Then we must have .

If the above conditions hold, then we have an

, for all states as described above.

Because of the specific way thatDFS_2 constructs , any state or in the

above conditions must be the initial state of some independent DFS path, and any

, , or must be a terminal state that is fully expanded. As a result, is p

jectable onto iff the following conditions hold:

• Let be the initial state of any independent DFS path of Algorith

DFS_2. Let be the set ofall terminal (fully expanded) states that ar

reachable from through sequences of internal transitions. Let

be the

projection of all external state transitions from the terminal states in .

• Let be the initial state of any other independent DFS path of Algorith

DFS_2, such that ; i.e., and are -compatible. Define

and similar to and above.

• Then we must have .

ql Q̃C∈ Q̃C

q'l d ql, ,() TR̃C∈ q'l Q̃C∈

q'l qj[]
WC∉ ql qj[]

WC∈ qj ql WC

Ql Wl Qj Wj

Wj Wl=

QV
C Proj V() qj(){ }=

TRV
C Wj{ }= qj

FÃC qj ql

q' j q'l qk FÃC

WC

qj Q̃C∈

Qj Q̃C⊆

qj

Wj Proj WC() qk c qm, ,() qk c qm, ,() TR̃C q,∈ k Qj∈ qm qj[]
WC∉,{ }=

Qj

ql Q̃C∈

ql qj[]
WC∈ qj ql WC Ql

Wl Qj Wj

Wj Wl=

166

f a

),

ave

,

-com-

hen

tate

. In

as

n

-

ng

ir-
Now, consider procedureConstruct_projection of Figure 5.10. This procedure

is called once for each independent DFS. That is, if is the initial state o

DFS path, thenConstruct_projection is called at terminal state of this

DFS path. For each such terminal state (and thus each initial state

Construct_projection computes a set

(note that since the

initial and terminal states of any DFS path are -compatible, we h

). Note that since , we have . Next

Construct_projection checks the validity of for all previously pro-

cessed DFS paths whose terminal states, (and thus initial states), are

patible with terminal state (and thus initial state). If the above check fails, t

the algorithm is aborted. Otherwise, if no such terminal state (and thus initial s

) was processed before, all states and transitions in are added to

essence, procedureConstruct_projection analyses only a sub-behavior

and tries to find an automaton such that .

Now, for failure-free circuits we always have (by Lemma 5.12), and

a result . Thus, if the circuit is failure-free, the

Construct_projection would correctly check the projectability of , and cor

rectly compute or abort (if is not projectable), without ever computi

. (Note that if exists, then we have .). As a result, if the c

cuit is failure-free, thenConstruct_projection constructs iff is project-

qj Q̃C∈

q' j Q̃C∈

q' j qj

W' j Proj WC() q' j c qm, ,() q' j c qm, ,() TR̃C∈ qm q' j[]
WC∉,{ }=

WC

q' j[]
WC qj[]

WC= q' j Qj∈ W' j Wj⊆

W' j W'l=

q'l ql WC

q' j qj

q'l

ql W' j FÃWC
C

B'C B̃C⊆

FA'WC
C B'WC

C Proj WC() B'C()=

W' j Wj=

Proj WC() B'C() Proj WC() B̃C()=

FÃC

FÃWC
C FÃC

Qj FÃWC
C FA'WC

C FÃWC
C=

FÃWC
C FÃC

167

safe

nd

er

t

,

fe

de-

n the

are

rcuit

thm.

ree

n

able onto , and otherwise it aborts, suggesting that it could not find a

abstraction.

For a circuit that is not failure-free, the result of Lemma 5.12 will not hold, a

would not generally be true. In such a case, eith

Construct_projection finds an automaton such tha

, or it aborts. If it succeeds, then as a result of

, and , we have ; i.e.,

is a safe abstraction of over .■

If Construct_projection aborts, it simply means that we couldn’t find a sa

abstraction. Note that when a circuit is failure-free, the projectability of is in

pendent of the DFS paths and, in particular, their terminal states. In contrast, whe

circuit is not failure-free, the projectability of can vary by how the DFS paths

explored (the order in which internal signals fire along those paths). Thus, for a ci

that is not failure-free, failure ofConstruct_projection to find a safe abstraction--

even if one could have been found--is not considered a short-coming of the algori

Observation 5.14 [Algorithm 5.3, DFS_2, and the UEE conditions for finding a

safe abstraction] Let be any given circuit,

be a set of external circuit variables that is closed under failure-f

dependence, , and be a finite transitio

system with . Let AlgorithmDFS_2 be used for construction

of a stuttering equivalent sub-automaton, . ThenConstruct_projection

WC

W' j Wj=

FA'WC
C

B'WC
C Proj WC() B'C()= B'C B̃C⊆

B̃C BC⊆ B'WC
C Proj WC() B'C()= B'WC

C Proj WC() BC()⊆ B'WC
C

BC WC

FÃC

FÃC

C MC AC VC GC, FAC, , ,〈 〉=

WC VC⊆

EC AC WC∩= FTSC FAC APC LC, ,〈 〉=

LC q() Proj WC() q()=

FÃC

168

inal

ds, it

s

losed

ith

ernal

cuit

tate.

er of

s not

ws an

ever,

iginal
successfully finds a safe abstraction iff the set of external transitions from term

states of independent DFS paths that are -compatible is unique. In other wor

finds a safe abstraction iff -compatible terminal states have theUnique External

Excitation property, or UEE.■

Proof [Algorithm 5.3,DFS_2, an enhanced algorithm for finding safe abstractions]

The proof of correctness ofDFS_2 in finding a safe abstraction immediately follow

from Theorems 5.7 and 5.13.■

Before closing this subsection, we need to emphasize that ifDFS_2 fails to find a

safe abstraction, (the UEE conditions are not satisfied), then ispotentially not

observationally sufficient, and another set of external variables (that has to be c

under failure-free dependence) has to be chosen for hierarchical verification.

Example 5.7Figure 5.15 shows a four-stage FIFO controller that is partitioned w

three different set of external signals. Figure 5.15.c is an example of a set of ext

signals over which a safe abstraction cannot be found. Intuitively, the middle cir

block in Figure 5.15.c can hold different number of tokens in the same external s

On the other hand, the output behavior of that circuit block depends on the numb

tokens in it. As a result, the behavior of the corresponding set of external signals i

projectable, and hence a safe abstraction over it does not exist. Figure 5.15.a sho

example of a set of external signals over which a safe abstraction does exist; how

the right sub-circuit created by the safe abstraction is exactly the same as the or

WC

WC

WC

169

real

rnal

sfully

rithm

l

al

sub-

nter-

ways
flat circuit. As a result, the particular partition of Figure 5.15.a does not create any

hierarchy in the circuit. Finally, Figure 5.15.b shows an example of a set of exte

signals that not only a safe abstraction over it does exist, but also it can succes

induce hierarchy in verification of the circuit.■

5.3.3 Further Optimizations

In this subsection, we present a further optimized version of our enhanced algo

for finding safe abstractions. This version of the algorithm is calledDFS_3, and is

depicted in Figure 5.16. It is called bySafe_abstraction , in the same way that

DFS_2 is called. And it is exactly likeDFS_2, except that it does not cal

Explore_internal_trans ; i.e., it does not explore the transitions of enabled intern

signals from the terminal states of the DFS paths. As was shown in the previous

section, in a failure-free circuit, the terminal state of any DFS path belongs to an i

nal TMSCC, and any sequence of internal transitions from the terminal state al

(a)

Fig. 5.15Three different partitions of a four-stage FIFO controller.

r0

a0

a1

a2

a3

a4

C C

C

c3
c4

c2
c1i1 b1

C

r0

a0

a1

a2

a3

a4

C C

C

c3
c4c2

c1i1 b1
C

(b)

(c)

r0

a0

a1

a2

a3

a4

C C

C

c3
c4c2

c1i1 b1
C

170
1 DFS_3() /* DFS on the stack of state and circuit block */

2 Pop (); /* pop a state from the stack of state */

3 if then
4 return ;

5 /* try to explore a single internal transition of block

6 to a state that is not on the stack of */

7 for each {

8 /* is an enabled internal signal of block */

9 if and then {

10 Construct_subautomaton();

11 Push();

12 DFS_3();
13 return ;
14 }
15 }

16 /* if all internal transitions of block lead to states on

17 the search stack of , move on to the next block and
18 try to explore an internal transition of that block */

19 if then { /* not the last block */

20 Push();

21 DFS_3();
22 return ;
23 }

24 /* the end of the DFS path from state is reached */
25 else {

26 Construct_projection();

27 /* explore the external transitions from state */

28 for each {

29 /* is an enabled external signal */

30 for each {

31 Construct_subautomaton();
32 /* initiate a new DFS search from each

33 un-explored state */

34 if then {

35 Push();

36 DFS_3();
37 }
38 }
39 }
40 }
41 }

p i, p i
q p, q p

Enabled q() ∅=

i
p

v Enabled q() WC–() VE i,
C∩∈

v i
q v q', ,() TRC∈ q' Stack p()∉

q v q', ,
q' p,

p i,

i
p i 1+

i r E
C≠

q p,
p i 1+,

p

q
q

v Enabled q() WC∩∈
v

q v q', ,() TRC∈
q v q', ,

q'

q' Q̃C∉
q' q',
q' 1,

Fig. 5.16Algorithm DFS_3.
An optimized version of AlgorithmDFS_2, for finding a safe abstractions.

171

of any

Thus,

not

, the

, was

tions

f

nce,

f

n

strac-
leads to other states of the same internal TMSCC. On the other hand, all states

internal TMSCC were shown to have a unique set of enabled external variables.

exploring enabled internal transitions from the terminal states of DFS paths will

create any new information about the behavior of the external variables. In fact

particular selective search of procedureExplore_internal_trans that explores from

any terminal state a path of internal transitions back to the same terminal state

intentionally devised so to emphasize the redundancy of exploring internal transi

from terminal states.

Algorithm 5.4 [DFS_3, a further optimized algorithm to find safe abstractions]

Let be a failure-free circuit, be a set o

external circuit variables that is closed under failure-free depende

, and be a finite transition system with

. Algorithm DFS_3 (Figure 5.16) is an optimized version o

algorithm DFS_2 that constructs a sub-automato

of that is stuttering equivalent with

. Moreover, its embedded procedureConstruct_projection (Figure 5.10) finds

an automaton projection of the constructed sub-automatoniff it is projectable, and oth-

erwise it aborts the algorithm. Finally, if procedureConstruct_projection does not

abort the algorithm, then the behavior of its output automaton is always a safe ab

tion of the circuit behavior, even when the circuit is not failure-free.■

C MC AC VC GC, FAC, , ,〈 〉= WC VC⊆

EC AC WC∩= FTSC FAC APC LC, ,〈 〉=

LC q() Proj WC() q()=

FÃC AC VC Q̃C λ̃C TR̃C, µ̃C q0
C, , , , ,〈 〉= FAC

FAC

172

f

ble

thus

abled

cuit,

states

ibil-

he

it

aton

ignal

into

. The

deed a
Proof [Algorithm 5.4, DFS_3, a further optimized algorithm for finding safe

abstractions]

(Sketch) The correctness of AlgorithmDFS_3 directly follows from the correctness o

Algorithm DFS_2, and the fact that in a failure-free circuit, any state that is reacha

from the terminal state of any DFS path belongs to the same internal TMSCC, and

has the same set of enabled external variables. As a result, exploration of en

internal transitions from the terminal states of DFS paths in AlgorithmDFS_2 is a

redundant computation that can be removed.■

The above theorem states that for partial order reduction of a failure-free cir

the selected set of enabled variables whose transitions are explored at terminal

of DFS paths need to include only the external variables, without violating the vis

ity condition (conditionC2) of ample sets.

Example 5.8Figure 5.17 depicts a FIFO controller of length eight partitioned in t

middle into two circuit blocks (). A safe abstraction of the circu

behavior over is found using our partial order procedure. Since the sub-autom

that is constructed by our procedure is very big, any of its sequences of internal s

transitions, starting immediately after an external signal transition, is collapsed

and depicted as a single state transition to the corresponding terminal state

constructed sub-automaton satisfies UEE, and thus the collapsed automaton is in

safe abstraction.■

E a3 a4,{ }=

E

173

the

s that

may

void

rtial

n pro-

cur

quent
Before we close this chapter, we would like to make two final notes about

selection of external variables. As previously suggested,construct_projection may

fail to construct the automaton of a safe abstraction because of failure transition

go undiagnosed during construction of the partial order sub-automaton. This

cause a seemingly unnecessary search for a safe abstraction overothersets of external

variables that might repeatedly fail because of the inherent failure of a circuit. To a

such a condition, we can check for failure transitions during construction of the pa

order sub-automaton. In this case, as soon as a failure is detected, the verificatio

cedure can be quit. Although checking failures during partial order reduction in

some additional cost, this approach will remove the need for unnecessary subse

search for safe abstractions.

[r0a0a1a2a3a4a5a6a7a8]

00

10

01

11

[a3a4]

r0

a0

a1

a2

a3

a8

C

C C

C

c3
c4c2

c1i1
b1

a4

a5

a6

a7

C

C C

C

c7
c8c6

c5

0101000000

0101100000

1010100000

a3+

a4+
1010110000

A sequence of internal signal transitions
An external signal transition

Terminal states of DFS paths
Initial states of DFS paths

A Safe

External states
1010111111

1010011111
a3-

0101011111
a4-

0101001111

Partial Order
Analysis

Projection

Legend

Abstraction

Fig. 5.17Finding a safe abstraction for the behavior of a FIFO controller.

Sub-automaton

Sub-automaton

174

rtial

ill be

to dis-

at do

roduce

elled

ever,

dif-
The second note is regarding an extension of this framework in which a pa

order sub-automaton that is not projectable (e.g., does not satisfy UEE) can st

used to find safe abstractions assuming that appropriate state encoding is used

tinguish between externally-compatible terminal states of the sub-automaton th

not have the same enabled external transitions. Such encoding schemes may int

new state variables into the system and require additional analysis of the relab

sub-automaton, adding to both space and time complexity of the algorithm. How

this approach removes the inherent complexity of our current framework in trying

ferent set of external variables to find a safe abstraction.

175

eri-

rk is

mpari-

ave

, we

tion

our

deri-

h illus-

d in
Chapter 6

In Comparison

In this chapter, we first present an overall view of our framework for hierarchical v

fication of speed-independent circuits. In Section 6.2, we show how our framewo

in fact based on an assume-guarantee paradigm. In Section 6.3, we present a co

son of our framework with that of complex-gate verification and show how we h

succeeded in generalizing and extending that framework. Finally in Section 6.4

show how our efforts compare to other verification efforts in terms of the reduc

and/or abstraction techniques that are used.

6.1 The Flow of Our Approach Illustrated by an Example

In this section, we simply review the steps involved in one level of recursion of

hierarchal verification approach; i.e., the steps taken starting from a circuit to the

vation of its sub-circuits. Since these steps have already been discussed and eac

trated by an example, we illustrate the whole flow in a single example illustrate

Figure 6.1. The Figure is assumed to be self explanatory.

176

cir-

uit is

t the

the

ique)

ever,

the
6.2 Induced Hierarchical Verification, an Assume Guarantee

Paradigm

In this section, we briefly show how our hierarchical verification technique for SI

cuits can be viewed as an assume guarantee paradigm.

Our technique can be viewed as one which starts by assuming that a given circ

failure-free (or SI), and then tries to guarantee that assumption by proving tha

induced sub-circuits are failure-free. With the assumption of failure-freedom for

circuit, any safe abstraction (i.e., one that is generated by our partial order techn

wouldexactlyresemble the behavior of the selected set of external variables. How

if any induced sub-circuit is found to have a failure, it would be an indication that

[r0a0a1a2a3a4]

Projection

[a1a2]

r0

a0

a1

a2

a3

a4

C C

C

c3
c4c2

c1i1 b1
C

011000

010000

101000 100111

010111

101111

a1+

a1-
101100

a2+

010011
a2-

00

10

11

01

(d) A safe abstraction

r0

a0

a1

C

C
c2

c1 i1

a2

a1

a2

a3

a4

C

C
c4

c3 b1

Block 1

Block 2

E = {a1,a2}

Partial order
 analysis

Circuit partitioning

(c) A sub-automaton

r0

a0

a1

a2

a3

a4

C C

C

c3
c4c2

c1i1 b1
C

(b) Partitioned circuit(a) A four-stage FIFO controller

(f) Derived subcircuits

 in an abstract environment

sub-automaton

Fig. 6.1One level of hierarchical verification for a FIFO controller.

[a1a2]

00

10 11

01

[a1a2]

00

10 11

01

(e) Safe Specifications

177

t is to

nvi-

, the

tra-

ould

ption

m-

d on

re pre-

ca-

end

rized

into a

tness

e an
initial assumption could not be guaranteed, and thus was not a true assumption. I

be reminded that a failure in a sub-circuit is either at an internal module or at the e

ronment module (i.e., a choke) of the corresponding circuit block; in the first case

failure would be a failure of the same module inside the original circuit as well, con

dicting our assumption of failure-freedom, and in the second case, the choke w

reveal that the safe abstraction was not exact, indirectly contradicting our assum

that the circuit was failure-free.

6.3 Relation to Complex-Gate Verification

In this section, we briefly revisit a previous hierarchical verification technique--co

plex-gate verification. We show how complex-gate verification is inherently base

the same principles and observations about speed-independent circuits that we

sented in the previous chapter. Moreover, we will show how our hierarchical verifi

tion framework have succeeded in generalizing upon complex-gate verification.

Our hierarchical verification framework initially started out as an attempt to ext

and generalize complex-gate verification. Complex-gate verification is characte

by two phases; afunctional verificationphase, followed by abehavioral verification

phase. In the functional verification phase, the circuit is collapsed and abstracted

network of complex-gates that is checked forfunctional correctness(e.g., conform-

ance to specification) by full exploration of its state space. Once functional correc

is established, the explored behavior of the complex-gate circuit is used to deriv

178

tion

d. A

4,

ing

the

ase

lack

he

dules

r

of a

than

trac-

in the

out-

sults.

ises

on a

nts,
abstract environment for each induced circuit block. In the behavioral verifica

phase, failure-freedom of each circuit block in its abstract environment is checke

circuit is said to be failure-free if it is both functionally and behaviorally correct [6

65].

The functional phase in complex-gate verification is the counterpart of deriv

safe abstractions in our framework. However, while we usebehavioral abstraction

(i.e., partial order reduction) to derive a safe abstraction of a circuit’s behavior,

functional verification phase--as suggested by its name--usesfunctional abstractionto

find an abstract behavior of the complex-gate circuit. The functional verification ph

conceives of a circuit block that is collapsed into a complex-gate as a functional b

box, focusing on the functionality of the circuit block rather than its behavior. T

same complex-gate can also be conceived as a circuit block whose internal mo

have zero delays and whose outputs are alllazysignals; i.e., the outputs fire only afte

all internal signals of the complex-gate have stabilized. It is this alternative view

complex-gate, focusing on the behavior of the corresponding circuit block rather

its functionality, that has lead us to our partial order technique for behavioral abs

tion. The above discussion also implies, although not immediately apparent, that

special case where the set of external circuit variables includes all complex-gate

puts, functional abstraction and our behavioral abstraction generate the same re

The generality of our framework as compared to complex-gate verification ar

from the fact that an observationally sufficient set of external variables that partiti

circuit into circuit blocks does not need to include all outputs of memory eleme

179

the

ever

lazi-

duc-

rnal

tisfy

have

the

ertain

table

tions

func-

lent

er of

ari-

non-

on-
and/or cut all cycles in the circuit, while the set of external variables partitioning

circuit into complex-gates does. As a result, since no memory element output is

internal to a complex-gate, the functional verification phase effectively assumes

ness forall such signals. In contrast, in our framework we may be able tohidesome

memory element outputs or cycles while deriving safe abstractions.

Since the functional abstraction is equivalent to some sort of partial order re

tion with staticchoice of ample sets, it is easy to comprehend that the set of exte

signals in complex-gate verification, similar to our framework, has to always sa

the closure under failure-free dependence conditions. The absence ofhiddenmemory

element outputs in complex-gate verification, however, has implications that

facilitated the derivation of safe abstractions in that framework. In our framework,

sub-automaton that is constructed by our partial order analysis has to satisfy a c

condition before it can be used to derive a safe abstraction; i.e., it has to be projec

onto the set of external variables. In complex-gate verification, the absence ofhidden

memory element outputs or cycles in complex-gates makes their output excita

depend only on their inputs/outputs. That is why complex-gates are treated as

tional blocks in the functional verification phase. Now, had we used our equiva

partial order analysis instead, we would have noticed that regardless of the ord

transitions on the non-lazy (hidden) circuit variables, the final excitations of lazy v

ables would depend on the value of (all) lazy variables only, and that the hidden

lazy variables would never oscillate and would alwaysstabilizeat unique values. In

other words, for a complex-gate circuit, our partial order analysis would always c

180

s pro-

EE).

safe

rac-

nal

cks

n is

ock

e

lock

vari-

ted

n is

n of

een

the

om-
struct a sub-automaton that has no cycle of hidden state transitions and is alway

jectable onto the set of complex-gate input/outputs (because it satisfies U

Moreover, since the projection of such a sub-automaton would always be a

abstraction, the set of complex-gate input/outputs wouldalwaysbe identified as obser-

vationally sufficient. It is this feature that has facilitated the derivation of safe abst

tions in complex-gate verification by removing the need to check any additio

conditions (i.e., projectability).

It also becomes clear why complex-gate verification cannot support circuit blo

with internal memory modules, or combinational cycles. Complex-gate verificatio

closely concerned with thefunctionalaspect of a complex-gate rather than itsbehav-

ioral aspect; i.e., it is based on the fact that if the output excitation of a circuit bl

can be expressed as afunctionof its input/output signals only, then the behavior of th

corresponding complex-gate circuit is indeed a safe abstraction. Now, if a circuit b

has internal memory modules or cycles, its output excitation is generally not afunction

of its input/output signals only--it also depends on the current state of the internal

ables of the block. Now, if the output excitation of such a circuit block is approxima

by a function over only the input/output signals of the block, such that the functio

possibly an under-approximation or an over-approximation of the actual excitatio

the block within its environment, then there would be no trivial relationship betw

the outcomes of functional/behavioral phases of complex-gate verification and

actual failure-freedom of the original circuit. This is because the framework of c

plex-gate verification assumes that theexactfunctionality of the circuit blocks (com-

181

One

in

ized

two

-

/

rties

t on
plex-gates) in terms of their input/output signals is given, or easily computable.

might argue that complete analyses of the behavior of circuit blocks within theiractual

environments can always be used to compute theirexactfunctionality, but that would

be contrary to the goal of induced hierarchical verification--verifying circuit blocks

abstractenvironments that are derived from safe abstractions which are foundwithout

complete behavioral analyses.

Our comparison of the two frameworks and their relationship can be summar

as follows.

In our attempt to generalize upon complex-gate verification, we first identified

inherent and implicit properties of complex-gates:

(a) complex-gates, as functional blocks, internallystabilizebefore having any output

transitions,

(b) complex-gates haveunique internal stabilizations, and thus when internally stabi

lized, they also haveunique output excitationsas functions of their (external) input

output signals only.

Having identified the above properties, we next tried to exploit the same prope

into our own framework:

(a) we utilized and implemented the notion ofstabilizationinto our behavioral abstrac-

tion by having our partial order technique explore only those traces of a circui

which the internal variables of circuit blocks alwaysstabilize (or reach a terminal

oscillatory state) before external I/O transitions occur,

182

om-

rrect-

ernal

ble to

h the

sub-

isfied

xten-

his

es and

hav-

hose

tion

xhibit

f the
(b) we explicitly enforced the notion ofunique output excitationsin internally-stable

(or terminal oscillatory) states by always checking the projectability of the sub-aut

aton that is constructed by our partial order analysis. This has guaranteed the co

ness of our approach in the more general case that we have circuit blocks with int

memory elements or cycles.

Our proposed behavioral abstraction has brought us the advantage of being a

exercise hiding memory element outputs or cycles. However, this is achieved wit

additional cost of checking, among others, the projectability of the constructed

automaton onto the set of external variables, a condition that is automatically sat

in complex-gate verification.

6.4 Comparison with other Reduction Techniques

Partial order, abstraction, and hierarchical verification techniques have been e

sively used in different tools to reduce the complexity of verification [14, 35, 37]. T

section discusses the relationship between the traditional usage of such techniqu

our proposed induced hierarchical verification approach.

In VIS [14], abstraction is referred to using non-determinism to abstract the be

ior of some circuit signals. Specifically, the signals are treated as primary inputs w

behavior is totally unconstrained. This is probably too conservative for our applica

because such non-determinism would introduce unreachable states which may e

hazards, leading to false negatives. In contrast, we refer to an approximation o

183

VIS,

artial

par-

ntly,

ate

re is

ome

) cir-

order

rnal

ysis

ing of

, for

input

iter-

hid-

cuit
behavior of a subset of circuit signals as an abstraction. Moreover, unlike that of

our abstraction never overestimates the behavior of the signals.

We have already discussed in detail the relation between our framework and p

order reduction techniques [1, 62, 63, 32, 33, 81, 82]. The tricky part of our use of

tial order reduction techniques is that we do not know,a priori, whether a circuit is

failure-free or not; yet we make the implicitassumptionthat it is failure-free and use

partial order reduction to find the behavior of the external variables. Conseque

unlike the typical use of partial orders, our technique may actually under-approxim

the behavior of the external variables. A key feature of our technique is that if the

any such under-approximation, it is always detected in the form of a failure in s

sub-circuit with the conclusion that the circuit is not failure-free.

The presumed independence of signals in a speed-independent (failure-free

cuit allows us to take advantage of different techniques to speed up the partial

analysis. For example, a form of symbolic trajectory analysis can be used for inte

stabilization of the circuit (at fixed external states). This symbolic trajectory anal

has two benefits. First, since the hidden signals are independent and the order

input transitions for hidden circuit elements with no state variables is immaterial

such circuit elements we can use non-interleaving semantics in which enabled

signals are allowed to fire simultaneously (e.g., [85]). This reduces the number of

ations to stabilize the internal state of the circuit. Secondly, since the behavior of

den variables is analyzed only locally when stabilizing the corresponding cir

184

ns;

d in

on-

odel.

rphic

t. In

artial

mo-

ncy

this

uced

y hap-

used

ed

rifi-

trac-

nces.

arate
block, the hidden signals appear only locally and temporarily in BDD computatio

i.e., the hidden variables need not be global BDD variables.

We believe that our technique is similar to homomorphic reductions as use

COSPAN [5, 35, 47]. In COSPAN, such homomorphisms simplify the language c

tainment test between a model and a task by removing irrelevant aspects of the m

We conjecture that our safe abstraction can be viewed as a result of a homomo

transformation which simplifies the model of the environment for each sub-circui

our framework, the homomorphic system is automatically generated (using our p

order technique) once a set of external signals is given, and the validity of the ho

morphism is checked by checking a sufficient condition for observational sufficie

(projectability of the constructed sub-automaton). Moreover, we believe that

homomorphic reduction is both necessary and sufficient for verifying the non-red

problem, and consequently does not lead to any false negatives, as can potentiall

pen with homomorphic reductions in COSPAN.

Our approach is also similar to the more general assume-guarantee paradigm

in reactive modules[2]. In that paradigm, a composition of reactive modules is verifi

through verification of each module in an abstract environment followed by the ve

cation of the composition of abstract environments. We believe that our safe abs

tion is to some degree analogous to an abstract environment with some differe

The most obvious difference may be that our methodology does not need a sep

step of verifying the composition of abstract environments.

185

we

k for

t dif-

rcuit,

e

must

ever-

t only

45],

-like

ch an

ame-
In comparison with other work on verification of speed-independent circuits,

should also note that Weih and Greenstreet developed a verification framewor

speed-independent circuits with similar characteristics as ours but for a somewha

ferent purpose [85]. Specifically, rather than verifying speed-independence of a ci

their goal is to verifylocal formulasfor circuits that have already been verified to b

hazard-free (i.e., semi-modular). In other words, in a preprocessing stage, they

rely on traditional techniques to verify the speed-independence of the design. N

theless, their ideas are similar to ours in that to achieve their goal, they argue tha

one interleaving needs to be analyzed. Finally, Kishineskyet al.’s work on analysis and

identification of a class of speed-independent circuits, called distributive circuits [

is based on derivation of an event specification of the circuit behavior in an STG

notation that also avoids the state space explosion problem. Their derivation of su

specification is based on notions of dependency and concurrency similar to our fr

work.

186

sed

the

tion

als

r the

e.g.,

et or

cir-

need

ver-

ween

such

re to

ture
Chapter 7

SPHINX

We have developed a CAD tool named SPHINX which implements our propo

induced hierarchical verification framework for speed-independent circuits.

There are three types of input files to the program. One input file describes

structure of the circuit as an interconnection of elementary, macro, or specifica

modules, along with additional information about the initial value of circuit sign

and suggested ordering for BDD variables. The second type of input file is used fo

description of macro modules that are a collection of elementary circuit modules (

gates). The third type of input file describes the specification modules as Petri-N

STG specifications. The user has to interactively specify external variables of the

cuit (and those of sub-circuits at different levels of hierarchy), and variables that

to be projected away to derive safe specifications for circuit blocks. The current

sion of the tool does not perform any analysis to identify legal dependencies bet

circuit variables, and the user is expected to choose the set of external variables in

a way that they are closed under failure-free dependence. While adding a featu

automatically identify legal dependencies is quite straight forward, such a fea

187

types

utput

each

ion if

cir-

f the

f that

ier-

ub-

ility

ilize

artial

f the

are

tion of

d by

ndle

of the
seems to be not much of use, since in many speed-independent circuits, the only

of legal dependencies are between the outputs of non-deterministic modules (o

choice) which can easily be identified by the user.

The tool automatically encodes the automaton representation of modules. For

circuit and its specified set of external signals, the program finds a safe abstract

one exists, using symbolic partial order analysis, and automatically partitions the

cuit into circuit blocks. Next, for each subsequent sub-circuit, the components o

sub-circuit are assigned (overloaded by) new descriptions relative to the context o

sub-circuit, and the sub-circuit is recursively analyzed. At the lowest level of the h

archy, symbolic reachability analysis is used to verify failure-freedom of the flat s

circuit. For comparison purposes, the tool can also perform symbolic reachab

analysis and verify hazard-freedom on the original flat circuit. The tool can also ut

the extra level of abstraction of complex-gates. That is, for further speed up, the p

order analysis can be alternatively performed on the complex-gate abstraction o

partitioned circuit, where the combinational cones of logic within the circuit blocks

collapsed into complex-gates. The program can generate a state diagram descrip

any partially or fully explored state space that can be interpreted and viewe

another program, PARG (by Tomas Rokicki).

Symbolic techniques (using the CUDD package of VIS [14]) are used to ha

sets of states and any operations on them, including the partial order exploration

188

cking

ies,

.edu/

con-

on

nt of

ields

IFO

n be

xpo-

the

cir-
state space, any full reachability analysis of the state space of a sub-circuit, che

the projectability of automata, and automata projections.

The executable files of SPHINX, together with descriptions of tool capabilit

guidelines, sample circuits, and runtimes are accessible at http://jungfrau.usc

SPHINX/sphinx.html.

Table 1 shows some runtime results of the tool for two sets of examples, FIFO

troller (Figure 7.1) and DME-ring circuits of different lengths (Figures 7.2 and 7.3),

a Sun SPARCstation 5 with 32 MBytes of memory. As a measure of the amou

memory required, we use the maximum number of BDD nodesin usebefore any

instance of garbage collection. The table shows that our hierarchical approach y

significant runtime speed ups compared to flat verification, especially for the F

controller which is an example of a circuit dominated by memory elements that ca

successfully hidden in our verification framework. In fact, the speed up grows e

nentially with the length of the FIFO. This can be explained by the fact that, in

FIFO circuits, the depth of hierarchy logarithmically increases with the size of the

cuit, while the maximum number of external gates always stays constant at four.

r0

a0

a1

a2

a3

a8

C

C C

C

c3
c4c2

c1i1
b1

a4

a5

a6

a7

C

C C

C

c7
c8c6

c5

Fig. 7.1A FIFO controller of length = 8.

189
Table 1: SPHINX Run-Time Results

Circuit
Depth of
Hierarchy

Max # of
External Gates

CPU-Time
(ms)

Peak # of
BDD Nodes

CPU-Time
Ratio

BDD Size
Ratio

Projection
Depth

FIFO 4 0 6 120 1,005 1.0 1.0 -

FIFO 4 1 4 110 582 1.1 1.7 -

FIFO 8 0 10 1,010 4,964 1.0 1.0 -

FIFO 8 2 4 420 1,645 2.4 3.0 -

FIFO 16 0 18 64,510 585,740 1.0 1.0 -

FIFO 16 3 4 1,030 4,193 62.7 140 -

FIFO 32 0 34 1.5e+7 5.5e+5 1.0 1.0 -

FIFO 32 4 4 3,780 11,530 ~4000 ~47.0 -

FIFO 64 0 66 >180h >35Mbyte 1.0 1.0 -

FIFO 64 5 4 12,220 28,116 N/A N/A -

DME-ring 2 0 32 6,490 16,584 1.0 1.0 -

DME-ring 2 1 21 5,310 17,768 1.2 0.9 -

DME-ring 2 1 19 4,630 25,194 1.4 0.7 1

DME-ring 2 2 15 7,550 15,880 0.9 1.0 1

DME-ring 2 2 12 8,150 101,353 0.8 0.2 2

DME-ring 3 0 48 95,320 501,919 1.0 1.0 -

DME-ring 3 1 26 24,300 28,094 3.9 17.9 -

DME-ring 3 1 21 22,730 31,734 4.2 15.8 1

DME-ring 3 2 17 29,600 26,702 3.2 18.8 1

DME-ring 3 2 15 37,510 26,702 2.5 18.8 2

DME-ring 4 0 64 617,470 3,086,251 1.0 1.0 -

DME-ring 4 1 31 94,390 46,632 6.5 66.2 -

DME-ring 4 1 26 79,750 48,466 7.7 63.7 1

DME-ring 4 2 22 115,280 48,466 5.4 63.7 1

190

puts

e the

the

best

of
On the other hand, for the DME-ring example where the non-deterministic out

of ME modules cannot be hidden, the depth of hierarchy remains constant whil

number of initial sub-circuits and their set of external signals grow linearly with

size of the circuit. Limited projection of the safe abstraction has proven to be the

option for the verification of the DME-ring example. This is due to the high cost

checking projectability of the safe abstractions and computing their projections.

ME

S R

C

C

C

ur

lr

la

ua

rr

ra

Fig. 7.2A DME cell.

DME cell DME cell

(w/ token) (w/o token)

ur1 ua1 ur2 ua2

Fig. 7.3A DME ring of length = 2.

191

epen-

roach

, 27,

ts in

2].

ur

uld

nique

How-

cir-

error
Chapter 8

Directions for Future Research

We presented a new approach for induced hierarchical verification of speed-ind

dent circuits that improves upon previous approaches on some circuits. The app

generalizes previous efforts for the verification of speed-independent circuits [7, 8

53, 64, 65, 88] and is believed to have interesting relationships with current effor

the analysis of synchronous circuits that have combinational loops [49, 20, 71, 7

Our CAD tool SPHINX is already available on the World-Wide-Web [91]. O

experiments with the tool have focused on example circuits for which the tool wo

promise advantage over available tools such as Versify [64, 65], because our tech

is a generalization of those techniques, and reduces to them for other circuits.

ever, there is still room to further improve, optimize, and even test the tool on more

cuits. Some features of the program that can be improved are its interface, and

trace generation.

192

ous

its;

n-

arch

ive

s.

uits

suffi-

rec-

ed

ulti-

an

cor-

rcuit
The following is a list of possible future directions for this research:

• a formal study of extension of the framework to the verification of asynchron

circuits with relative timing assumptions and in particular self-timed circu

i.e., hierarchical verification and hierarchical extraction of relative-timing co

straints/assumptions for such circuits, integration of the results of this rese

with techniques for (flat) verification of relative-timed circuits [44], etc.

• a formal study of extensions of this work to the verification of delay-insensit

circuits, quasi-delay insensitive circuits, and verification of liveness propertie

• exploring applications of the framework to the analysis of synchronous circ

that have combinational loops.

• research on techniques/heuristics for automatic selection of observationally

cient sets of external signals.

In the following sections, we first present some of our preliminary ideas and di

tions for extending the scope of our current framework to the domain of relative tim

circuit verification. We then present a discussion on the issues involved in using m

ple safe abstractions for hierarchical verification, and will close this chapter with

open conjecture on the correctness of a potential solution for this problem.

8.1 Hierarchical Verification of Relative-Timed Circuits

Speed-independent circuits (systems), as we know, are circuits which should work

rectly regardless of--absolute or relative--component delays. Equivalently, a SI ci

193

. In

ugh

yn-

od-

etric

r the

dels

l fail-

l the

e

eady

avoid

tes.
should work correctly for all possible ordering of events (e.g., signal transitions)

verifying speed-independent circuits (i.e.,untimed systems), modules and specifica-

tions are modeled as if they have unbounded delays. Moreover, time is notquantita-

tively modeled; rather, it is inherently modeled in the evolution of the system thro

event occurrences.

In this section, we briefly discuss the problem of verifying another class of as

chronous circuits; circuits which are not speed-independentper se, yet their failures

are avoided by restricting the possible ordering of events through a set oftiming con-

straints/assumptions.

Timing constraints can be provided in the form of bounded delays for circuit m

ules and specifications. Verification of systems with such timing constraints (m

timing) requires explicit representation of time. There are techniques and tools fo

verification of such systems which use eitherdiscreteor continuoustime models. Con-

tinuous time models can provide accurate verification results. Discrete time mo

(e.g., [18, 13]), on the other hand, are often not as accurate, and may have partia

ure coverage [79, 80, 89, 90]. Discrete time models use timer variables to mode

passage of time, while dense time models use notions such asunit-cubes(regions) [3],

or convex geometric regions(or zones) [28, 11, 38]. Both techniques suffer from th

additional cost associated with explicit modeling of time, which aggravates the alr

serious problem of state explosion. Partial order techniques have been used to

the explosion of timed states (or regions) [87, 70, 84]. [66, 67, 59, 9, 10] usepartially

ordered sets (POSETs) of events to reduce the number of regions per untimed sta

194

ted

rel-

ible

at if a

will

e of a

its

rate

eet

state

such

, 26,

it

hen

state

Thus

b-
Timing constraints can also be provided in the form ofrelative timing assumptions/

constraints(RTA/RTC). Often, the environment behavior is assumed to be restric

by relative timing assumptions (RTA), while the circuit behavior is constrained by

ative timing constrains (RTC). An RTA/RTC imposes restrictions on the poss

orderings of some set of related events. As an example, an RTC may indicate th

signal transition will causally enable two other transitions, one of them always

occur before the other one. Such constraints restrict the reachable state spac

(closed) circuit, and if chosen correctly, can prevent a circuit from reaching

(untimed) failure states. Then, a physical implementation of the circuit will ope

safely within its environment, if both the implementation and the environment m

their relative timing constraints/assumptions.

Aggressive asynchronous circuit design using relative timing is becoming the

of the art in asynchronous design. The RAPPID architecture is an example of

efforts [69]. Design and verification of RT circuits has been addressed by [73, 74

60].

Verification of circuits with relative timing information does not require explic

modeling of time. All is needed is to impose timing assumptions/constraints w

exploring the untimed state space of the circuit, pruning any part of the untimed

space which can be entered only by violation of such constraints/assumptions.

flat verification of circuits with relative timing information seems to be a trivial pro

lem.

195

d to

rtial

ons,

its

re to

out

lves

ular

nal of

RT

ation

ma-

the

mple

y and

cuit

ch a

dule

.

Our hierarchical verification framework for SI circuits can easily be generalize

handle RT circuits. For this, we simply need to exercise RTA/RTCs during any pa

or full state space exploration of the circuit, whether it is for finding safe abstracti

or for flat verification of a sub-circuit. As a result, safe abstractions of RT circu

would contain only those interleaving of events on external signals which adhe

RTA/RTCs.

A safe abstractions of an RT circuit may need to carry further information ab

relative ordering of events. For example, consider a timing constraint which invo

three signals , , and , with eventually enabling and in some partic

order. Moreover, assume that at some level of hierarchy, becomes a hidden sig

one circuit block, and and become hidden signals of another circuit block. If

information is not passed appropriately across levels of hierarchy, correct verific

of the circuit block containing and may not be possible. This is because infor

tion regarding the correct ordering of events on and might have been lost in

safe abstraction, due to all signals , , and being hidden signals. This exa

shows the importance of preservation of RT constraints across levels of hierarch

also across circuit blocks of any level of hierarchy.

Any RTA or RTC constraint can be modeled as an additional sequential cir

module whose inputs are the signals involved in the constraint. The state of su

module accordingly evolves by events on its input signals. We call any such mo

which represents a constraint aconstraint module. The firings of any circuit signal

of an RT circuit is controlled by the set of all constraints which constrain signal

a b c a b c

a

b c

b c

b c

a b c

a

a

196

rives

re

nal

od-

on-

rol

bles

had
This can be modeled by an additional (control) input signal at the module that d

signal . This additional control input signal would allow the driving module to fi

signal only if all RTA/RTCs containing that event are satisfied. Such a control sig

can in turn be produced by some logic that monitors the states of all constraint m

ules which have signal in their input, and generates a ‘1’ output only if all the c

straints are met. We call such a module acontrol module. (See Figure 8.1).

Modelling the effect of RTA/RTS by introducing constraint modules, new cont

signals at ordinary circuit modules, and the logic driving such control signals, ena

us to use the same framework for hierarchical verification of RT circuits that we

a

a

a

Ordinary module

Control module

Constraint module

Fig. 8.1Modeling an RT circuit as an SI circuit with additional circuitry.
The additional circuitry are to enforce the RT constraints and assumptions.

Constraint/control signals/variables

Circuit signals

197

rcuit

I cir-

is

ired

um-

. As

s not

lure
proposed for verification of speed-independent circuits. In other words, an RT ci

modeled as described above, can be verified for failure-freedom as an ordinary S

cuit. The advantage of modeling RT circuits as SI circuits with additional circuitry

that safe abstractions of such circuits will automatically contain and carry all requ

RT information necessary for correct verification.

Example 8.1Figure 8.2 shows the specification of a C-element, together with a S

of-Product implementation of it, and the circuit automaton of the implementation

suggested by the circuit automaton, this SoP implementation of a C-element i

speed-independent, or failure-free. Note that to simplify the illustration, the fai

000000

111111

010000

110000

100000

111100

111101111110

110100

011111

011110

011101

1011111

101101

001111

001101

101110

101100

001110

001100

[A,B,C,u1,u2,u3]

011011

011010

011001

011000 01011

101001

001011

001001

101010

101000

001010

001000

F

011100

A+

A B

B+

u1

C

C

u3u2

u2 u3

u3u2 u3

B A

u2

u1

A

A

A

A

A

A,B

B

BB

A
B

C

u1

u2

u3

(b) Sum-of-Products implementation (c) Circuit automaton

000

001

010

110

[A,B,C]

100

111

101011

A

A B

B

CC

(a) Specification of a C-element

F

C

C

Fig. 8.2A C-element.
(a) Specification, (b) Sum-of-Product implementation, (c) circuit automaton

198

it to

r the

ng

limit

, such

hese

n-

ch a

sing

t. For

eral
transitions of the circuit are all directed to a failure state labeled withF. The main

cause of failures in this implementation is the possibility for the inputs of the circu

change before the internal signals of it have stabilized. For example, conside

scenario in which inputsA and B both become ‘1’, causingu1 and then outputC

become ‘1’. Now, if before signalu2 (u3) gets a chance to rise to ‘1’, inputA (B) falls to

‘0’, then u2 (u3) becomes disabled, causing a failure. This failure can cause outputC to

fall to ‘0’, while it is expected to remain at ‘1’.

The SoP implementation of C-element will be failure-free if two relative timi

constraints are satisfied by the environment of the C-element. These constraints

the response time of the environment to changes at the output of the C-element

that the circuit’s inputs are not changed before its internal signals are stabilized. T

two RTCs areC+ u2+ < C+ A- andC+ u3+ < C+ B-. They suggest that the sequence of tra

sitions consisting of rising ofC followed by rising ofu2 (u3), has to happen before the

sequence of transitions consisting of rising ofC followed by falling ofA (B).

For this particular circuit, RTC conditionC+ u2+ < C+ A- (similarly C+ u3+ < C+ B-)

can be modelled by a module with the automaton of Figure 8.3. The inputs of su

module are signalsC andu2, and its output is signalA. Failure transitions (by unex-

pected inputs) are omitted for the sake of clarity. This model is developed u

knowledge about sequences of signal transitions that are possible by the circui

example, it is not possible for signalC of this circuit to fall before both signalsA andu2

fall. If such knowledge is not available, the RTC can be modelled with more gen

199

d in

how-

efore

allow

re its

of a

uts of

n-

This

nput

usly

of

t

RTC
and complicated Petri-Nets. Such general models may allow the signals involve

the RTC to reset right after they have made the transitions specified in the RTC;

ever, after a reset, they may not allow the signals to make any further transitions b

all transitions specified in the RTC have occurred. Such general models may also

each signal to reset any time after it has made its transition, as late as right befo

next expected transition in the RTC.

The above modules cannot be directly composed with the ordinary modules

circuit to impose the corresponding RTC constraints. The reason is that the outp

these modules (e.g., signalA) are in fact driven by other modules (e.g., the enviro

ment), and by definition of a circuit, no two modules can drive the same signal.

problem can be resolved by making all signals involved in an RTC constraint as i

signals of its constraint module, and include an output signal that simultaneo

becomes ‘1’ with the second transition of the RTC, and ‘0’ with the last transition

the RTC. Such a module acts like azero-delaymodule whose output fires right after i

becomes enabled, with no delay. The automaton of such a constraint module for

000

001

101

100

110

111

[C,u2,A]

Fig. 8.3Modelling an RTC.
Modelling RTCC+ u2+ < C+ A- by an automaton using knowledge about the behavior of a
C-element.

C-

A+

C+

u2+

A-

u2-

200

od-

l-

nal

s for

C-ele-
C+ u2+ < C+ A- is depicted in Figure 8.4.a. The set of inputs of the new constraint m

ule is {C,u2,A}, and its output set is {Ae}. Signal Ae can then be used to enable the fal

ing transition of signalA.

As an example, assume that there is an inverter in the circuit that drives sigA

(Figure 8.4.c). Moreover, assume that there are multiple RTC constraint module

the falling transition ofA, and each of them have a zero-delay output,Aei. The control

module of the inverter gate can be modelled by a zero-delay speed-independent

ment that collects theAei signals and generates a ‘1’ at its output,EA, immediately fol-

0000

[C,u2,A,Ae]

C-

A+

C+

u2+,Ae+

A-,Ae-

u2-

0010

1010 1111

1100

1000

C

Ae1

Ae2

Aen

EA

(a) A zero-delay constraint module

...
..

 with output Ae to control the falling
(b) A zero-delay control module with

 transitions of signal A transitions of signal A

D A

EA

000

[D,EA,A]

001

011 101

111

100

A+

EA+

D+

D+

EA+ A-,EA-

D-

Fig. 8.4Modeling the effect of multiple RTCs on an inverter.
RTCC+ u2+ < C+ A- and other RTCs that constrain transitions of signalA, the output
of an inverter.

(c) An inverter controlled by signal EA

(d) The module automaton of the controlled inverter

 output EA to control the falling

201

ng

nal

n

hat

ed

antage

t

rame-

od-

he

sup-

ange

rent

of a

fea-

the

es,

pro-
lowing the instance that allAei signals become one (Figure 8.4.b). Note that the falli

of A will simultaneously reset allAei signals and signalEA. The model of the inverter

gate that drives signalA also needs to be modified, such that it supports an additio

input that is driven by signalEA (Figure 8.4.c and 8.4.d). This controlled model of a

inverter will monitor its control inputEA and have a falling transition at the outputA

only if EA is a ‘1’, otherwise, the output transition ispostponed(Figure 8.4.d). Note

that transition ofA afterEA does not need to be a zero-delay transition. It is notable t

the model of the controlled inverter that is illustrated in Figure 8.4.d is a simplifi

model, based on knowledge about the possible behaviors; e.g., it has taken adv

of the knowledge thatEA can become ‘1’ only afterA rises. If such knowledge were no

captured in the model, its automaton would be more complicated.■

The above example illustrates some of the issues that arise when using our f

work for hierarchical verification of RT circuits. The most important issue is that m

elling the effect of RTC/RTAs by additional circuitry requires the introduction of t

notion of zero-delay modules into the framework. Our present framework already

ports the notion of internal state variables of modules that can simultaneously ch

with the I/O signals of their modules. Extending the framework to handle concur

transitions of I/O signals is believed to affect only the semantics of the behavior

circuit, and not the correctness of the framework. However, a proof of concept and

sibility of this approach requires further research. Efficient implementation of

effect of RTA/RTCs through additional circuitry and modified ordinary modul

choosing OSV sets over the newly introduced variables, and correct handling of

202

urther

d to

ts.

s, it

with

ed

ork

fying

ived

ion of

am-

ness

ifica-

a

and
jections of such variables seem to be other important issues that need to be f

investigated and researched.

We close this section by pointing to another problem which is closely relate

verification of RT circuits; i.e., automatic extraction of RTA/RTCs for such circui

Assuming that automatic extraction frameworks are available for flat RT circuit

might be possible to combine our proposed hierarchical verification framework

such frameworks for hierarchical extraction of RTA/RTCs. Studying the involv

issues and problems is another interesting area for future research.

8.2 Hierarchical Verification using Multiple Safe Abstractions

In this subsection, we discuss a variation of our hierarchical verification framew

which seems to be an attractive alternative approach. This variation aims at veri

the conformance of circuit blocks of a circuit to safe specifications that are not der

from the same safe abstractions; i.e., it uses multiple safe abstractions for derivat

sub-circuits. A particular problem with this approach is illustrated through an ex

ple. Then we propose a slight modification in our framework whichmight legitimize

using multiple safe abstractions for hierarchical verification. However, the correct

of the new approach, or the existence of any correct approach for hierarchical ver

tion using multiple safe abstractions remains an open problem.

In our framework, we partition a given circuit into a set of circuit blocks, find

safe abstraction of the behavior of the external signals that partition the circuit,

203

safe

bles

t is

.5).

verify

om-

cuit.

ber

afe

ircuit
verify each circuit block against a safe specification that is obtained from the

abstraction. An alternative approach which may come to mind is to:

(i) select a set ofcircuit super-blocksthat is acoveringset for the circuit modules, and

can possibly overlap. Each super-block is partitioned into a set of circuit blocks,

(ii) for each super-block, find a safe abstraction over a set of external circuit varia

that is a superset of the I/O variables of the circuit blocks in that super-block,

(iii) verify each circuit block of a super-block against a safe specification tha

derived from the safe abstraction that is found for that super-block (See Figure 8

This alternative approach is appealing since a safe abstraction that is used to

the circuit blocks of a super-block has potentially a smaller set of external signals c

pared to a single safe abstraction that is used to verify all circuit blocks of a cir

Since the complexity of finding (each) safe abstractions is exponential in the num

of (the corresponding) external variables, the overall cost of finding multiple s

abstractions can be less than that of finding a single safe abstraction for all the c

Fig. 8.5An abstract view of a circuit with a covering set of super-blocks.
Each super-block is partitioned into a set of circuit blocks. Not all circuit blocks are verified
against the same safe abstraction. Only circuit blocks of the same super-block (having the
same color) are verified using the same safe abstractions. The super-blocks can overlap.

204

rio, a

be

cuit

ase in

per-

their

trast,

cks,

cks

e if

tial)

,

blocks. Note that by allowing the super-blocks to overlap in the proposed scena

single module can appear in multiple circuit blocks (of multiple super-blocks), and

verified multiple times.

The problem with the above approach arises from the very fact that not all cir

blocks are verified against the same safe abstraction. It is not hard to imagine a c

which the safe abstractions that are used to verify the circuit blocks of different su

blocks are all under approximated abstractions such that the internal failures of

corresponding circuit blocks do not get a chance to manifest themselves. In con

when a single under approximated safe abstraction is used to verify all circuit blo

the sources of under approximation which are failure(s) in some of the circuit blo

will all be found during the verification of those failing circuit blocks.

Figure 8.6.a illustrates an example of a circuit which is not always verifiabl

multiple safe abstractions are used to verify its circuit blocks. The indicated (ini

state of the circuit () is selected very carefully; all three signals ,

C

C

c=1

a

b=1

=0d=

Fig. 8.6Incorrect verification using multiple safe abstractions.
This circuit is not correctly verifiable if multiple safe abstractions are used to verify its
circuit blocks. (a) a problematic state of the circuit, (b) a transition leading to the
problematic state.

C

C

c=1

a

b=1

=0d=1

(a) (b)

abcd[] 0111= a b

205

will

ble ;

of

afe

re-

fe

C-

d

The

tion.

this

ify all

d for

ve

sing

each
and are simultaneously enabled in that state, but the firing of any one of them

disable another one of them, causing a failure. For example, can rise and disa

can fall and disable ; and can fall and disable . All of the following are true

this circuit:

(i) is a trace of the circuit which yields an under-approximated s

abstraction over the I/O signals of the inverter (). The inverter is failu

free in the environment specified by this safe abstraction;

(ii) is a trace of the circuit which yields an under-approximated sa

abstraction over the I/O signals of the top C-element (). The top

element is failure-free in the environment specified by this safe abstraction;

(iii) is a trace of the circuit which yields an under-approximate

safe abstraction over the I/O signals of the bottom C-element ().

bottom C-element is failure-free in the environment specified by this safe abstrac

Thus, using different safe abstractions to verify the circuit blocks (modules) of

circuit may result a false positive verification result for the circuit.

On the other hand, and as an example of using a single safe abstraction to ver

circuit blocks, if the two C-elements were verified using the safe abstraction use

the inverter (i.e.,), then a failure on the top C-element would ha

been detected, which would correctly imply the failure of the circuit.

The example of Figure 8.6.a was able to illustrate the potential problem of u

multiple safe abstractions because it had multiple failures which could mask

c

a c

b a c b

0111 1111 1011, ,

11 01, bc[]

0111 0101 1101, ,

011 111, abd[]

0111 0011 0001, ,

011 001, acd[]

0111 1111 1011, ,

206

arti-

sts a

will

fail-

he

n of

ircuit

y can

possi-

fail-

iple

r dis-

m for

fini-

safe

cir-

-

pay

lures

ction.
other in different safe abstractions. This particular condition, although seemingly

ficial, can occur in practice, as illustrated in Figure 8.6.b. In Figure 8.6.b, there exi

race between the transitions of the two signals and , such that falling first

cause no subsequent failures, but rising first will enable multiple simultaneous

ures; i.e., rising will enable two more transitions (on and), with all of t

enabled transitions leading to failures. This situation is reminiscent of a violatio

fundamental mode constraints, since the input signal is changing before the c

has stabilized.

Multiple simultaneous failures are not always enabled as described above; the

become enabled as a result of a single failure as well. In such a case, it might be

ble to locate the actual source of the failures (the single failure initiating the other

ures) in the sub-circuit containing the failing module.

At this point, we present one possible solution to the problem of using mult

safe abstractions for hierarchical verification. We have not been able to prove o

prove the correctness of this solution yet, and thus it remains as an open proble

future research. This possible solution is based on a slight modification of the de

tion and derivation of safe abstractions. Our original definitions suggest that a

abstraction of the behavior of a circuit is the projection of a sub-automaton of the

cuit automaton that is assumed to befailure-free. This implies that during the construc

tion of the sub-automaton out of the circuit description, there is no need to

attention to failure transitions that might have been explored, since any such fai

can be detected later when verifying the circuit blocks using a single safe abstra

d b b

d

d a c

d

207

the

ns is

ion is

n

of

t if a

trac-

cuit

ted

n can

lures

cir-

d all

rifi-

cti-

re

the
Not checking for failures during derivation of safe abstractions is also motivated by

fact that it reduces the cost of finding safe abstractions.

The suggested modification in the definition and derivation of safe abstractio

as follows: during construction of each sub-automaton from which a safe abstract

derived, failure transitions areall checked for; if any failure transition is detected the

the circuit obviously has a failure, otherwise, the sub-automaton istruly failure-free.

The new solution would then identify a circuit as failure-free iff for any super-block

the circuit the sub-automaton used to derive its safe abstraction is truly failure-freeand

all sub-circuits of the super-block are failure-free.

The above modification in the derivation of safe abstractions guarantees tha

failure transition that is located outside a super-block is explored in the safe abs

tion of that super-block, the failure is not masked out during verification of the cir

blocks of the super-block. However, it is still possible for all failures that are loca

outside the super-block to be missed from the safe abstraction. Such a conditio

result an under-approximated safe abstraction which can in turn hide internal fai

of the super-block.

The only situation in which the suggested solution can fail to correctly verify a

cuit is when the circuit has a failure, yet all sub-automata of safe abstractions an

sub-circuits of the super-blocks are failure-free. This can happen only if during ve

cation of sub-circuits, failures originating from within the circuit blocks are never a

vated. But that canpossiblyhappen only if all (failure-free) safe abstractions which a

used for verifying failing circuit blocks are under-approximations that can hide all

208

s of

dis-

f the

h can

ince it
failures of those blocks. Note that if a safe abstraction is exact, the internal failure

the circuit blocks of its super-block are always guaranteed to be found. A prove or

prove of the suggested solution has to show whether or not the combination o

above conditions is ever possible.

Even if the correctness of the suggested solution can be proven, the approac

be more expensive than our original approach (using a single safe abstraction) s

has to investigate all transitions of all sub-automata for possible failures.

209

der

ce,

ust

te
-

e of

. In

d
in

ys-

ivity
Bibliography

[1] R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer, S. K. Rajamani. Partial-or
reduction in symbolic state space exploration. InProc. of CAV-97,Vol. 1254 of LNCS,
pp. 340-351. Springer, 1997.

[2] R. Alur, T. A. Henzinger. Reactive Modules. InProc. of LICS-96, pp. 207-218.

[3] R. Alur. Techniques for Automatic Verification of Real-Time Systems. Ph.D. The-
sis, Stanford University, August 1991.

[4] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Scien
Vol. 126, No. 2, pp. 183-235, 1994.

[5] R. Alur and R. P. Kurshan. Timing analysis in COSPAN. InHybrid Systems III.
Springer-Verlag, 1996.

[6] P. A. Beerel.CAD Tools for the Synthesis, Verification, and Testability of Rob
Asynchronous Circuits. Ph.D. Thesis, Stanford University, August 1994.

[7] P. A. Beerel, J. R. Burch, and T. H.-Y. Meng. Efficient verification of determina
speed-independent circuits. InProc. of ICCAD-93,pp. 261-267. IEEE Computer Soci
ety Press, 1993.

[8] P. A. Beerel, J. R. Burch, and T. H. Meng. Checking combinational equivalenc
speed-independent circuits. InFormal Methods in System Design, Vol. 13, pp. 37-85,
Kluwer Academic Publishers, Boston, 1998.

[9] W. Belluomini and C. J. Myers. Verification of timed systems using POSETS
Proc. of International Conference on Computer Aided Verification, 1997.

[10] W. Belluomini and C. J. Myers. Efficient timing analysis algorithms for time
state space exploration. InProc. International Symposium on Advanced Research
Asynchronous Circuits and Systems. IEEE Computer Society Press, April 1997.

[11] B. Berthomieu and M. Diaz. Modeling and verification of time dependent s
tems using time Petri nets.IEEE Transactions on Software Engineering, Vol. 17, No.
3, March 1991.

[12] K. van Berkel, F. Huberts, and Ad Peeters. Stretching quasi delay insensit
by means of extended isochronic forks. InAsynchronous Design Methodologies, pp.
99-106. IEEE Computer Society Press, May 1995

210

olic
d

ch-

rks.

-

i-
s,

ele-

. In

s

v-
sing
[13] M. Bozga, O. Maler, A. Pnueli, and S. Yovine. Some progress in the symb
verification of timed automata. InProc. International Conference on Computer Aide
Verification, 1997.

[14] R. K. Brayton et al. VIS: A System for verification and synthesis. InProc. of
CAV-96, pp. 428-432. Springer, 1996.

[15] J. A. Brzozowski, C.-J. H. Seger.Asynchronous Circuits. Springer-Verlag, New
York, 1995.

[16] J. A. Brzozowski and H. Zhang. Delay-insensitivity and semi-modularity. Te
nical Report CS-97-11, Dept. of Comp. Science, Univ. of Waterloo, March 1997.

[17] J. A. Brzozowski and J. C. Ebergen. On the delay-sensitivity of gate netwo
IEEE Transactions on Computers, vol. 41, pp. 1349-1360, November 1992.

[18] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L. Dill. Symbolic
model checking for sequential circuit verification. InIEEE Transactions on Computer
Aided Design of Integrated Circuits and Systems, Vol. 13, No. 4, April 1994, pp. 401-
424.

[19] J. R. Burch. Modeling timing assumptions in trace theory. InICCD, 1989.

[20] J. R. Burch, D. Dill, E. Wolf, and G. De Micheli. Modeling hierarchical comb
national circuits. InProc. of ICCAD-93,pp. 612-618. IEEE Computer Society Pres
1993.

[21] S. M. Burns. General conditions for the decomposition of state holding
ments. In Proc. of Async-96, pp. 48-57, 1996.

[22] T.-A. Chu. Synthesis of self-timed control circuits from graphs: An example
Proc. of IEEE International Conference on Computer Design, pp. 565-571, October
1986.

[23] J. N. Cook.Production rule verification for quasi-delay-insensitive circuit.
Master’s thesis, California Institute of Technology, June 1993.

[24] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to Algorithms. The
MIT Press, 1990.

[25] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, E. Pastor, A. Yako
lev. Decomposition and technology mapping of speed-independent circuits u
Boolean relations. In Proc. of Intl. Conf. on CAD-97, pp. 220-227, 1997.

211

A.
ous
31,

e-

ys-
ys-

lysis

ber

om-

s

tion
ir-
[26] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, A. Taubin, and
Yakovlev. Lazy transition systems: application to timing optimization of asynchron
circuits. In Proc. International Conf. Computer-Aided Design (ICCAD), pp. 324-3
November 1998.

[27] D. L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-Ind
pendent Circuits. In ACM Distinguished Dissertations Series, The MIT Press, 1988.

[28] D. L. Dill. Timing assumptions and verification of finite-state concurrent s
tems. InProc. of the Workshop on Automatic Verification Methods for Finite-State S
tems, 1989.

[29] Jo C. Ebergen and Ad M.G. Peeters. Modulo-N Counters: Design and Ana
of Delay-Insensitive Circuits. InProc. Int. workshop on designing correct circuits, pp.
27-46, Elsevier 1992.

[30] Jo C. Ebergen.Translating Programs into Delay-Insensitive Circuits. Disserta-
tion, Eindhoven University of Technology, Dept. of Computing Science. Octo
1987.

[31] J. C. Ebergen and S. Gingras. A verifier for network decompositions of c
mand-based specifications. InProc. of HICCS, 1993.

[32] P. Godefroid.Partial-Order Methods for Verification of Concurrent System.
Springer, 1996.

[33] P. Godefroid and P. Wolper. A partial approach to model checking.Information
and Computation, Vol. 110, pp.305-326, May 1994.

[34] G. Gopalakrishnan. A correctness criterion for asynchronous circuit valida
and optimization. InIEEE Transactions on Computer-Aided Design of Integrated C
cuits and Systems, Vol. 13, No. 11, Nov. 1994.

[35] R. H. Hardin, Z. Har’El, and R. P. Kurshan. COSPAN. InProc. of CAV-96, Vol.
1102 of LNCS, pp. 423-427. Springer, 1996.

[36] S. Hauck. Asynchronous Design Methodologies: An Overview. InProceedings
of the IEEE. Vol. 83, No. 1, pp. 69-93, January 1995.

[37] G. H. Holzmann and D. Peled. The state of SPIN. InProc. of CAV-96,Vol. 1102
of LNCS, pp. 385-389. Springer, 1996.

212

its

nd

pro-
-

ion.

its

nd

v.
hesis.

he

Cir-
,

[38] H. Hulgaard.Timing Analysis and Verification of Timed Asynchronous Circu.
Ph.D. thesis, University of Washington, 1995.

[39] M. B. Josephs, S. M. Nowick, and C. H. (kees) Van Berkel. Modeling a
Design of Asynchronous Circuits. InProceedings of the IEEE. Vol. 87, No. 2, pp. 234-
242, February 1999.

[40] M. B. Josephs. Receptive Process Theory. InActa Informatica. Vol. 29, pp. 17-
31, 1992.

[41] M. B. Josephs and J. T. Udding. An Overview of DI Algebra.Proceedings of
26th Annu. Hawaii Int. Conf. System Sciences, 1993, Vol. 1, pp. 329-338.

[42] H. Kagotani and T. Nanya. A synthesis method of quasi-delay-insensitive
cessors based on dependency graph. InAsia-Pacific Conference on Hardware Descrip
tion Languages (APCHDL), pp. 177-184, October 1994.

[43] R. M. Keller. A fundamental theorem of asynchronous parallel computat
Lecture Notes in Computer Science, Vol. 24, pp. 103-112, 1975.

[44] H. Kim and P. A. Beerel. Relative Timing Based Verification of Timed Circu
and Systems. InProc. of International Workshop on Logic Synthesis, IWLS’99, June
1999.

[45] M. Kishinevsky, A. Kondratyev, A. Taubin, and V. Varshavsky. Analysis a
identification of speed-independent circuits on an event model. To appear inFormal
Methods in System Design.

[46] A. Kondratyev, J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovle
Technology mapping for speed-independent circuits: decomposition and resynt
In Proc. of Async-97, 1997.

[47] R. P. Kurshan.Computer-Aided Verification of Coordinating Processes - T
Automata-Theoretic Approach. Princeton Univ. Press, 1994.

[48] L. Lavagno.Synthesis and Testing of Bounded Wire Delay Asynchronous
cuits from Signal Transition Graphs. Ph.D. Dissertation, Univ. California, Berkeley
CA, 1992.

[49] S. Malik. Analysis of cyclic combinational circuits. InProc. of ICCAD-93,pp.
618-625. IEEE Computer Society Press, 1993.

213

m-
-

SI

-

itive

gs

ed

-Rail
ed

olic
d

[50] R. Manohar and A.J. Martin. Quasi-delay-insensitive circuits are Turing-co
plete. Invited paper, Second International Symposium onAdvanced Research in Asyn
chronous Circuits and Systems, March 1996.

[51] A. J. Martin. Compiling communicating processes into delay-insensitive VL
circuits. Distributed Computing, vol. 1, pp. 226-234, 1986.

[52] A. Mazurkiewitcz. Basic notions of trace theory. InWorkshop on Linear Time,
Branching Time, and Partial Order in Logics and Models for Concurrency, Vol. 354,
of Lecture Notes in Computer Science, pp. 285-363. Springer, 1988.

[53] K. L. McMillan. A technique of state space search based on unfolding. InFor-
mal Methods in System Design, Vol. 6, pp. 45-65, Kluwer Academic Publishers, Bos
ton, 1995.

[54] K. L. McMillan. Symbolic Model Checking. New York, Kluwer Academic Pub-
lishers, 1993.

[55] R. E. Miller. Switching Theory. Vol. II: Sequential Circuits and Machines. John
Wiley and Sons, 1965.

[56] C. E. Molnar, T. P. Fang, and F. U. Rosenberger. Synthesis of Delay-Insens
Modules.Proceedings of the 1985 Chapel Hill Conference on VLSI, H. Fuchs, ed.,
Computer Science Press, Rockville, Maryland, pp. 67-86, 1986.

[57] D. E. Muller and W. S. Bartky. A Theory of Asynchronous Circuits. InThe
annals of the Computation Laboratory of Harvard University. Vol. XXIX: Proceedin
of an International Symposium on the Theory of Switching, Part I. pp. 204-243, Har-
vard University Press., 1959.

[58] T. Murata. Petri nets: Properties, analysis and applications. InProceedings of the
IEEE, Vol. 77, No. 4, pp. 541-574, Apr. 1989.

[59] C. J. Myers.Computer-Aided Synthesis and Verification of Gate-Level Tim
Circuits. Ph.D. Thesis, Stanford University, 1995.

[60] R. Negulescu and A. Peeters. Verification of Speed-Dependences in Single
Handshake Circuits. InProc. of the 4th International Symposium on Advanc
Research in Asynchronous Circuits and Systems, 1998.

[61] E. Pastor, J. Cortadella M. A. Pena. Structural Methods to Improve the Symb
Analysis of Petri Nets. InProc. 20th International Conference on Application an
Theory of Petri Nets, June 1999.

214

. In
,

by

ed

ike,
th

syn-

me

. In

y-

and
[62] D. Peled. Ten Years of Partial Order Reduction. InProc. of 10th International
Conference on Computer Aided Verification, pp. 17-28, Springer, 1998.

[63] D. Peled. Combining partial order reductions with on-the-fly model-checking
Formal Methods in System Design, Vol. 8, pp. 39-64, Kluwer Academic Publishers
Boston, 1996.

[64] O. Roig, J. Cortadella, and E. Pastor. Verification of asynchronous circuits
BDD-based model checking of Petri Nets. In16th Intl. Conf. on Theory and Applica-
tion of Petri-Nets, Torino, Italy, June 1996.

[65] O. Roig.Formal Verification and Testing of Asynchronous Circuits. Ph.D. The-
sis, Univ. of Politecnica de Catalunya, Barcelona, 1997.

[66] T. G. Rokicki.Representing and Modeling Circuits. Ph.D. Thesis, Stanford Uni-
versity, 1993.

[67] T. G. Rokicki and C. J. Myers. Automatic verification of timed circuits. InProc.
of International Conference on Computer Aided Verification, pp. 468-480, Springer-
Verlag, 1994.

[68] L. Ya. Rosenblum and A. V. Yakovlev. Signal graphs: From self-timed to tim
ones. InInternational Workshop on Timed Petri Nets, pp. 199-206, July 1985.

[69] S. Rotem, K. Stevens, R. Ginosar, P. Beerel, C. Myers, K. Yun, R. Kol, C. D
M. Roncken, and B. Agapiev. RAPPID: An Asynchronous Instruction Leng
Decoder. InProc. of the 5th International Symposium on Advanced Research in A
chronous Circuits and Systems. IEEE, April 1999.

[70] A. Semenov and A. Yakovlev. Verification of asynchronous circuits using ti
Petri-net unfolding. InProc. of ACM/IEEE Design Automation Conference, 1996.

[71] T. R. Shiple, G, Berry, and H. Touati. Constructive analysis of cyclic circuits
Proc. of ED&TC-96, pp. 328-333, March 1996.

[72] T. R. Shiple, V. Singhal, R.K. Brayton, and A.L. Sangiovnni-Vincentelli. Anal
sis of combinational cycles in sequential circuits. InProc. of ISCAS-96, pp. 592-595,
May 1996.

[73] K. Stevens, S. Rotem, M. Burns, J. Cortadella, R. Ginosar, M. Kishinevsky,
M. Roncken. CAD directions for high performance asynchronous circuits. InProc.
ACM/IEEE Design Automation Conference, pp. 116-121, 1999.

215

tems

rar-
ri-

ve

et-

et-

ch-

al-
e

path
[74] K. Stevens, R. Ginosar, S. Rotem. Relative Timing. InProc. of the Fifth Interna-
tional Symposium on Advanced Research in Asynchronous Circuits and Sys.
IEEE, 1999.

[75] S. Tasiran and R. K. Brayton. STARI: A case study in compositional and hie
chical timing verification. InProc. International Conference on Computer Aided Ve
fication, 1997.

[76] J. T. Udding. A Formal Model for Defining and Classifying Delay-Insensiti
Circuits and Systems.Distributed Computing, Vol. 1, No. 4, pp. 197-204, 1986.

[77] S. H. Unger.Asynchronous Sequential Switching Circuits. John Wiley and Sons,
1969.

[78] S. H. Unger. Hazards, Critical Races, and Metastability. InIEEE Transactions
on Computers, Vol. 44, No. 6, pp. 754-768, June 1995.

[79] V. Vakilotojar and P. A. Beerel. RTL verification of timed asynchronous and h
erogeneous systems using symbolic model checking. InINTEGRATION, The VLSI
Journal, December 1997.

[80] V. Vakilotojar and P. A. Beerel. RTL verification of timed asynchronous and h
erogeneous systems using symbolic model checking. InProc. of ASPDAC-97, January
1997.

[81] A. Valmari. Stubborn sets for reduced state space generation. InProc. 2nd Work-
shop on Computer Aided Verification, pp. 491-515, 1990.

[82] A. Valmari. On-the-fly verification with stubborn sets. InProc. of CAV-93, Vol.
697 of LNCS, pp. 397-408. Springer-Verlag, 1993.

[83] C. H. (Kees) Van Berkel, M. B. Josephs, and S. M. Nowick. Scanning the Te
nology. InProceedings of the IEEE. Vol. 87, No. 2, pp. 223-233, February 1999.

[84] E. Verlind, G. de Jong, and B. Lin. Efficient partial enumeration for timing an
ysis of asynchronous systems. InProc. of ACM/IEEE Design Automation Conferenc,
1996.

[85] D. T. Weih and M. R. Greenstreet. Verification of speed-independent data-
circuits. In IEE Proceedings-Computers and Digital Techniques, Vol. 143, No. 5, pp.
295-300, Sept. 1996.

216

ver
r-

on

tion

nd
r. In

nd
r. In

du/
[86] H. Wong-Toi and D. L. Dill. Verification of real-time systems by successive o
and under approximation, InProc. of The International Conference on Compute
Aided Verification, July 1995.

[87] T. Yoneda, A. Shibayama, B. Schlingloff, and E. M. Clarck. Efficient verificati
of parallel real time systems. In Costas Courcoubetis, editor,Computer Aided Verifica-
tion, pp. 321-323. Springer-Verlag, 1993.

[88] T. Yoneda and T. Yoshikawa. Using partial orders for trace theoretic verifica
of asynchronous circuits. InProc. of ASYNC-96, pp. 152-163, March 1996.

[89] K. Y. Yun, P. A. Beerel, V. Vakilotojar, A. Dooply, and J. Arceo. The design a
verification of a low-control-overhead asynchronous differential equation solve
Proc. of ASYNC-97, April 1997.

[90] K. Y. Yun, P. A. Beerel, V. Vakilotojar, A. Dooply, and J. Arceo. The design a
verification of a low-control-overhead asynchronous differential equation solve
IEEE Transactions on VLSI, Dec. 1998.

[91] The current version of SPHINX is accessible at http://jungfrau.usc.e
SPHINX/sphinx.html.

	Chapter 1
	Introduction
	1.1 Motivation
	1.2 Speed-Independent Circuit Verification
	1.3 Related Work
	1.4 Thesis Contributions
	1.5 Thesis Organization

	Chapter 2
	Models of Circuits and Behaviors
	2.1 Circuit Modules
	Definition 2.1 [Circuit module] A circuit module is a tuple , where

	2.2 Examples of Circuit Modules
	2.2.1 Combinational Gates
	Example 2.1 Figure 2.1.a depicts a NOR gate. The module description of the NOR gate is where the ...

	2.2.2 Sequential Gates
	Fig. 2.1 Module description of a NOR gate.
	Example 2.2 Figure 2.2.a depicts a C-element gate. The module description of the C- element gate ...
	Example 2.3 Figure 2.3.a depicts a Mutual-Exclusion (ME) element as described in [27]. The module...
	Fig. 2.2 Module description of a C-element gate.
	Fig. 2.3 Module description of a Mutual-Exclusion element.

	Example 2.4 Figure 2.4.a depicts a fair arbiter element as described in [48]. The module receives...
	Fig. 2.4 Module description of a fair arbiter element.

	2.2.3 Specifications
	Example 2.5 The STG specification of a DME ring of length two is illustrated in Figure 2.5.b. Thi...
	Fig. 2.5 Module description of a DME ring of length two.
	Fig. 2.6 Petri-net specification of A DME ring with all implicit places shown.

	2.2.4 Environment Modules: Mirror of Specifications
	Example 2.6 The circuit module for the mirror of the STG specification of Example 2.5 is defined ...

	2.3 Circuit Model
	Definition 2.2 [Circuit] A circuit is a tuple , where
	Definition 2.3 [State space of a circuit automaton] Let be a circuit. The state space of is induc...
	Definition 2.4 [Changed variables of a transition] Let be a circuit, be its automaton, and be any...
	Procedure 2.1 [Full reachability analysis of a circuit automaton]

	2.4 More on Circuit Automaton and Behavior
	2.4.1 Automaton Behavior and Circuit Behavior
	Definition 2.5 [Trace] Let be any automaton. A run (or trace) of the automaton is a sequence of s...
	Definition 2.6 [Automaton behavior] Let be any automaton. The automaton behavior, denoted , is de...
	Definition 2.7 [Failure freedom] Let be any automaton and be its behavior. We say that () is not ...
	Definition 2.8 [Circuit behavior] Let be a circuit. The circuit behavior is then defined to be th...
	Example 2.7 Figure 2.7 depicts a four-stage FIFO controller. Two possible traces of the circuit b...
	Fig. 2.7 A four-state FIFO controller in an abstract environment.

	Definition 2.9 [Sub-behavior] Let be any automaton and be its behavior. We then call any prefix-c...
	Definition 2.10 [Reduced trace, prime trace, reduced behavior]
	Definition 2.11 [Failure-free trace and failure-free sub-behavior]
	Definition 2.12 [String of a trace] Let be any automaton, be any trace of the automaton, and , an...

	2.4.2 Projections of Behaviors
	Definition 2.13 [WV-transition] Let be any automaton, , and . Then if , we say that is a -transit...
	Definition 2.14 [V-compatibility, state projection]
	Definition 2.15 [Trace projection] Let be any automaton and be its behavior. Let and (i.e., consi...
	Definition 2.16 [Behavior projection] Let be any automaton and be its behavior. Then for any , th...
	Definition 2.17 [Exact abstraction of a behavior over a set of variables]
	Definition 2.18 [String projection] Let be any automaton, , and be a string of . Then the project...
	Example 2.8 Let be an automaton with , and let .
	Lemma 2.1 [Successive projection] Let be any automaton, and . Then for any projectable automaton ...
	Lemma 2.2 [Strings and projections] Let be any automaton, be its behavior and . Let , be the stri...

	2.4.3 Sub-automaton and Projection of an Automaton
	Definition 2.19 [Sub-automaton] Let be any automaton. We then define a sub-automaton of to be any...
	Definition 2.20 [Collapsed automaton]
	Definition 2.21 [Automaton projection]
	Fig. 2.8 When an automaton projection does not exist!

	Theorem 2.3 [Necessary and sufficient conditions for projectability of an automaton] Let be any a...
	Conditions 2.22 [Necessary and sufficient conditions for projectability of an automaton] Let be a...

	2.5 Safe Abstractions and Observational Sufficiency
	Definition 2.23 [Safe abstraction] Let be a circuit and be its behavior. Then a behavior over a s...
	Definition 2.24 [Observational sufficiency] Let be a circuit and be its behavior. Then a set is c...
	Corollary 2.4 [Automata projections and safe abstractions]
	Corollary 2.5 [Automata projections and safe abstractions]

	2.6 Formal Proofs
	Lemma 2.6 [Over approximation by collapsed automata]

	Chapter 3
	Induced Hierarchical Verification of SI, Theoretical Framework
	3.1 Partitioning a Circuit into Circuit-Blocks
	Definition 3.1 [Circuit block] Let be a circuit and be a non-empty subset of circuit signals whic...
	Example 3.1 Figure 3.1 shows three different partitions of a four-stage FIFO controller. For Figu...
	Fig. 3.1 Three different partitions of the four-stage FIFO controller.

	3.2 Safe Abstractions and Sub-circuits of a Circuit
	3.3 Environment Module of a Circuit Block
	Definition 3.2 [Safe specifications, and safe specification sets]
	Example 3.2 Figure 3.2.a depicts a four-stage FIFO controller that is partitioned into two circui...
	Fig. 3.2 Deriving safe specifications for circuit blocks from a safe abstraction.

	Definition 3.3 [Environment module] Let be any circuit for which there exists a behavior that is ...
	Example 3.3 An example of deriving environment modules for circuit blocks of a partitioned circui...
	Fig. 3.3 Deriving safe specifications for circuit blocks from a safe abstraction.

	3.4 Subcircuits
	Definition 3.4 [Sub-circuit] Let be a circuit and , , and be an automaton whose behavior is a saf...
	Example 3.4 Figure 3.4.a depicts the four-stage FIFO controller of Figure 3.2 that is partitioned...
	Fig. 3.4 A four-stage FIFO controller and its sub-circuits.

	3.5 Circuit Failure-freedom and Sub-circuits’ Failure-freedom
	Theorem 3.1 [Circuit versus sub-circuit failure-freedom, I]
	Theorem 3.2 [Circuit versus sub-circuit failure-freedom, II]
	Fig. 3.5 Two overlapping arbitrary circuit blocks
	Fig. 3.6 Overlapping arbitrary blocks with a non-external common signal.

	3.6 Formal Proofs
	Lemma 3.3 [Projection of safe specifications] Let be any circuit for which there exists a behavio...
	Lemma 3.4 [Under approximation of the I/O behavior of a circuit block] Let be any circuit for whi...
	Lemma 3.5 [Properties of traces captured in a safe specification] Let be any circuit for which th...
	Corollary 3.6 [Properties of traces captured in a safe abstraction] Let be any circuit for which ...
	Corollary 3.7 [Circuit and sub-circuit behaviors]
	Lemma 3.8 [Under approximation of reduced sub-circuit behaviors] Let be any circuit for which the...

	Chapter 4
	Induced Hierarchical Verification of Speed-Independence, Issues
	4.1 Circuit Blocks Versus Complex-Gates
	Fig. 4.1 A portion of a circuit with a multiple fan-out signal a7.
	Fig. 4.2 Two solutions to the problem of overlapping complex-gates.

	4.2 Selection of OSV Sets for Hierarchical Verification
	Fig. 4.3 An example of technology mapping
	Fig. 4.4 An example of sequential decomposition in technology mapping.

	4.3 Sequential Hierarchical Verification, SHV
	Fig. 4.5 An abstract illustration of Sequential Hierarchical Verification.
	Fig. 4.6 An abstract illustration of Sequential Hierarchical Verification.

	Chapter 5
	Finding Safe Abstractions
	5.1 Some Background
	5.1.1 Partial Order Reductions
	Definition 5.1 [Finite transition system] [62] A finite transition system is a triple , where is ...
	Example 5.1 Let be a circuit and be a set of external variables. We can then define transition sy...
	Definition 5.2 [Independent variables] [62]
	Example 5.2 Let be any module of a circuit such that ; i.e., the module has internal variables. A...
	Fig. 5.1 Module description of a fair arbiter element.

	Example 5.3 Figure 5.1 shows the module automaton of a fair arbiter . From the module automaton, ...
	Example 5.4 Figure 5.2 shows the module automaton of a mutual exclusion (ME) module . From the mo...
	Fig. 5.2 Module description of a Mutual-Exclusion element.
	Fig. 5.3 Classification of dependency between any two circuit variables v and w.

	Observation 5.1 [Classification of dependencies between circuit variables]
	Definition 5.3 [Simultaneity, prime, and failure-free dependency conditions] Based on Observation...
	Definition 5.4 [Invisible variables] [62] Let be a finite transition system. A variable is invisi...
	Example 5.5 Let be a circuit, be a set of external circuit variables, and be a finite transition ...
	Definition 5.5 [Stuttering equivalence] [62]
	Example 5.6 Let be a circuit, be a set of external circuit variables, and be a finite transition ...
	Definition 5.6 [Persistent functions and sets] [62]
	Definition 5.7 [Terminal Maximal Strongly Connected Component, TMSCC]
	Definition 5.8 [Internal TMSCC] Let be a circuit, and be a set of external circuit variables. A -...

	5.1.2 Partial Order Reduction for Stuttering Equivalence
	Conditions 5.9 [Ample sets for stuttering equivalence] [62]

	5.2 A First Partial Order Technique to Find Safe Abstractions
	5.2.1 Feasibility
	Theorem 5.2 [Behavior projections and stutter equivalence] Let be a circuit, be a set of external...
	Corollary 5.3 [Safe abstractions and stutter equivalence] Let be a circuit, be a set of external ...
	Procedure 5.1 [Construction of circuit sub-automaton by partial order reduction] Let be any circu...
	Fig. 5.4 Constructing partial order sub-automaton.

	5.2.2 Conditions on the Set of External Variables
	Proposition 5.4 [Visibility of external variables] Let be a circuit, be a set of external circuit...
	Definition 5.10 [Closure under failure-free dependence]
	Theorem 5.5 [Persistency and invisibility by closure under failure-free dependence] Let be a circ...

	5.2.3 A First Partial Order Reduction
	Algorithm 5.2 [DFS_1, a first algorithm for partial order reduction]
	Fig. 5.5 Algorithm DFS_1.
	Fig. 5.6 Partial order reduction using Algorithm DFS_1.

	5.3 An Enhanced Partial Order Reduction
	5.3.1 A Complete Solution to Finding a Safe Abstraction
	Fig. 5.7 Finding a safe abstraction using Algorithm DFS_2.
	Algorithm 5.3 [DFS_2, an enhanced algorithm for finding safe abstractions]
	Fig. 5.8 Algorithm DFS_2.
	Fig. 5.9 Algorithm Explore_internal_trans.
	Fig. 5.10 On-the-fly projection and projectability check of the sub-automaton.
	Fig. 5.11 Algorithm DFS_2 can create additional cycles.

	5.3.2 Proof of Correctness
	Lemma 5.6 [Internal transitions from terminal states of DFS paths] Let be a failure-free circuit,...
	Theorem 5.7 [Algorithm 5.3, DFS_2, generates a stuttering equivalent sub- automaton] Let be a fai...
	Lemma 5.8 [The terminal state of any DFS path belongs to an internal TMSCC] Let be a failure-free...
	Fig. 5.12 Illustration of the inductive case of Lemma 5.8.
	Fig. 5.13 Illustration of case (a) in the proof of Lemma 5.8.
	Fig. 5.14 Illustration of case (b) in the proof of Lemma 5.8.

	Lemma 5.9 [Convergence of sequences of internal transitions from a single state] Let be a failure...
	Lemma 5.10 [Terminal states reachable from a single state belong to the same internal TMSCC] Let ...
	Lemma 5.11 [Internal transitions cannot disable external transitions] Let be a failure-free circu...
	Lemma 5.12 [Uniqueness of the set of enabled external variables in an internal TMSCC] Let be a fa...
	Theorem 5.13 [DFS_2 and finding a safe abstraction for a circuit] Let be a failure-free circuit, ...
	Observation 5.14 [Algorithm 5.3, DFS_2, and the UEE conditions for finding a safe abstraction] Le...
	Example 5.7 Figure 5.15 shows a four-stage FIFO controller that is partitioned with three differe...
	Fig. 5.15 Three different partitions of a four-stage FIFO controller.

	5.3.3 Further Optimizations
	Fig. 5.16 Algorithm DFS_3.
	Algorithm 5.4 [DFS_3, a further optimized algorithm to find safe abstractions]
	Example 5.8 Figure 5.17 depicts a FIFO controller of length eight partitioned in the middle into ...
	Fig. 5.17 Finding a safe abstraction for the behavior of a FIFO controller.

	Chapter 6
	In Comparison
	Fig. 6.1 One level of hierarchical verification for a FIFO controller.
	6.1 The Flow of Our Approach Illustrated by an Example
	6.2 Induced Hierarchical Verification, an Assume Guarantee Paradigm
	6.3 Relation to Complex-Gate Verification
	6.4 Comparison with other Reduction Techniques

	Chapter 7
	SPHINX
	Fig. 7.1 A FIFO controller of length = 8.
	Table 1: SPHINX Run-Time Results

	Fig. 7.2 A DME cell.
	Fig. 7.3 A DME ring of length = 2.

	Chapter 8
	Directions for Future Research
	8.1 Hierarchical Verification of Relative-Timed Circuits
	Fig. 8.1 Modeling an RT circuit as an SI circuit with additional circuitry.
	Example 8.1 Figure 8.2 shows the specification of a C-element, together with a Sum- of-Product im...
	Fig. 8.2 A C-element.
	Fig. 8.3 Modelling an RTC.
	Fig. 8.4 Modeling the effect of multiple RTCs on an inverter.

	8.2 Hierarchical Verification using Multiple Safe Abstractions
	Fig. 8.5 An abstract view of a circuit with a covering set of super-blocks.
	Fig. 8.6 Incorrect verification using multiple safe abstractions.

	Bibliography
	[1] R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer, S. K. Rajamani. Partial-order reduction i...
	[2] R. Alur, T. A. Henzinger. Reactive Modules. In Proc. of LICS-96, pp. 207-218.
	[3] R. Alur. Techniques for Automatic Verification of Real-Time Systems. Ph.D. Thesis, Stanford U...
	[4] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, Vol. 126, No. ...
	[5] R. Alur and R. P. Kurshan. Timing analysis in COSPAN. In Hybrid Systems III. Springer-Verlag,...
	[6] P. A. Beerel. CAD Tools for the Synthesis, Verification, and Testability of Robust Asynchrono...
	[7] P. A. Beerel, J. R. Burch, and T. H.-Y. Meng. Efficient verification of determinate speed-ind...
	[8] P. A. Beerel, J. R. Burch, and T. H. Meng. Checking combinational equivalence of speed-indepe...
	[9] W. Belluomini and C. J. Myers. Verification of timed systems using POSETS. In Proc. of Intern...
	[10] W. Belluomini and C. J. Myers. Efficient timing analysis algorithms for timed state space ex...
	[11] B. Berthomieu and M. Diaz. Modeling and verification of time dependent systems using time Pe...
	[12] K. van Berkel, F. Huberts, and Ad Peeters. Stretching quasi delay insensitivity by means of ...
	[13] M. Bozga, O. Maler, A. Pnueli, and S. Yovine. Some progress in the symbolic verification of ...
	[14] R. K. Brayton et al. VIS: A System for verification and synthesis. In Proc. of CAV-96, pp. 4...
	[15] J. A. Brzozowski, C.-J. H. Seger. Asynchronous Circuits. Springer-Verlag, New York, 1995.
	[16] J. A. Brzozowski and H. Zhang. Delay-insensitivity and semi-modularity. Technical Report CS-...
	[17] J. A. Brzozowski and J. C. Ebergen. On the delay-sensitivity of gate networks. IEEE Transact...
	[18] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L. Dill. Symbolic model checki...
	[19] J. R. Burch. Modeling timing assumptions in trace theory. In ICCD, 1989.
	[20] J. R. Burch, D. Dill, E. Wolf, and G. De Micheli. Modeling hierarchical combinational circui...
	[21] S. M. Burns. General conditions for the decomposition of state holding elements. In Proc. of...
	[22] T.-A. Chu. Synthesis of self-timed control circuits from graphs: An example. In Proc. of IEE...
	[23] J. N. Cook. Production rule verification for quasi-delay-insensitive circuits. Master’s thes...
	[24] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT Press, ...
	[25] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, E. Pastor, A. Yakovlev. Decomposit...
	[26] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, A. Taubin, and A. Yakovlev. Lazy t...
	[27] D. L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-Independent Circui...
	[28] D. L. Dill. Timing assumptions and verification of finite-state concurrent systems. In Proc....
	[29] Jo C. Ebergen and Ad M.G. Peeters. Modulo-N Counters: Design and Analysis of Delay-Insensiti...
	[30] Jo C. Ebergen. Translating Programs into Delay-Insensitive Circuits. Dissertation, Eindhoven...
	[31] J. C. Ebergen and S. Gingras. A verifier for network decompositions of command-based specifi...
	[32] P. Godefroid. Partial-Order Methods for Verification of Concurrent Systems. Springer, 1996.
	[33] P. Godefroid and P. Wolper. A partial approach to model checking. Information and Computatio...
	[34] G. Gopalakrishnan. A correctness criterion for asynchronous circuit validation and optimizat...
	[35] R. H. Hardin, Z. Har’El, and R. P. Kurshan. COSPAN. In Proc. of CAV-96, Vol. 1102 of LNCS, p...
	[36] S. Hauck. Asynchronous Design Methodologies: An Overview. In Proceedings of the IEEE. Vol. 8...
	[37] G. H. Holzmann and D. Peled. The state of SPIN. In Proc. of CAV-96, Vol. 1102 of LNCS, pp. 3...
	[38] H. Hulgaard. Timing Analysis and Verification of Timed Asynchronous Circuits. Ph.D. thesis, ...
	[39] M. B. Josephs, S. M. Nowick, and C. H. (kees) Van Berkel. Modeling and Design of Asynchronou...
	[40] M. B. Josephs. Receptive Process Theory. In Acta Informatica. Vol. 29, pp. 17- 31, 1992.
	[41] M. B. Josephs and J. T. Udding. An Overview of DI Algebra. Proceedings of 26th Annu. Hawaii ...
	[42] H. Kagotani and T. Nanya. A synthesis method of quasi-delay-insensitive processors based on ...
	[43] R. M. Keller. A fundamental theorem of asynchronous parallel computation. Lecture Notes in C...
	[44] H. Kim and P. A. Beerel. Relative Timing Based Verification of Timed Circuits and Systems. I...
	[45] M. Kishinevsky, A. Kondratyev, A. Taubin, and V. Varshavsky. Analysis and identification of ...
	[46] A. Kondratyev, J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Technology mappin...
	[47] R. P. Kurshan. Computer-Aided Verification of Coordinating Processes - The Automata-Theoreti...
	[48] L. Lavagno. Synthesis and Testing of Bounded Wire Delay Asynchronous Circuits from Signal Tr...
	[49] S. Malik. Analysis of cyclic combinational circuits. In Proc. of ICCAD-93, pp. 618-625. IEEE...
	[50] R. Manohar and A.J. Martin. Quasi-delay-insensitive circuits are Turing-complete. Invited pa...
	[51] A. J. Martin. Compiling communicating processes into delay-insensitive VLSI circuits. Distri...
	[52] A. Mazurkiewitcz. Basic notions of trace theory. In Workshop on Linear Time, Branching Time,...
	[53] K. L. McMillan. A technique of state space search based on unfolding. In Formal Methods in S...
	[54] K. L. McMillan. Symbolic Model Checking. New York, Kluwer Academic Publishers, 1993.
	[55] R. E. Miller. Switching Theory. Vol. II: Sequential Circuits and Machines. John Wiley and So...
	[56] C. E. Molnar, T. P. Fang, and F. U. Rosenberger. Synthesis of Delay-Insensitive Modules. Pro...
	[57] D. E. Muller and W. S. Bartky. A Theory of Asynchronous Circuits. In The annals of the Compu...
	[58] T. Murata. Petri nets: Properties, analysis and applications. In Proceedings of the IEEE, Vo...
	[59] C. J. Myers. Computer-Aided Synthesis and Verification of Gate-Level Timed Circuits. Ph.D. T...
	[60] R. Negulescu and A. Peeters. Verification of Speed-Dependences in Single-Rail Handshake Circ...
	[61] E. Pastor, J. Cortadella M. A. Pena. Structural Methods to Improve the Symbolic Analysis of ...
	[62] D. Peled. Ten Years of Partial Order Reduction. In Proc. of 10th International Conference on...
	[63] D. Peled. Combining partial order reductions with on-the-fly model-checking. In Formal Metho...
	[64] O. Roig, J. Cortadella, and E. Pastor. Verification of asynchronous circuits by BDD-based mo...
	[65] O. Roig. Formal Verification and Testing of Asynchronous Circuits. Ph.D. Thesis, Univ. of Po...
	[66] T. G. Rokicki. Representing and Modeling Circuits. Ph.D. Thesis, Stanford University, 1993.
	[67] T. G. Rokicki and C. J. Myers. Automatic verification of timed circuits. In Proc. of Interna...
	[68] L. Ya. Rosenblum and A. V. Yakovlev. Signal graphs: From self-timed to timed ones. In Intern...
	[69] S. Rotem, K. Stevens, R. Ginosar, P. Beerel, C. Myers, K. Yun, R. Kol, C. Dike, M. Roncken, ...
	[70] A. Semenov and A. Yakovlev. Verification of asynchronous circuits using time Petri-net unfol...
	[71] T. R. Shiple, G, Berry, and H. Touati. Constructive analysis of cyclic circuits. In Proc. of...
	[72] T. R. Shiple, V. Singhal, R.K. Brayton, and A.L. Sangiovnni-Vincentelli. Analysis of combina...
	[73] K. Stevens, S. Rotem, M. Burns, J. Cortadella, R. Ginosar, M. Kishinevsky, and M. Roncken. C...
	[74] K. Stevens, R. Ginosar, S. Rotem. Relative Timing. In Proc. of the Fifth International Sympo...
	[75] S. Tasiran and R. K. Brayton. STARI: A case study in compositional and hierarchical timing v...
	[76] J. T. Udding. A Formal Model for Defining and Classifying Delay-Insensitive Circuits and Sys...
	[77] S. H. Unger. Asynchronous Sequential Switching Circuits. John Wiley and Sons, 1969.
	[78] S. H. Unger. Hazards, Critical Races, and Metastability. In IEEE Transactions on Computers, ...
	[79] V. Vakilotojar and P. A. Beerel. RTL verification of timed asynchronous and heterogeneous sy...
	[80] V. Vakilotojar and P. A. Beerel. RTL verification of timed asynchronous and heterogeneous sy...
	[81] A. Valmari. Stubborn sets for reduced state space generation. In Proc. 2nd Workshop on Compu...
	[82] A. Valmari. On-the-fly verification with stubborn sets. In Proc. of CAV-93, Vol. 697 of LNCS...
	[83] C. H. (Kees) Van Berkel, M. B. Josephs, and S. M. Nowick. Scanning the Technology. In Procee...
	[84] E. Verlind, G. de Jong, and B. Lin. Efficient partial enumeration for timing analysis of asy...
	[85] D. T. Weih and M. R. Greenstreet. Verification of speed-independent data-path circuits. In I...
	[86] H. Wong-Toi and D. L. Dill. Verification of real-time systems by successive over and under a...
	[87] T. Yoneda, A. Shibayama, B. Schlingloff, and E. M. Clarck. Efficient verification of paralle...
	[88] T. Yoneda and T. Yoshikawa. Using partial orders for trace theoretic verification of asynchr...
	[89] K. Y. Yun, P. A. Beerel, V. Vakilotojar, A. Dooply, and J. Arceo. The design and verificatio...
	[90] K. Y. Yun, P. A. Beerel, V. Vakilotojar, A. Dooply, and J. Arceo. The design and verificatio...
	[91] The current version of SPHINX is accessible at http://jungfrau.usc.edu/ SPHINX/sphinx.html.

