Chapter 1

Introduction

1.1 Motivation

With the continuous advancement of process and fabrication technologies, transistor
feature sizes on VLSI circuits shrink and the complexity and degree of integration of
such circuits exponentially increase, as predicted by the Moore’s law. However, with-
out CAD tools that help designers in all different aspects of designing such gigantic

circuits, the utilization of the Moore’s law would not have been possible.

In particular, the advent of sub-micron technologies have confronted VLSI design-
ers with new challenges, some of which might demand whole new design methodolo-
gies. One such challenge in sub-micron design is to circumvent the limitations
introduced by interconnect delay that rapidly becomes the dominant delay factor as
feature sizes shrink and switching delays scale down. These parasitic limitations make
distribution of signals across a chip and dealing with signal skew a serious problem,
restricting the maximum performance achievable by (any) particular design style.

Addressing the ever increasing demand for lower power consumption, especially for
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portable applications, is among other important challenges in the design of highly inte-
grated circuits. These challenges are of particular significance and magnitude in syn-
chronous design styles where circuit activities are coordinated by a globally

distributed periodic signal(s) called “clock”.

Synchronous design styles have been the dominant approach since mid 60’s, due to
their relative ease and robustness. In such styles, the use of clock signals has intro-
duced a level of abstraction in the time domain that hides many details about the tem-
poral relations among circuit signals. This has greatly simplified timing analysis of
such circuits, often reducing it to merely critical path analysis for the design of the
clock signal. This simplification is possible because the only timing concern in a syn-
chronous circuit is that the circuit has to be stable by the end of a clock cycle. As a
result, the performance of a synchronous circuit is also a function of the worst case

delay.

Recent years have witnessed extensive research on asynchronous design tech-
niques and methodologies in an attempt to overcome, among others, the above men-
tioned challenges of sub-micron design. Instead of using a global clock, asynchronous
circuits [77, 15, 39] use local handshaking to coordinate circuit activities and imple-
ment sequencing. Moreover, in an asynchronous design, computation starts as soon as
new data is available, and once it is completed, the results can be immediately commu-
nicated via local handshaking. This more flexible and general method of operation

makes asynchronous circuits highly concurrent systems.
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Asynchronous circuits have the potential of outperforming their synchronous
counterparts due to advantages such as elimination of clock skew problem, lower
power consumption, low noise and low emission, average case instead of worst case
performance, heterogeneous timing, easing of global timing issues, better potential for
technology migration, automatic adaptation to fabrication and environmental varia-
tions, higher modularity, robust mutual exclusion and external input handling [83, 36].
In addition, emerging more aggressive asynchronous design techniques, that fre-
quently use timing information to combat the full handshake overhead in area and
delay by removing redundant handshakes and associated logic [73], are further
improving the performance, power, area, and even testability of asynchronous designs.
As a result, such advanced asynchronous design techniques are being more frequently
used in stand alone designs, in interfacing synchronous circuits in different clock
domains, or in heterogeneous circuits that have both synchronous and asynchronous

components.

On the negative side, the lack of global synchronization and the high degree of
concurrency in asynchronous circuits make their design, analysis, and verification a
more serious challenge, if not an art. Without the level of abstraction that a clock sig-
nal provides in a synchronous circuit, variations in the speeds of components that are
operating concurrently can no longer be ignored. In asynchronous circuit design, a
great deal of attention has to be paid to the dynamic state of the circuit, avoiding “haz-
ards” [77, 78]. Hazards are spurious signal transitions that can interfere with the cor-

rect operation of the circuit and even render its digital model invalid by taking the
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circuit into a “metastable” state where one or more internal variables of the circuit take
on a valuen betweerthe 0 and 1 designated values, possibly fluctuating in that range
for an indefinite amount of time [78]. As shown in [78], a common cause of all types
of hazards is the possibility for a gate to simultaneously receive contradictory signals

on different inputs.

In verifying asynchronous circuits, the proper behavior of the circuit has to be
assured for all possible execution paths, each corresponding to a different set of (vary-
ing) component delays, and along each such path hazard conditions (as mentioned
above) have to be checked for. The nondeterminism resulting from unknown or vary-
ing component delays can lead to large number of execution paths and reachable states
that can be exponential in the number of circuit components. In contrast, synchronous
circuits not only have deterministic execution paths, but also have state space sizes that
areonly (at worst case) exponential in the number of state holding components (e.g.,
latches or flip-flops). Thus, verification of asynchronous circuits inherently suffers
exponentiallymore from the so called “state explosion problem”. As a result, while
symbolic model checkers--with their ability to alleviate the state explosion problem--
have been successfully used in verification of large synchronous circuits, they have

been far less successful in verification of asynchronous circuits of comparable sizes.

With the increased interest in asynchronous circuit design as a solution to over-
come some of the bottlenecks of synchronous design in the sub-micron era, and
because of the high inherent complexity of asynchronous system verification, research

and development on specialized methodologies and CAD tools for the automation of
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asynchronous design verification are attracting much interest. As a contribution to
such efforts, this thesis presents an enhanced methodology and framework for efficient
verification of a fundamental class of asynchronous circuits, speed-independent cir-
cuits, which can easily be extended/adapted to the verification of other types of asyn-
chronous circuits such afelay insensitiveircuits, quasi-delay insensitiveand also

circuits withrelative timing assumptions

1.2 Speed-Independent Circuit Verification

Speed-independent circuits are a class of asynchronous circuits that assume the
unbounded gate delay model for their components along with negligible wire delays;
thus every fork in the circuit is assumed to beisachronic fork causing only negligi-

ble skew. Assuming such a delay model, an speed-independent circuit works properly
for all possible ordering of events associated with all possible (and varying) relative
delays of components. Seemingly restricted, speed-independence is a fundamental
model based on which a broader range of asynchronous designs can be readily mod-
eled, such as delay-insensitive designs [29, 30, 41, 17, 16, 50, 51, 56, 76], quasi-delay
insensitive designs [12, 42, 23, 50], and even circuits with relative timing assumptions
[73, 74, 26, 60]. For example, (quasi-) delay insensitivity of a circuit can be verified by
checking speed-independence of the circuit having additional buffers (delay elements)

inserted on the non-isochronic forks and input ports of the circuit [16].
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The verification problems that are addressed in this thesis are checking hazard-
freedom, andonformancef a circuitimplementatiorto the circuit'sspecificationBy
conformance, a circuit implementation can be safely substituted for its specification
with no danger in generating outputs that are not specified. The problem of checking
conformance easily translates to that of checKeture-freedomof a closedcircuit
that is obtained by composing the circuit implementation withntfirgor of the circuit
specification. Mirroring a circuit specification yields a new circuit component, called
anenvironment moduleyhich together with the circuit implementation create a closed
circuit. Failures are defined as any input signal transition at a circuit component that
can disable an (previously enabled) output transition of that component. Failures
described as such are thus reminiscersarhi-modularityailures in the circuit behav-
ior [55, 57]. This notion of failure also coverhokeswhere a choke is any (output)
signal transition generated by the circuit implementation that is not specified in the cir-
cuit specification. Since chokes cannot thus be handled by the environment module of
the circuit, they can be thought of as totally disabling the environment module, like a

failure. (More formal definitions of these concepts are presented in [27].).

Interleaving semantics, also appearing in the literature as the GSW (Generalized
Single Winner) race model [15], is commonly used to model the inherent concurrency
in asynchronous circuit behavior. In this model of concurrency, when more than one
circuit component is enabled (unstable), only one of them can change at any time. Yet,
in an speed-independent circuit, concurrently enabled components always have equal

chances to be the next component to change.
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Theoretically, the failure-freedom of a closed circuit can be checked by performing
reachability analysis over the state space of the circuit which is modeled using inter-
leaving semantics. In practice, however, the size of the state space that can be expo-
nential in the number of circuit components (signals), may quickly grow out of the
reach of any practicable reachability analysis tool. Even symbolic reachability analysis
techniques that implicitly (rather than explicitly) represent and handle (sets of) states
and state transitions may soon reach their limits, even in verifying moderately sized

circuits.

Research on verification of speed-independent circuits has thus focused on investi-
gation and exploration of abstraction techniques to tackle the state space explosion
problem associated with full reachability analysis. There exists a rich body of research
and literature on various abstraction techniques to reduce the complexity of verifica-
tion--of various properties and systems. Over-under approximations [86], assume
guarantee paradigms [2], partial order techniques [1, 32, 33, 62, 63, 81, 82, 35, 37],
homomorphic reductions [35, 47], divide and conquer paradigms and hierarchical
approaches [47] are some of the better known general approaches that can, or have
been, applied to speed-independent circuit verification in one or another way. How-
ever, there exist only a few theoretical frameworks that are specifically designed and
tailored to address the verification of this fundamental class of asynchronous circuits,
and yet fewer have attempted to combine various abstraction techniques for this prob-
lem. An overview of the previous work on verification of speed-independent circuits is

presented next.



1.3 Related Work

The verification of speed-independent circuits has been given significant attention in
the literature. Dill proposed a trace theoretic framework in which he formulated the
notion of trace conformance of speed-independent circuits [27]. Trace conformance is
a safety property of speed-independent circuits checking whether the circuit can gen-
erate outputs that are unexpected by its specification. Ebergen and Gingras introduced
the notion of completeness with respect to a specification which is stronger than trace
conformance in that it requires the circuit to be able to exhibit all the behaviors defined
by the specification [31]. Gopalakrishna al. proposed a similar notion of strong

conformance [34].

It is important to note that both Dill's work [27] and Ebergen and Gingras’s work
[31] supporthierarchical verification of speed-independent circuits. Specifically, if a
block of a circuit has been successfully verified against a specification, the block can
be modeled by its specification rather than by its implementation when verifying the
whole circuit. This feature is very useful since specifications can typically have more
compact representations in a computer than the behavior of their corresponding imple-
mentations. Such hierarchical approaches, however, are not effective when a circuit is

originally flat; i.e.; its circuit-blocks do not have specifications.

Numerous techniques have been proposed to speed up the verification process of a
flat circuit. McMillan proposed a partial order approach based on a technique called

Petri-net unfoldingd53]. While very successful on some scalable examples, the worst-



9
case complexity is in fact no smaller than that of standard reachability analysis algo-
rithms. Yoneda and Yoshikawa [88] proposed an extended version of a different type
of partial order approach in which only a subset of interleavings of signals are needed
to be explored [1, 32, 33, 62, 63, 81, 82, 35, 37]. While effective for some circuits, the
run-time for other circuits was not impressive because of the high computational over-
head associated with determining which interleavings to explore. Betr@l. pro-
posed BDD-based techniques to implicitly analyze the circuit’s state space [18]. While
successful on some examples, the techniques do not improve the worst-case complex-
ity of the algorithm. Lastly, Roiget al. introduced a modified symbolic breadth-first
search algorithm which resulted in significant run-time improvements for some cir-

cuits, but again, the worst-case complexity of their algorithm stays the same [64].

To reduce the verification complexity, Beeetlal. proposed a two-phase approach

in which first functional correctness (i.eomplex-gate equivalengef the circuit was
verified and then behavioral properties (ileazard-freedonwere checked [7, 8]. The

key to their technique is that the behavior of some of the circuit signals could be safely
approximated, exponentially reducing the time and space complexity of the verifica-
tion problem for many examples. Later, Roig et. al proposed a hierarchical approach
which also had the advantage of approximating the behavior of some of the circuit sig-
nals [65]. Since our proposed technique is most directly related to these latter two

works, we describe them in more detail.

The first step in both approaches by Be@tedl. and Roiget al.is to create a com-

plex-gate circuit which effectively induces hierarchy by hiding the signals internal to
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the complex-gates. The state space of the remaining external signals is then analyzed
using standard reachability analysis techniques. In Betrals technique, an analy-
sis of this state space is used to deduce hazard-freedom of the internal hidden signals.
In Roig et al's technique, projections of this state space are used as the environment of
the complex-gates to verify the hidden signals. The key disadvantage of both tech-
niques, however, is that the set of external signals needs to include all memory element
outputs (i.e., memory elements cannot be hidden). Since most asynchronous circuits
are dominated by memory elements, the number of external signals can still be large
and their state space can be too large to analyze. This research started as an attempt to

remove the above mentioned limitation on the set of external signals.

1.4 Thesis Contributions

Existing specialized frameworks have been less than successful in either fully charac-
terizing and/or utilizing some of the unique properties of speed-independence. As an
example, the specialized verification frameworks of [8, 64] use the behavior of an
abstract circuit--obtained by collapsing the original circuit into a complex-gate circuit-
-as an abstraction of the circuit behavior which is then used to verify or deduce the
failure freedom of each complex-gate. However, since they use a functional (or struc-
tural circuit) abstraction to find a behavioral abstraction--rather than a behavioral
abstraction that is based on speed-independence properties--their approach, while the

most coherent, has fundamental shortcomings that have been addressed by this thesis.
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We have proposed a theoretical framework for verification of speed-independent
circuits that incorporates a combination of different abstraction and reduction tech-
niques to achieve efficiency. This framework is a generalization of that of [65]. We
introduce the notion of aafe abstractiorof the behavior of a set adxternalcircuit
variables (signals) as a behavior that is never an over-approximation of the actual
behavior of external variables, and that is guaranteed to exactly resemble that behavior
if the circuit is failure-free. We define the notion pértitioning the circuit intocircuit
blocksusing the set of external signals, the notion &fade specificatiofior a circuit
block that is derived from a safe abstraction, the notion aénronment modulef a
circuit block that is derived from a safe specification, and finally the notionsafla
circuit as the composition of a circuit block with its environment module. We then
prove the following important theorem about the relationship between failure-freedom
of a circuit and failure-freedom of its sub-circuits that are derived from a safe abstrac-
tion: a circuit is failure-free iff all of its sub-circuits are failure-fre®y this theorem
(which is also the basis of the hierarchical verification framework of [65]), given a safe
abstraction, the problem of verifying a circuit reduces to the problem of verifying its
sub-circuits, with the verification results always being exact. Since the sub-circuits are
smaller that the original circuit, and the complexity of verification is exponential in
circuit size, thisdivide and conqueapproach which can be recursively applied in a
hierarchical fashion can significantly speed up the verification procedure. However,
the success of this approach would heavily depend on the existence of efficient tech-

niques for finding safe abstractions.
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For efficient derivation of safe abstractions, we have proposed a novel partial order
reduction approach. This approach, which substitutes the functional abstraction phase
of [65], partially explores the state space of the circuit (avoiding the state space explo-
sion problem) and constructs a sub-automaton of its behavior automaton. If the con-
structed sub-automaton Bsojectableonto the set of external variables, the behavior
of its projectionis shown to be a safe abstraction. We have proposed procedures that
(concurrently) perform the partial order analysis, projectability check, and projection

of the partial order sub-automaton onto the automaton of a safe abstraction.

We have devised our partial order technique based on some important properties of
speed-independent circuits. Intuitively, in an speed-independent circuit, no output sig-
nal transition of a circuit component is ever disabled byiadependentinput signal
transition. Here, two signals are called independent if they cannot disable each other,
and a unique state is reached for different orderings of their transitions. Thus, in a
speed-independent circuit, no output transitions are lost if the independent inputs are
allowed tosettle(stabilize). Based on this observation, assuming all dependent signals
of a circuit are included in the set of external signals, our partial order technique
always settles all independent internal variables of the circuit by any arbitrary order
before exploring all orderings of transitions of external variables. The explored (exter-
nal) behavior is proven to be exact if the circuit is speed-independent, and otherwise it
might be an under-approximation. By this, our framework for hierarchical verification

of speed-independence is alsoassume-guarantggaradigm; assuming speed-inde-
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pendence, the partial order has to explore the exact behavior of the external variables;

this is guaranteed when the sub-circuits are all found to be failure-free.

The proposed approach for induced hierarchical verification of speed-independent
circuits has been implemented in a CAD tool called SPHINX. SPHINX utilizes sym-
bolic techniques using binary decision diagrams (BDDs) for efficient representation of
states, state transitions, and the results of reachability analysis. It also uses an object
oriented paradigm for representation and treatment of a circuit and its sub-circuits at
different levels of hierarchy. SPHINX has been especially very successful in verifying
speed-independent circuits that are particularly dominated by memory elements, e.g.,
FIFO controller circuits. This is due to its unique ability iding memory element
outputs, a feature which was not supported by preceding frameworks that used func-

tional/structural abstractions (e.g., complex-gate verification [65]).

This thesis is a presentation of my proposed theoretical framework for induced
hierarchical verification of speed-independent circuits, its relationship to previous
work, SPHINX--the developed CAD tool, and some experimental results. It also pro-
poses some directions for future research, such as extending the current framework to

the domain of circuits with relative timing assumptions.

1.5 Thesis Organization

This thesis is organized as follows. Chapter 2 introduces the models that we use to rep-

resent circuits and (their) behaviors. This includes our finite-state-automata based
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model of a circuit as a collection of circuit modules, the notions of behavior and
behavior projections together with behavior automata, sub-automata, and sub-autom-

ata projections, and finally the notion of a safe abstraction.

Our theoretical framework for induced hierarchical verification of speed-indepen-
dent circuits is introduced in Chapter 3. The notions of partitioning a circuit into a set
of circuit blocks using a set of external variables, a safe specification for a circuit block
driven from a safe abstraction, an environment module of a circuit block driven from a
safe specification, and finally the notion of a sub-circuit as the composition of a circuit
block and its environment module are introduced in this chapter, all in relation to the
notion ofinducinghierarchy in a flat circuit. The consequential relationship between
the failure-freedom of a circuit and that of its sub-circuits, which is the foundation of
our hierarchical verification framework, is presented and proven at the end of this

chapter.

In Chapter 4, we discuss some of the issues related to our hierarchical verification
framework. The chapter includes a comparison of the approach with that of complex-
gate verification in terms of their selection of external variables, the issue of selecting
sets of external variables that can successfully induce hierarchy in verification of a cir-
cuit, and finally the concept of sequential hierarchical verification as a way of improv-

ing the performance of hierarchical verification.

Chapter 5 introduces our efficient technique for finding safe abstractions. We prove
that our proposed partial order technique explores a partial behavior of the circuit that

under certain conditions (projectability of its automaton) can be used to derive a safe
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abstraction. We present an algorithm that concurrently performs the partial order anal-
ysis, checks the projectability of its automaton, and--if it is projectable--constructs a

safe abstraction.

Chapter 6 presents a brief comparison of our verification approach with a number
of other general reduction techniques and verification methodologies and tools. In par-
ticular, a more thorough comparison of our framework and that of complex-gate verifi-

cation is presented in this chapter.

Chapter 7 presents a short overview of the status of our CAD tool, SPHINX, and

our experimental results.

Finally Chapter 8 proposes some directions for related future research. It presents
some ideas on how to extend the current framework to the domain of asynchronous
circuits with relative timing assumptions. The chapter is closed by an open conjecture

on the issue of using multiple safe abstractions for hierarchical verification.
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Chapter 2

Models of Circuits and Behaviors

In this chapter we introduce the models that we use to represent circuits and (their)
behaviors. This includes our finite-state-automata based modealiwiugt as a collec-

tion of circuit modulesthe notions obehaviorandbehavior projectionsogether with
behavior automatarsub-automatonandsub-automaton projection3he notion of a

safe abstractioras a key component of our hierarchical verification framework is

introduced at the end of this chapter.

2.1 Circuit Modules

In this section, we introduce our model for asynchronous components which we call a
“circuit module”. Circuit modules are the building blocks of asynchronous circuits and
systems. The generic model of a component presented in this section is general
enough to model different types of gates (e.g., combinational or sequential, determin-
istic or nondeterministic), and different types of specifications (e.g., Petri-nets, STGs,

etc.).
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Definition 2.1 [Circuit module] A circuit moduleis a tupleM! = X, Zi, Yi, FAIO,

where

o Xi = {x,...,x;} is the set of binargnodule input variables
«Z' = {7, ...,z;} is the set of binargodule output variables
«Y' = {yi,...,y.} is the set of binargnodule internal state variables;

« FA' = (AL, VI, QAL TR, p!, g)Tis a nondeterministic finite state automaton

called themodule automatgrwhere

« Al = Xi 0 Zi is theinput alphabebf the automaton;
e Vi = Xi0ZiOY! isthe set omodule variablesas well aautomaton vari-
ables;

« Q' is thestate sebf the automaton;

« Al Q' - L(V) is thestate labeling functiolf the automaton. Here, (V1)

is the set of all surjective functiohs Vi - {0, 1} ;

« TROQ x (A O&g)x Q' is the state transition relatiorof the automaton.
Here, e is an additional symbol which identifies empty input transitions of

the automaton;

cu:Qix (A O¢g) » {F, S} isthetransition labeling functiorof the autom-

aton;
+ g, 0 Q' is the initial state of the automataen.

The components of a circuit modui' are further explained below.
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X', Y, andZ' are pair-wise disjointsetg! = XIOZ O Y! isthe setafdule

variablesas indicated aboveX! 1 Z! , the setrmabdule I/O variablesis identical to
the input alphabeAl oFA' . Asymba O X a(dZ ) of the alphab®  corre-

sponds to transitions on the associated input (output) of the circuit module.

We shall assume that an encoding scheme (by the internal state varfdbles ) is
given for the internal states of the circuit module. Note that here, “internal state of the
module” refers to what is requirdaeyondthe 1/O state of the module to fully capture

the module’s state.

Al Q' L(V!) is an injective function assigning to each state of the automaton a
unique function which in turn assigns binary values to ewery V' . As a result, each
stateq 0 Q' is an interpretation of the module variablés  ; i.e, it assumes for every
variablev 0 Vi a value in its binary randed, 1} . Thus, states of the automaton cor-
respond to total states (input/output/internal state) of the circuit module.

TR OQ! x (A Og)xQ is associated withd' : Qi x (Aid g) - 22 | thetate
transition functionof the automatoh In general, any individual I/O signal transition
of a circuit module is accompanied by some internal state change of the module; that
is, someY 0 Y may change simultaneously and instantaneously together with an /0O
signal (e.g.ad A ) transition. On the other hand, the circuit module can have internal

state changes even in the absence of any I/O signal transitions.

1. Each element of the s2f  is one of @I subsets of the finfi@, set
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Let ad A 0 £ be any symbol corresponding to a transition on the associated I/O
signal (or an empty I/O transition in the caseaof= € ), apd| O Q! be any pair of

automaton states. Th€n, a, ) O TR iff all of the following hold:

« Ai(g)(a) # Ai(q)(a), and for all other I/O variabldsOd A bza
A(a)(b) = Al(a)(b);

« there existsY 0 Y'  such that for al 0 Y Ai(q)(v) ZAi(q)(v) , and for all
wO Y =Y, Al(a)(w) = N(q)(w);

« the total state of the circuit module can change according f0d'(q, a) and
through a transition of signa . In other words, if the circuit module is at sjate
then a transition of signad  can take the circuit module to state by causing a

simultaneous change in all internal state variablgsy O Y! of the module.

In the presence of the above conditions and i Z , then we say that the output sig-

nal a isenabledat q. Any internal state variableJ Y is also said to be enablef at

Let g0 Q' be any state of the automaton. Th@pe, q) O TR is always a state
transition of the automaton. In other words, every automaton state has a self-loop for
€. Such self loops represent the behavior of the module whendtdsi.e., no event

occurs at the modude

An important property of any circuit is it®ceptivenessrhis property is related to

the inability of a circuit to control the arrival of transitions on its inputs, and the fact

2. This notion of idle self loops is later used in composing modules’ automata into a circuit automaton.
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that unwanted input transitions are always possible [27, 40]. As such, any proper

model for a circuit has to account for the receptiveness of all circuit components.

In our model, the receptiveness of any circuit module with respect to input signal
transitions is modeled as follows: for any stajél Q and iyt signalad Xi |
there always exists a (some) state Q! and a corresponding state transition
(0,8 d) OTR. We say thatFA! iscompleteover X! . In contrast, for any state
qO0 Q and anyoutputsignalad Z' ,q 0 Q' and(qg, a d) O TR exist iff output sig-
nal a isenabledat q, but usually at each total state of the circuit module only a subset

of the module’s outputs are enabled to change.

Note that this model does not allow (and/or handle) simultaneous I/O signal
changes; instead, all possible interleavings of simultaneously enabled 1/O signal tran-
sitions are assumed to be included in the automaton of the circuit module. This con-
vention is in accordance with interleaving semantics for circuit behavior, which we
have adopted for our analysis of speed-independence. Interleaving semantics, also
appearing in the literature as the GSW (Generalized Single Winner) race model [15],
is commonly used to model the inherent concurrency of asynchronous circuit behav-
ior. In this model of concurrency, when more than one circuit component is enabled
(unstable), only one of them can change at any time; however, the order in which the
components change cannot be predicted. For the particular case of speed-independent
circuits, concurrently unstable components always have equal chance in being the next

component to change.
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The state transition labeling functiqn : Q' x (Ai0 €) - {F, S}  labels the edges
of the underlying transition diagram of the automaton (induced Tdy ). Let
g, d0Q", ald A, and(q, a d) TR . Then for any output signald Z' 0 €
we always haveii(g, a) = S ;i.e., any state transition through an output signal transi-
tion is always considered auccesstransition. For any input signabh O X
ui(g, @) = F iff the transition ofa atq is anillegal input signal transition. If
ui(q, a) = F then any automaton state transitipm a, ') O TR is callefdibure
transition. An illegal input transition is one which is either not expected by the circuit
module (e.g., amput chokeo an specification module), and/or one which is known to
cause a circuit malfunction (e.g., a hazardous output). In particular, we shall call any
input signal transition which disables a previously enabled output signal (or an internal
state variabley 0 Y' ), and thus violatesmi-modularitf55, 57], an illegal input tran-
sition. More precisely, assume thgt 0 Q' xOX (g, x d)OTR , and there
exists an output sign@d Z  (or an internal state varigble Y’ ) which is enabled at
stateq but not so in statg ; then(g, X) = F, marking all possible state transitions
from g by the symbolx as failure transitions. In our model, illegal input transitions
(e.g., chokes) do not change the internal state of a circuit module; that is, if
Hi(g, x) = F, and (g, x, d) O TR , thenAi(g) and\i(q) differ only at the value
they assign to the variabbe . This convention is only to simplify the choice of a state

that is entered by an illegal input transition.

A circuit module isnon-deterministiaf the firing of any output signal can ever dis-

able another output (e.g., arbitration in an arbiter module). In such a case, the decision
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of which output to fire is called ahoice A module which is not non-deterministic is

said to badeterministic.

Note that state transitions caused by output signal changes are excluded from the
set of failure transitions. This makes alltput choicesegal; that is, any output signal
change disabling another output signal change represents a non-failure state transition

in the module automaton.

g, 0 Q' corresponds to the initial total state of the circuit module (within a cir-

cuit).

2.2 Examples of Circuit Modules

The definition of a circuit module presented in the previous section is very general. In
this section we show how elementary gates (combinational and sequential, determinis-
tic and nondeterministic), and also higher level specifications (e.g., Petri-nets, STGS)
can be modelled as circuit modules. It is to be noted that there may be many circuit
module representations for a single gate/specification type. Such representations may
differ in terms of the internal state encoding of the module, or the behavior manifested
beyond the occurrence of a failure; however, they should all agree on the failure-free
portion of their associated automata languages (the set of all I/O sequences corre-
sponding to the failure-free runs of the associated automata), precisely capturing the 1/

O behavior of the physical module prior to failure occurrences.
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2.2.1 Combinational Gates

A combinational gate is a deterministic circuit modie = X/, Zi, Yi, FAID , such
that:
eYi = [O,andVi = Al ;
« FA = A, A' Q1 Al TR, i, qh0is adeterministicfinite state automaton such
that:

« TROQ x (A O¢g)xQ' is constructed based on the gate’s functionality.

Let Fij ,1<j<p', be the boolean function describing the th output of the

gate based on gate inputs; i.ezij = Fij(xil,...,xﬁni) . Then for any
qq0Q, (g, zij,q') OTR iff Fij(xil, ""Ximi)‘q. = Zij|q. and zij|q|¢zij|q.
Here, .|q. denotes that the function arguments are evaluated (o) ; thus
the latter condition translates to

FLA@) 0D, - N(@) (X)) = N(@)(Z) # N (a)(Z).

Example 2.1Figure 2.1.a depicts a NOR gate. The module description of the NOR
gate isM = [{a, b}, {c}, d, FAO where the state diagram BA , the module
automaton, is depicted in Figure 2.1.b. The initial state is entered by an arrow; i.e.,

A(qp) = 000. =
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(b)

Fig. 2.1Module description of a NOR gate.
(a) ANOR gate. (b) The module automaton of the NOR gate.

2.2.2 Sequential Gates

For most elementary sequential gates, the I/O state of the gate completely captures the
state of the gate, without requiring any extra internal state variables. Examples of such
gates are Flip-Flops, C-elements, and Mutual-Exclusion elements (ME). A sequential
gate with no internal state variables is modeled as a circuit module
Mi = [XIi, Z!, Y, FAIOsuch that:

eYi = [O,andVi = Al ;

« FA = [AL AL Q, A, TR, pl, ghOis adeterministicfinite state automaton such

that:
« TROQ x (A Od¢g)xQ' is constructed based on the gate’s functionality.
Let Fij , 1< j<p', be the boolean function describing the next value of the

j th output of the gate (denoted tzS}J ) based on the present values of gate
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C failure transition RN 2

(b) non-failure transition 7~

Fig. 2.2Module description of a C-element gate.
(a) A C-element gate. (b) The module automaton of the C-element gate.

inputs and outputs; i.e.,z'ij = Fij(xil, Xz ...,zipi) . Then for any

a4 0Q, (g z'J-,q')DTRi iff F'j(xil,...,xli,ni,zil,...,z:Oi)‘q = le|q. and

i i
7| #7] .

q q

Example 2.2Figure 2.2.a depicts a C-element gate. The module description of the C-
element gate isM = [{a, b}, {c}, 0, FAO where the state diagramF& , the
module automaton, is depicted in Figure 2.2.b. The initial state is entered by an arrow;

i.e.,A(dy) = 000.=

Example 2.3Figure 2.3.a depicts a Mutual-Exclusion (ME) element as described in
[27]. The module description of the ME M = [{r1,r2},{al, a2}, d, FAO where
the state diagram dfA , the module automaton, is depicted in Figure 2.3.b. The initial
state is entered by an arrow; i.&(q,) = 0000 . Only non-failure state transitions are
shown in Figure 2.3.b. It is to be noted that in an ME element if any input signal has a

second transition before the outputs have changed, that would cause a failure state
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Fig. 2.3Module description of a Mutual-Exclusion element.
(a) A Mutual-Exclusion element. (b) The module automaton of the ME element.

transition. Thus in Figure 2.3.b the reverse of any state transitions that is associated

with an input signal change is a failure state transition (not shown for clarity).

Note that although the above Mutual-Exclusion element is a nondeterministic gate,
its module automaton is deterministic. As a matter of fact, the module automaton of
any circuit module that does not have internal state variables, is always deterministic.
On the other hand, the existence of internal state variables can introduce nondetermin-
ism in the module automaton iff there can be (at least) two states, with different inter-

nal states, reachable from a single state by the same 1/O signal transition.

Example 2.4 Figure 2.4.a depicts a fair arbiter element as described in [48]. The
module receives two independent requests to access a single resource, withrdignals
andr2 , and grants access with signals ald | respectively (the latter two signals

are mutually exclusive). The module description of the arbiter is
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[r1,r2,a1,a2,p]

(R

2 —»

(b)

Fig. 2.4Module description of a fair arbiter element.
(a) A fair arbiter element. (b) The module automaton of the fair arbiter.

M = [r1,r2},{al, a2}, { p}, FAO where the state diagram dfA , the module
automaton, is depicted in Figure 2.4.b. The initial state is entered by an arrow; i.e.,
A(gy) = 00000. Only non-failure state transitions are shown in Figure 2.4.b. It is to
be noted that in an arbiter element if any input signal has a second transition before the
outputs have changed, that would cause a failure state transition. Thus in Figure 2.4.b
the reverse of any state transitions that is associated with an input signal change is a

failure state transition (not shown for clarity).

Note that the above arbiter element is a nondeterministic gate with an internal vari-
able p . However, its module automaton is deterministic. It is called fair because if it
receives a request at one input, $dy , while it has already received a requ&st at it
processes the request bg first, but once it is done with that, it processe& the
request before it can react to a new request fré&dn . Unlike the ME element, the fair

arbiter module is capable of distinguishing the order in which two, possibly concur-
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rent, requests arrive at its inputs by means of the internal varipble, . As a result, from
the initial state, 00000 , the two sequence of signal transitiohs 2 réha 1 lead

to different stated1000 and 1001 , respectively.

2.2.3 Specifications

We believe that any asynchronous specification with interleaving semantics can be
modeled as a circuit module, once some encoding of the internal state of the module is

adopted and the failure conditions are all identified.

Signal Transition Graphs (STGs [22, 68]) that are frequently used for specification
of asynchronous circuit behavior are Petri-nets in which the Petri-net transitions are
interpreted as circuit signal transitions (a complete introduction to Petri-nets can be
found at [58]). The state of a Petri-net is completely captured byésking i.e., the
distribution oftokensin Petri-netplaces That is, the token-holding places together
with the number of tokens in such places completely specify the internal state of a
Petri-net specification. In safePetri-net (a Petri-net whose places have a capacity of
only one token) the Petri-net marking is completely characterized by the token-hold-
ing places. Thus, a straight forward way of encoding the internal state of a safe Petri-
net specifications would be to assign one internal state variable to each place of the
Petri-net. Now, markings of the Petri-net will correspond to binary evaluations of the
state variables; that is, for a given marking, a place holds a token iff the value of its

associated internal state variable is 1. For simplicity, we considersai&5TG spec-
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ifications although unsafe STGs can similarly be modeled using multiple variables to
represent unsafe places. More efficient encoding schemes for Petri-net markings are
proposed in [61].

Thepre-setof a Petri-net placg , indicated byp , is defined as the set of signal
transitions such that the firing of any of such transitions will put a token in that place.
Similarly, thepost-sebf a place indicated by ¢ is the set of signal transitions such
that for any of them to fire, a token has to be removed from that place. As an example,
in Figure 2.6 we have p, = {ua;-,ua,-} andye = {ua+ ua,+} .Amplicit
placep of a Petri-net (or STG) is one which exists between two consecutive signal
transitionst and' of an STG (Petri-net) such tagt = {t} gnd = {t'} . As
an example, plac@, is an implicit place in the Petri-net of Figure 2.6, whjle is an
explicitplace. Implicit places of an STG are usually not drawn, as suggested by Figure

2.5.b which illustrates the same STG as that of Figure 2.6.

Example 2.5The STG specification of a DME ring of length two is illustrated in
Figure 2.5.b. This specification is an example of a safe STG. Thus, as already
mentioned, the internal state of the specification can be easily encoded by defining one
internal state variable per Petri-net pladé.= [{ury, ur,}, {ua;, ua}, { po}, FAO

would then define the circuit module of the specification, where
FA = [Qury, uag, ury, uayt, { pg, ury, uag, ur,, uayt, QA TR |, gy is depicted

in Figure 2.5.c, an&(q,) = 10000 . Any state transition by @amputsignal change

that is missing from Figure 2.5.c corresponds to a failure of a circuit implementation,



30

ur1¢ *ual ur2 * ?uaz

| DME cell—| DME cell
(w/ token)| (w/o toke )‘_‘

e

(@) (b)

V=[pg,urq,uaq,ury,uay]

Fig. 2.5Module description of a DME ring of length two.
(a) The block diagram of a DME ring of length two. (b) The STG specification of the circuit.
(c) The module automaton of the STG specification.

because a circuit implementation of this specification should not generate such output
transitions. On the other hand, input transitions that are missing from the automaton
correspond to transitions that are never applied to a circuit implementation of this
specification; i.e., the specification restricts possible transitions at the inputs of a

circuit implementations
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The set of internal variables of the module automaton of Figure 2.5.c includes a
single variable associated with explicit plapg ; that is, we have defined no state vari-
ables associated with the implicit places of this STG specification. This is because the
I/O state of this STG happens to uniquely determine the marking of its implicit places,
eliminating the need to include the implicit places in the representation of the state of

the specification.

Constructing the module automaton from a given Petri-net specification can be a
complicated process requiring full traversal of the Petri-net. However, the module
automaton can be fully expressed by a collection of transition relations: each such
relation would represent the possible (eligible) transitions of an associated output
(input) signal of the specification in terms of some portion of the internal state of the
specification represented by a subset of Petri-net places. Figure 2.6 depicts the Petri-
net specification of Figure 2.5.b with all of its implicit places. The transition relation
of signal uay can then be defined as
TRuaf {(01100Quay, 100100, (10001Qua,, 010001} , where the states of this
transition relation are evaluations of the following ordered set of variables
[uay, Py, Py, P2 P3, Pyl -

Representing the automaton of a specification by a collection of transition relations
as described above would require one internal state variable associated with each
implicit place of the specification. However, such variables can usually be projected

away in later phases of hierarchical verification, as will be discussed later in this thesis.
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Fig. 2.6 Petri-net specification of A DME ring with all implicit places shown.

2.2.4 Environment Modules: Mirror of Specifications

Checking theconformanceof a circuit to its specification is a common verification
problem. Our notion of conformance follows that of [27]; thatsafe substitutionBy

this, acircuit implementatiorconforms to ecircuit specificationff the former can be
safely substituted for the latter in any context; i.e., the circuit implementation would
not generate any output (transition) not specified in the circuit specification. This prob-
lem can be solved by checking the failure-freedom oliosedcircuit composed of the
original (open) circuit and thmirror of the specification [27]. Conformance checking
will be discussed in detail in upcoming sections. In this section, we only define the

notions of mirrored specifications and environment modules.

The mirror of a specification is obtained by simply switching the role of the input

and output signals of the specification and identifying failure transitions accordingly.
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The mirrored specification then comprisesevironment moduléor the original cir-
cuit; one which interacts with the circuit by providing inputs to the circuit and accept-
ing the circuits outputs. The composition of the original (open) circuit with this
derived environment module createglasedcircuit. It has been shown that failure-
freedom of this closed circuit guarantees the conformance of the original circuit to its

specification [27].

Example 2.6 The circuit module for the mirror of the STG specification of Example
25 is defined as M = HQuag,uay},{ury,ur,}k,{py}, FAO , where
FA = [Qury, uag, ury, uayt, { pg, ury, uag, ur,, uayt, Q, A, TR |, gy is depicted

in Figure 2.5.cA(q,) = 10000 . Again, any state transition by an input signal change
that is missing from Figure 2.5.c corresponds to a failure state transition. Such

transitions correspond to unexpected output transitions of a circuit implemeniation.

2.3 Circuit Model

In this section, we introduce our circuit model which we conveniently call a “circuit”.
Circuits are composed of circuit modules. We shall only consittesedor autono-
mouscircuits, with the notion of closed-ness being implicit in our definition of a cir-

cuit.

Definition 2.2 [Circuit] A circuit is a tupleC = M€, AC, V€, GC, FACO , where

« MC = {M21 ..., M}, nC>1,is a set of circuit modules, wheid! is defined
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in Definition 2.1 forl <i <n€ ;

« AC = [] Ziisthe setotircuit signals

1<i<n€

«VC = [] YiOZ isthe set otircuit variables

1<i<n€

« G€ = [N, KCis a connected directed graph, tireuit graph where

« NC = {N1 ...,N™}, is the set oftircuit nodes where circuit nodeN' is

representative of circuit moduM' in the circuit graph;

«KCO [1 Z'«x [1 X! is the set okircuit edgessuch that for any

1<i<nC® 1<j<nC j#i
input signalx, of any circuit moduléi 1<i<nC anfi<l<mi , there
exists exactly one output signz{j of acircuitmodié 1sj<nC jzi :
andl<k< pl, such tha(zlj(, x:) 0O KC . Inother words, (a) each input signal

is connected to (and thudriven by exactly one output signal, and (b) no

input of a module is ever connected to an output of that same module;

e FAC = [AC,VE QF AC TR, uC, q§0 is a nondeterministic finite state

automaton called tharcuit automatonwhere

« AC is theinput alphabebf the automaton;

» VC is the set ofautomaton variablesvhich coincides with the set of circuit

variables;
» Q€ is thestate sebf the automaton;

« AC: Q€ - L(VO©) is the state labeling functiorof the automaton. Here,

L(VC) is the set of all surjective functiohs VC - {0, 1}

« TRC O QC x (AC O €) x QC is thestate transition relatiorf the automaton;
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e UC:QCx(ACOEe) -~ {F S} is the transition labeling functionof the
automaton;

* gq§ O Q€ is the initial state of the automataen.

From the definition of a circuit graph it follows that, (a) there is no circuit edges
(connections) between output signals of circuit modules, and (b) input signals of any
circuit module are connected to output signals of other circuit modules. The first con-
straint above prohibits wired outputs; the second constraint disallows uncontrolled cir-
cuit module inputs, excluding from the set of circuits any non-autonomous collections
of circuit modules. Note that dangling circuit module outputs that are not connected to

any circuit module inputs are allowable. By this definition, a circuit has ¢tobed

The second constraint on circuit edges, mentioned above, prohibits connections
between inputs and outputs of any given module. This directly follows from the defini-
tion of a circuit module in which the set of input and output signal variables must be
disjoint. One may wonder about real circuits in which there might be connections
between inputs and outputs of a circuit component. As an example, consider a circuit
with a 2-input AND gate component whose output drives one of its inputs. In such a
case, the generic model for 2-input AND circuit modules cannot be used to model this
particular AND gate; instead, a new circuit module, with one less input signal, needs

to be devised to model this particular AND gate.

The sole presence of a circuit edgz;l(, x:) OK between any pair of circuit mod-

ulesMi andMi effectively synchronizes the transitions of signfgal Min  with that
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of signal x: in Mi . Thus any transition of the output sigmél \dfi , Is instanta-
neously seen as a transition on the input sigﬁal Mdf . On the other hand, signal
transitions of a circuit module are, in general, accompanied by instantaneous internal
state changes. Thus, any transitionzén will cause instantaneous changes in the inter-

o . o oh
nal states oM! MI | and any other circuit modiié for Wr(lzfj:l Xm) O K

This direct correspondence between any input sig<r:1al of any mddile of a
(closed) circuit,1 <i <n€ | and the output signd{(I of some other circuit motMie
makes the sei <|]< nCXi (all input signals of all modules of a circuit) an entity which

<i<
carries only redundant information about the circuit. That is why (a) input signals of
the circuit modulesM! 1<i<n€ | appeanlyin the circuit graph description of cir-
cuit C, (b) the set of circuit signal&C  consists of omlytputsignals of component
modules (and not both input and output signals of modules), and (c) as a result, the set

of circuit variablesVC consists of all circuit moduteitputsignals and internal state

variables, but no modulaput signals.

As a collection of circuit modules connected to each other in the manner described
above, the behavior of a circuit is determined by the coordinated behaviors of individ-
ual circuit modules. The coordination of individual module behaviors is itself a result
of synchronized state transitions of the modules’ automata. The circuit automaton
FAC is thus acompositiorof individual module automatgAl, ..., FA™  as described

below.

The first step in composing the individual module autonfats, ..., FA"® into

the compound automatdrAC  vsriable substitutionLet (zlj(, x:) 0K be any circuit
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edge indicating that input signai is driven by output sigztal . Variable substitution
will then replace all occurrences of variab{ip in the model description of mddiile

with the variablezf( . Variable substitution is thus simply a renaming operation.

In the rest of our description of the compound automéafa , it is assumed that

variable substitution is already performed.

AC, the input alphabet oF AC |, coincides with the set of circuit signals. As previ-
ously mentioned, any circuit signall] AC s the output of exactly one circuit module
and the input of zero or mom@hercircuit modules. On the other hand, as a symbol of
the alphabet oF AC |, anp 0 AC  corresponds to transitions on the associated circuit

signal.

AC:QC - L(V©) is an injective function assigning to each state of the automa-
ton FAC a unique function which in turn assigns binary values to eveny\© .As a
result, each statg 0 Q¢ is an interpretation of the circuit variabl€s ; that is, it
assigns to every variabled VC  a value in its binary rag@e1} .4EtQc be
any state oFAC andC(q) be the label of that state. MoreovenViet be any mod-
ule of the circuitC , and\©(q)|V' be theestriction of the functionA(q) to the set
of variables ofM! Vi (note that variable substitution has already replaced each input
variable xJ XI  of M! with some variabley J V¢ , and thug' OVC ; hence,
AC(q)|V' is a well-defined functionAC(q)|V': VI - {Q} ). Then, there always
exists a statg' 0 Q' such thaf(q)|V! = Ai(d') ,agd s calledldel stateof

FAl associated with statg  GTAC
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Considering the state transition relatiomRCOQC x (ACOeg)xQC , let
a0 AC [ & be any symbol corresponding to a transition on the associated circuit sig-
nal (or an empty signal transition in the caseaoft ¢ q)g 0O QC be any pair of
automaton states such th@t, a, ) O TRC , ad be any module of the citcuit
Furthermore, letf, ' 0 Q' be the local statesfoAl  associated with stptgs of
FAC, respectively, and lea|V' be defined as followvsV' = a afl A, and
a|V' = g, otherwise. Finally, let(q, a d)|V' , theestriction of state transition
(g, a d) to V', be defined agq, a d)|V' = (d',a|Vi,q") . Therfg, a d)|VI is
always a state transition FR  (i.(¢',a|Vl, ") OTR ) which is called tbeal

state transitiorof FA! associated with state transition a, )  FAC

The state transition labeling function®: Q¢ x (A€ O ¢€) - {F, S}  labels the
edges of the underlying transition diagram 6fAC (induced BRC ). Let
a0 AC [ & be any symbol corresponding to a transition on the associated circuit sig-
nal (or an empty signal transition in the caseaoft ¢ q)g 0O Q° be any pair of

automaton states such thaf, a, ) O TRC . L4€¥(q,a) = F indicate that all state

transitions bya from statgq are failure state transitions whpffég, a) = S indicate
that none of such state transitions are failure transitions. Titda, a) = F iff there
exists a moduleM! such that at its associated local stitE Q' (where

AC(g)|VI = Ai(g')) we havepi(d', a| V') = F ;thatis, all state transitions from state
g and by symbola are labeled as failure transitions iff there exists a mddule such
that from its local state, the symbal causes failure state transitions. Note that by con-

struction, we always havg®(g,€) = S . We say that a cir€lit  isfadure-freeiff
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there existg 0 Q¢ an& O A® |, suchthpf(qg,a) = F ;otherwise, the circuit is fail-

ure-free.

A circuit is non-deterministicif it has a non-deterministic module which can

exhibit a choice within the circuit.

q$ O QC is the initial state of automatoRAC . Lédl'  be any circuit module.
Then we hava\'(ql) = )\C(q(§)|vi

So far, we have described how states and state transitions of the compound autom-
aton FAC are constrained by states and state transitions of the component automata

FAL ..., FA". An inductive description of the state spaceFokC based on those of

FAL ..., FA"® is given below.

Definiton 2.3  [State space of a circuit automaton] Let
C = MC,AC,VC GC,FACO be a circuitt The state space of

FAC = [AC VC, QC, ¢, TRE, uC, q§Uis inductively defined as follows:

(i) AC(a§), the label of the initial state§ 0 Q¢ oFAC s uniquely selected such

that for allM' ,1<i<n® AC(qS) is an extension &f(q}) W°

(i) Let g O Q€ be a state oFAC . Moreover, let (a) the state labetjof AS€q) , (b)
a0 AC be any symbol of the alphabet (associated with signal  of the circuit); by the
circuit graph constraints, there must exist a unique motiile 1 < <nC , such that
adZ, (c) M OMC be the set of all circuit modules o  such ths# OM
1<j<nC,iff ad XJ; thatis, M is exactly the set of all modules which are driven by

the signala , (d)g 0 Q' be the local state Bf @t ;i&S(q)|V' = Ai(d') . Sim-



40
ilarly, let foranyMI O M ,g/ 0 Q! bethelocalstate ™! gt ,(a) be enabled at
g and(qg, a ) OTR be any of the possible state transition& i by synabol
Similarly, let for anyMi O M ,(qgl, a, }) OTRI be any of the possible state transi-
tionsinFAJ by symbola . Themf isastate BAC (i.g,0QC¢ )afa d) isa
state transition oFAC  (i.e(q, a d) O TRC )iAC(qg) ,the label of |, satisfies the
following constraints: (a) foM' and' 0 Q' described aboX&(q)|V' = Ai(gq")
(b) forall MIOM andq! 0Q! described abovaC(q)|V! = Ai(g)) , and (c) for

all MKOMC-M, 1<k<nC, AC(q)|VK = AK(gK) .=

The base part of the inductive definition above describes the initial staEA6f
Notice that the initial state, and consequerftlc itself, are well-defined iff the cir-
cuit modules arénitial-state-compatibleThat is, let (a)Ja 0 AC be any circuit signal,
(b) M OMC be the set of all circuit modules such thelt DM 1<j<n® | iff
al Al, (c) gd 0 QI be the initial state of circuit modulk!i DM . Thevi(gi)(a)

has a unique value over ati O M

The inductive step of the inductive definition above describes @&w (the set of
states ofFAC )AC (the state labeling function@AC ), ah&C (the state transition
function of FAC ) are inductively definedu® (the transition labeling function of

FAC) is defined based on its description that was given earlier.

The automatorFAC  defined as above describes the behavior of the circuit as an
interleavedbehavior. In other words, no two circuit signals change simultaneously,
although they may concurrently be enabled to change; instead, all possible interleav-

ings of enabled signals are represented Af . Itis also noted that any signal change
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will cause a simultaneous and instantaneous change in the internal state of any circuit
module which has that signal as an I/O. Such module internal state changes are dic-

tated by the automaton of the corresponding module.

Definition 2.4 [Changed variables of a transition] Let C be a circuit,
FAC = [AC,VC QC AC TRC, ub, g§0 be its automaton, anda, a, d) O TRC  be
any state transition oFAC . LeV O VC be the set of all and only those circuit
variables that change by state transitiofq, a d) ; e, for alldVv ,
AC(Q)(v) #AC(q)(v), and for allw O VC -V ,AC(q)(w) = AC(q)(w) . Then we

defineChangedq, a d) = V . Note thatih#¢ ,thealdChangedq, a ) =.

The following recursive procedure ftull reachability analysiof FAC is directly

derived from the inductive definition 6fAC

Procedure 2.1 [Full reachability analysis of a circuit automaton]

Let C = [MC AC,VC GC FACO be a circuitt The state space of
FAC = [AC, VC, QC AC, TRC, uC, g§Ocan be fullyconstructedandexploredas fol-

lows:
(i) The initial stateq§ 0 Q¢ ofFAC isconstructedsuch that for allM' ,1<i<n® ,
AC(g§) is an extension of'(gl) t¥C

(i) Let g O QC be a previoushconstructedstate ofFAC  which has not beexplored
yet. Then by exploringy , we find all possible state transitions flpm |, and all states

reachable fromq through such state transitions. The state exploratign at is per-
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formed as follows: for all stateg’  for which the inductive definitionFoiC would
define(q, a d) as a state transition BAC ¢,0QC afml a d) OTRC  are added

to the constructed state space-#

The inductive construction oFAC is completed when all previously constructed
states of FAC have already been explored; i.e., when the constructed state space

reaches &xed pointm

Failure-freedom of a circuit can be exactly checked during full reachability analy-
sis of the circuit automaton. ASAC s being constructed, newly explored state transi-
tions of FAC are checked for failures. If any failure state transition is ever found, then
the circuit is known to have a failure and there is no need to continue the construction
of FAC. Otherwise, the construction 6fAC is continued to completion, and the cir-

cuit would be declared as failure-free.

Since the size of the state space of a cir€iit can be as b@y(2¥“) , checking
failure freedom of a circuit through full reachability analysis would often suffer from
the state space explosigoroblem; i.e., it can be very costly for large circuits, out of
the capacity of even state-of-the-art computers. This is where techniques which enable
us to check for failure-freedom without fully exploring the state space, and yet provide

exact results become of great importance.
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2.4 More on Circuit Automaton and Behavior

In this section, we present the notion of the behavior of a cit€Cuit  in terms otitie

of its automatorFAC . We also introduce a set of operations on behaviors and autom-
ata which are used in following sections. It is to be noted that we use the kind of
automaton which was introduced in the previous section to model any abstract behav-
ior and not just that of a circuit. Thus in what followBAC will characterize any

behavior, and not necessarily that of a circuit, unless otherwise specified.

2.4.1 Automaton Behavior and Circuit Behavior

In this section, we define the notion oftece, as a sequence of automaton states,
based on which we then defirmitomaton behavioand circuit behavior We also
define the notion of an automatstring, as a sequence of automaton symbols associ-
ated with an automaton trace. Finally, we define two functidgded.) faRd.) ,
over traces and behaviors. FunctiBed(.) keeps only the prefix of a trace (the subset
of a behavior) which is necessary for the purpose of checking failure-freedom. Note
that checking failure-freedom--the most important property of a circuit and the first to
be verified--is completed as soon as any (single) failure is detected. This suggests that
the behavior of a circuit beyond any failure point is of no significance; i.e., only those
traces of a behavior whose prefixes are failure-free are of any interest for the purpose
of verification. FunctionFF (.) returns the (longest) failure-free prefix of a trace, or

the failure-free portion of a behavior.
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Definition 2.5 [Trace] Let FAC = [AC VC QC AC TRE uC g§0 be any
automaton. Arun (or trace) of the automatonFAC is a sequence of states
t = gg0;..-q, such that ()g; 0 Q¢ for allo<i<n , (ii) for any consecutive pair of

states ¢, q in the sequence, there exist OACOe such that

i+1
(9, 3,9, TRC. Len(t) = n is thelengthof such a ruf. An initialized run of
the automatorFAC is a ruh = gyq;...q, Wwhich starts at the initial statéaf ;

thatisq, = q§ .=

Definition 2.6 [Automaton behavior] Let FA® = [AC, V€, QC, AC, TRC, pC, q§0
be any automaton. Thaeutomaton behavigdenotedBC |, is defined to be the set of all
initialized runs of FAC . Such a set jsrefix-closedthat is, if q,q;...q, 0 B, then

0od;...q; O B¢, forO<i<n.m

Definition 2.7 [Failure freedom] Let FAC = [AC, VC, QC AC, TRC, pC, q§0 be
any automaton an®8C be its behavior. We say fRaf BC () iSfaibtre-freeiff
there existg 0 Q¢ anda 0 AC |, such thatC(g, a) = F ; otherwigeA® BC( )is

failure-free.s

Definition 2.8 [Circuit behavior] Let C = M€, A€, VC, G€, FACO be a circuit.
The circuit behavioris then defined to be the automaton behavioF 8f , and is thus

denoted byBC . A circuiC s failure-free i8¢ s failure-free.

3. Note that we define the length of a run as the number of its state transitions, and not the number of its

states.
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Fig. 2.7 A four-state FIFO controller in an abstract environment.

Example 2.7Figure 2.7 depicts a four-stage FIFO controller. Two possible traces of

the circuit behavior are

t; = 00000Q 100000 110000 111Q@mL100Q 011100

t, = 00000Q 100000 110000 111Qa1110Q 011100
Here, a state is an evaluation pfy, a,, a;, a,,a;,a,] . The two traces start with a
common sequence of state transitions which is shown in bold face. Then, they express

two different orderings of transitions of the two signgjs  apnom

Definition 2.9 [Sub-behavior] Let FA® = [AC, V€, QC AC, TRC, uC, g§0 be any
automaton and3¢ be its behavior. We then call any prefix-closed set of initialized

tracesB [0 B¢ aub-behavioof BC . =

At this point, we are ready to define the functiéted.) and its operation on
traces and behaviors. This function removes from a trace the suffix of it past the first

occurrence of a failure.

Definition 2.10 [Reduced trace, prime trace, reduced behavior]

Let FAC = [AC, VC QF, AC, TRE, u, g§0 be any automatorB¢  be its behavior,

and tOBC be any automaton trace withen(t) = n . We then define
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Red(t) = g,0;...0,,, M< N, to be the longest prefix af such that(qg, a;) = S
forall 0<i<m-1, where(qg;, &,q,, ) U TRC . In other wordsRed(t) is the long-
est prefix oft with the property that only the last state transitioRef{(t) is possibly
a failure transition. Trace is called@ime traceiff Red(t) = t. We also define
RedBC) O BC as the sub-behavior &© consisting of all and only the prime initial-

ized traces oB8C . In other words[] Red(B€) iff1 B¢ amRedt) =t =.

In the following, we define the functiokF (.) and its operation on traces and

behaviors. This function returns the longest prefix of a trace which is failure-free.

Definition 2.11 [Failure-free trace and failure-free sub-behavior]

Let FAC = [AC,VE, QC AC, TRC, uC, q§0 be any automatorB¢  be its behavior,
and t0OBC be any automaton trace withhen(t) = n . We then define
FF(t) = gy9;---0y,, M< N, to be the longest prefix af  such that(g;, a) = S
forall0sism-1, (q;, &,0,,,) 0 TRC. In other wordsFF (t) is the longest prefix
of t which is failure-free. Tracé is then calledalure-free traceiff FF(t) = t. We
also defineFF (B€) O BC as the sub-behaviorBf  consisting of all and only the

failure-free traces oBC . In other words,] FF (B€) iffiBC aRd(t) =t = .

Definition 2.12 [String of a trace] Let FA® = [AC, V¢, QC AC, TRC, uC, q§0 be
any automatont = qyd;...q,, be any trace of the automaton,and apa,...a,_; :
3 JACOe and O<isn-1, be the sequence of symbols (signal transitions)

corresponding to trace ; i.e(q;, &, q ) U TRC . Then the sequence of symbols
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obtained froma! by removing aé  symbols is called #teng associated with trace

t, and is denoted bt .

Note that forn = 0 we define! = € . Also, il is a sequenceeof symbols

only, then we defina' = ¢

2.4.2 Projections of Behaviors

In this section, we define a functiofroj(.)(.)  and describe its operation on states,
traces, and behaviors. Note that states are the building blocks of traces and therefore
behaviors. On the other hand, each state is identified by an associated set of variables
and the unique values assigned to them. Bebj(V)(QTB) be any instant of the
application of functionProj(.)(.) to an object of type state, trace, or behavior. The
second argumenQTB |, is a state (Q), a trace (T), or a behavior (B), and the first argu-
ment,V , is a subset of the variables associated with ol§peicB . The function maps
objectQTB to an object of the same type; i.e., it maps states to states, traces to traces,
and behaviors to behaviors. The states of the resultant object are associated with the
variables invV and their values, and while information regarding the variabls in  are
preserved, any information regarding the other variable3 6B are lost in the result-

ant objectProj(V)(QTB) .

The functionProj(.)(.) can similarly be applied to strings. LRtoj(A)(S) be
any instant of the application of functioRAroj(.)(.)  to an object of type string. The

second argumen§ , is a string, and the first argumAnt, , is a subset of the automaton
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alphabetAC . The function maps obje8t to an object of the same type; i.e., it maps a
string to another string, by simply removing any symbol which does not belong to the

setA .

Definition 2.13 [Wy-transition] Let FAC = [AC, V¢, Q¢ ¢, TRC, u€, q§0be any
automatonV 0O V€ ,andg, a, d) OTRC .Then¥ n Changedg,a d) =W ,we

say that(g, a, d) is aV,, -transitiom.

Definition 2.14 [V-compatibility, state projection]

Let FAC = [AC,VC, QC, AC, TRE, uC, qf0 be any automaton, and 0 VC . Let
PGOQCxQC be a relation such that for any pair of stateg q; 0Q%

(a5, q;) O PG iff )\C(qi)|V = )\C(qj)|V; that is, the labels of the two statee, g

agree on the values that they assign to the variabl¥s in . We say that any pair of states
related by relatiorPG ar& -compatible It is easy to see tha®y is an equivalence
relation over the set of state@€ and partitions that set jpffa 1 equivalence
classes, such that each class is associated with a unique function over the set of vari-
ablesV . We represent the equivalence class of any gtateQ® with respe{gt to

with [g;],,. We are now ready to define (i) a new set of sta{s |Q\§| = p§ , (i) a
corresponding state labeling functiorfy : QG - L(V) QG , and (iii) a mapping
Proj(V) : Q¢ - QF, as follows: for any g 0QC ,Proj(V) maps all states
q0[qg], to a unique statey, 0 QG such thalG(agy) = AS(q)|V = )\C(qi)|V

Finally, if Proj(V)(q) = ay, then we say thal,, is thpgojection ofq ontoV. =
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So far, we have defined the functidhroj(V): Q¢ - QG . At this point, we
extend our definition of projection over a set of variabR®j(V)(.) to the domain of

traces (runs) and behaviors.

Definition 2.15 [Trace projection] Let FAC = [AC, V¢, Q¢, A€, TRC, u€, q§U be
any automaton and3C be its behavior. ¥t V€ aAd= V n AC (im.
consists of all and only those variables\éf  which belongdfo ). 1EtBC be a
trace of B¢ . Then therojection oft ontoV, denoted byt, = Proj(V)(t) , willbe a

sequence of states @ , and is inductively defined as follows:

«if t = q§, thent, = Proj(V)(qS) ;
«if t = g§q;...0;0,., = t'g,,, and Proj(V)(t) = t',, then
'y Proj(V) (g 4 1), Proj(V)(q;) # Proj(V)(q;+1)
Vv = D , .
0 t'y, otherwise

In other words, each maximal subsequenc®&of -compatible states in is mapped
to a single state irt,, which is the projection of just any of the states of the subse-

quences

Definition 2.16 [Behavior projection] Let FAC = [AC, VC Q¢ A, TRE, u¢, g§0
be any automaton arlB¢  be its behavior. Then for ¥riy VC ptoction of B¢
ontoV, denoted byProj(V)(BC) , is the set of traces such thafl Proj(V)(BC) iff

there existd 0 B¢ such thay = Proj(V)(t) =.
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Definition 2.17 [Exact abstraction of a behavior over a set of variables]

Let FAC = [AC, VC, QC,AC, TRE, uC, q§Ube any automaton, a8 be its behav-
ior. LetV O VC, andB be any set of traces over the set of variables . We sa@that
is anexact abstraction oB¢ oveY iff B = Proj(V)(BC). (Note that by this defini-

tion, Proj(V)(BC) is itself an exact abstractionBf  ower ).

Definition 2.18 [String projection] Let FAC = [AC, V¢, QC, AC, TRE, u€, q§0 be
any automatony 0 AC ,anal be astringleAC . Thenphgjection ofa! ontoV,
denoted byProj(V)(at) is the string obtained fromh by removing any symbol that

does not belong tv'. =

Example 2.8 Let FAC be an automaton withvC = {a,b,c d ¢ , and let

BC = (00001 10001 10101 00101 00100 00000 01000 01010 00010 POO11

Here, any state ofgJ QC is labeled with an evaluation of the ordered set
[a,b ¢ d ¢, andqg§ = 00001. We have used regular expressions to simplify the
description of the behavior. In addition, we imply that all prefixes of the above regular

expression are also BC

Projecting the behavid8® onto the 3¢ —e = {a, b, ¢ d} would yield:
Proj(VC-e)(BC) = (0000 1000 1010 0010 0000 0100 0101 OPO1 Note that
in this projected behavior, two different transitions are possible from §G0€ ;e

(000Q 1000 and(000Q 0100 . However, this two transitions ocaamly in an alter-

nate fashion in the projected behavior. This situation has occurred sincgetmeanti-
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cally differentstates ofB¢ (i.e.00001 and)0000 ) are projected onto a single state of
Proj(VC-e)(BC), 0000.

Now, consider projectin@© onto the 3¢t —a = {b,c, d &
Proj(V¢-a)(B) = (0001 0101 0100 0000 1000 1010 0010 0p11 This time,

no two different states dB¢  are projected onto a single staferof(VC —a)(BC)

We close this section by two lemmas which describe some useful properties of pro-
jections. The lemmas are trivial implications of the definitionsPaDj(.)(.) , traces

and strings, and thus their proofs are omitted.

Lemma 2.1 [Successive projectionfet FAC = [AC, V€, QC, A€, TRC, uC, g§0be
any automaton, an® O WO V© . Then for any projectable automaton eatity we

haveProj(V)(Proj(W)(e)) = Proj(V)(e) =

Lemma 2.2 [Strings and projections]Let FA® = [AC, V€, QC AC, TRC, uC, q§0

be any automatonB®¢ be its behavior awd] V¢ . t&t B¢ a!,  be the string
associated witht , antl, = Proj(V)(t) . Theatv = Proj(V)(a!) . In other words,
the string associated with the projection of a trace is the same as the projection of the

string associated with m.

2.4.3 Sub-automaton and Projection of an Automaton

In this section, we first define the notion o$ab-automatof an automaton. Then we

define the notion otollapsingan automaton onto a set of automaton variables fol-
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lowed by the notion of amutomaton projectioras anycollapsed automatowhose
behavior is an exact abstraction of the behavior of the original automaton. Finally, we
present a set of sufficient conditions for a collapsed automaton to be an automaton pro-

jection.

Definition 2.19 [Sub-automaton] Let FAC = [AC, VC€, QC, AC, TRC, pC, q§0 be
any automaton. We then define sab-automatonof FAC to be any automaton
FAC = [AC, vC QC AC TRS, i€, q$O such that (1)Q° 0 QS q$ 0 QS , and for
all g0 O, AS(q) = AS(q), (@) TREOTRE, TRE O QC x (A€ £) x QF , and for
all g, ¢ 0OC andal ACO ¢, if (g, & d) D TR thenfiS(g, a) = S, and (3) the

underlying state transition graph BAC  is a connected subgrapAof m

Let C = [MC, AC, VC, GC, FACO be a circuit. The automatdRAC | as we have
defined, describes the whole state space of the ciCuit . A sub-autorra®n , in
contrast, describes the state space of the circuit only partially. A sub-autoiRAfon
can thus be constructed by partially exploring the state space of the circuit, instead of
full exploration. The inductive construction ¢fAC  of a circut  was previously
described. In constructing a sub-automatoifr 8 , it suffices to explore only a subset
of state transitions from any state which is under exploration, and repeat this procedure
from any reached state which is not previously explored, until no such state (reached

and unexplored) is left.

Note that while automatofAC  may have failure transitions, we define any sub-

automatonFAC  to be failure-free. A more natural choice for the transition labeling
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function of FAC would seem to be one which carries the labels of the transitions from
FAC to FAC: ie., one such that for allg, g 0Q° andOACOe , if
(9,8 d) O TRC then HC(q, a) = uc(q, a) . However, as will become clear in the
coming sections, the choice of the transition labeling function is not critical or relevant

to our analysis, and in fact our simplistic choice is indeed sufficient for the correctness

of our framework.

Definition 2.20 [Collapsed automaton]

Let FAC = [AC, VC QC AC TRE uC, q§0 be any automatonV OVC , and
A =Vn AC. The collapsed automaton ofFAC ontoV, denoted by
FAG = AV, QG AG, TRY, nG, g5, 0is then defined as follows:
* QG is the codomain oProj(V) : Q¢ — QS . Thus,, 0 QG iff there exists a
q0 Q¢ such that q, = Proj(V)(q) ; in particular, we have
a& = Proj(V)(ag).
* A7 : QY - L(V) is such that for any pair of stateg  any, related by
dy = Proj(V)(a) we haveG(ay) = AS(a)|V .
* TRG U QY x (AU €) xQF is such thatforanp O (AD €) andy;, qy; 0 Q§
(ayp & qvj) OTRG iff there exists a pair of statesy;, g 0QC  such that
dvi = Proj(V)(a;), ay; = Proj(V)(q;), and(q;, a g;) DTRC .
G : QG x(Al¢€) - {F, S} issuchthatforalb O (AO€) and,,; Qy; O QY
such that(ay; a, ;) 0 TR uG(ay, @) = S . That isFAG is defined to be

failure-free.m



54
Once again, we notice that while automateA© may have failure transitions, we
define its collapsed automatdmA;  to be failure-free. A more natural choice for the
transition labeling function oFAG  would seem to be one with the following descrip-
tion:
e QY x(ADE) - {F, S} is such thatp$(ay,a) = F iff there exists
q; 0 QF, such thatq,; = Proj(V)(q;) , and either (ix®(q;, @) = F , or (i)
there existd 0 A©—V such that®(q;, b) = F andthere exists a sequence of
AC -V signal transitions frong; , starting with a transition by  and leading to

a state at whicla is enabled.

However, similar to the case of a sub-automaton, we have made the simplistic

choice of lettingFAG  be failure-free since that would suffice for our analysis.

The definition of a collapsed automaton implies that it can be obtained from the

original automaton by the following steps:

(i) take the underlying state diagram of the original automaton and relabel each state

by restricting its labeling function td

(i) merge any set of relabeled states that have a common (restricted) label into a single
state with that common label. The resulting diagram will thus have statesniigjue

labels. (Note that unique state labeling is a requirement of the kind of automaton that
we have been using.). The resulting state diagram would represent the collapsed

automaton.
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Definition 2.21 [Automaton projection]

Let FAC = [AC, VC QC AC TRC uC, q§0 be any automatonV OVE , and
A = Vn AC. We sayFAC isprojectable ontoV and call the collapsed automaton
FAG an automaton projectioriff B is an exact abstraction oB¢ ovey ; i.e.,
BG = Proj(V)(BC).=

As will be seen in the coming sections of this thesis, in our hierarchical verification
approach we frequently need to simplify (reduce) and abstract the model of a behavior.
Such abstractions are obtained Huging some subset of the variables of the original
behavior. To prevent false negative/positive verification results, the abstract model has
to precisely capture the behavior of the non-hidden variables in the original model. In
other words, the behavior of the abstract model should be equivalent to the projection
of the behavior of the original model onto the same set of variables; i.e., the former

should be amxact abstractiomf the latter.

Although the projection of an automaton behavior is itself an exact abstraction, to
obtain it we need to first obtain the behavior of the automaton by full reachability anal-
ysis of its underlying state diagram, and then find the projection of each trace of that
behavior. In contrast, to collapse an automaton we simply need to appropriately exam-
ine the automaton’s underlying state diagram, without the need to perform full reach-
ability analysis, and if the collapsed automaton is an automaton projection, its
behavior is indeed an exact abstraction. That considered, along with the fact that we

already have chosen automaton over trace sets in modeling circuits and their behavior
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(due to the more efficient and compact representation of automaton), we would prefer
automaton projections over projections of automaton behavior to derive exact abstrac-

tions for specifications.

Note that a collapsed automaton is not always necessarily an automaton projection,
and thus may not precisely represent the behavior of the non-hidden variables. Con-
sider the two steps of the outlined procedure for collapsing an automaton. It is possible
for the resulting collapsed automaton to represent a behavior that is not an exact
abstraction, since the second step of collapsing can map semantically different states
of the original automaton onto a single state, creating spurious state sequences (and
strings) that are not present in the projection of the automaton behavior. Figure 2.8

illustrates this condition through a simple example.

Figure 2.8.a depicts the states diagram of an automaton, with a single state variable
v, . The automaton is to be collapsed onto its alphaBét,= {a;, a,, as, a,} . Note
that this automaton represents an alternate behavior in which a sequence of transitions
on signalsa; andi; alternates with a sequence of transitions on sighals a,and
Relabeling the states of the automaton results in two states with similar labels (See
Figure 2.8.b). Note that the initialized state sequences of state diagram 2.8.b represent
the projection of the (alternate) behavior of the original automaton. Merging the two
states of diagram 2.8.b into a single state creates the automaton of Figure 2.8.c in
which any interleaving of the two above-mentioned sequence of signal transitions are

possible. The behavior of the automaton of Figure 2.8.c is a superset of the projection
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Fig. 2.8When an automaton projection does not exist!

(a) State diagram of an automatBA® with A°={a, ay.az.a,}, VC={ay,asa3,a,.v,}. (b) State diagram

with relabeled states, hiding variable Initialized state sequences of this state diagram represent the
projection of the behavior of the original automat¢e). State diagram with the common label states
merged allows state sequences suddda8,0000,1000 which were not possible in state diagrén

of the behavior of the original automaton, and thus is not an exact abstraction of that
behavior. In this case, we say that the original autom&arot projectableonto the

indicated set of variables, or the collapsed automaton is not an automaton projection.

Situations such as the above example force us to impose and practice conditions on
the projectability of an automaton to guarantee that the behavior of the collapsed

automaton is indeed an exact abstraction of the original automaton’s behavior.

Consider automatonFAC = [AC, VC Q¢ AC, TRC, u¢, g0 and any set
V O VC. We will call V the set ofexternalvariables, andv® -V the set diidden
variables. We know that the -compatibility relati®y 0 Q€ x Q€ partitions the set

of automaton states int¥ -compatible equivalence classes. Thus anyqsta@
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belongs to &V -compatibility clagsy],, . The following theorem specifies the neces-
sary and sufficient conditions for projectability of an automaton onto a set of external

variables.

Theorem 2.3 [Necessary and sufficient conditions for projectability of an
automaton] Let FAC = [AC, V¢, QC, AC, TRE, uC, q§Ube any automatory O VC

be a set ofexternalvariables, andA = V n AC . The collapsed automafeAg is
then an automaton projectioiff for any pair of statesg, ;0 Q¢ such that
q; Ulagly, and (g,a o) 0TRC is a W, -transition (i.e.,
V n Changedgq;, a, ;) = W # [0), and for any pair of stateg, g; [ Q€ suchthat
q'j Olgly, q; Ulgl,, and (q'j, b, qj) OTRC, there exists a pair of states
a,9,0Q%, q 0[ql, . d)0[q],  such tha(q, c, g;) D TRC is &V, -transition

and there exists a (possibly empty) sequencé of -compatible :~:tatequrorqI mto

The above theorem states that foAC to be projectable¥nto |, for any (external)
W, -transition(q;, a ¢;) O TR inFAS it must be true that i; 0 Q® s any state
that isV -compatible withg,  and is either an initial state or reachable by an external
transition, then there exists a (possibly empty) sequendé of -compatible transitions

from q; to a state), , such thald,, -transition is possible fgpm

It is straight forward to verify that the following is a reformulations of the above

necessary and sufficient conditions for projectability of an automaton.
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Conditions 2.22 [Necessary and sufficient conditions for projectability of an
automaton] Let FAC = [AC, V¢, QC, AC, TRE, uC, q§Ube any automatory O VC
be a set ofexternalvariables, andA = V n AC . The collapsed automafeAg is

then an automaton projectidhthe following conditions hold:

*Letq; O Q€ be any initial state ofQC , or any state to which there exists an
external transition(q;, b, g) D TR®  from some statg; 0 Q© such that
q'j [ [qj]v. Let Qj 0 Q¢ be the set of all states such thaf] Qj iff

(i) g, is reachable frorrqj through a (possildy ) sequenc&of -compatible
states, and
(ii) there exists(q,, ¢, ¢,,) O TR, q, 0 [qj]v ; i.e., an external transition from
g, to a state that is nat  -compatible wip
Then let W; = {Proj(V)(q, c, qm)|(qk, C. 0 OTRC, g, O Qj, o, U [l }
be the projection of all external state transitions from the stat@s in

« Let g, 0 Q€ be any other initial state d® , or any other state to which there
exists an external transitio(q, d, ) O TRC  from some statel] Q¢ such
that g, O [qj]v andq, O [qj]v ; i.e.,qj andy ar¥ -compatible. DefiQp
andW, similar toQ; andV; above.

* Then we must havé/; = W,

If the above conditions hold, then we hav€&y :{Proj(V)(qj)} and

TRG = {Wj} , for all statesy; as described abowe.
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2.5 Safe Abstractions and Observational Sufficiency

In this section, we first define our notion okafe abstractiors an under approxima-

tion of the behavior of a subset of circuit variables which is guaranteed to be exact if
the circuit is failure-free. We also define the notion ofadoservationally sufficierget

of circuit variables whose behavior can bafely captured by a safe abstraction.
Finally, we present a corollary suggesting that if the automaton of a circuit is project-
able onto a set of circuit variables, then the behavior of the projected automaton is a

safe abstraction of the circuit behavior over the same set of circuit variables.

Definition 2.23 [Safe abstraction]Let C = [MC, A€, VC, G¢, FACO be a circuit
andBC be its behavior. Then a behavi®¥ over a set of variablesvCc is called a
safe abstractionof BC over V iff (a) BY is the behavior of some automaton
FAV = AV, QY AV, TRV, WV, q¥0, A = Vn AC, (b) BV O Proj(V)(B°), and
(c) BV = Proj(V)(BC) if the circuit is failure-frees

By definition, a safe abstraction & over is an automaton behavior which is

an under-approximation of the behavior of the circuit variables  and yet it is guaran-

teed to be exact if the circuit is failure-ffee

4. By the above definition, if any behavi@Y s a safe abstraction of a circuit behBéor over a set
of circuit variables V 0 VC | then BY  must be the behavior of an automaton
FAV = [AV, QV,AV, TRV, uV,qy00 A = V n AC. Thus, throughout this thesis, wher-

ever we talk about a safe abstraction, the existence of such a corresponding automaton is automatically

assumed.
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Definition 2.24 [Observational sufficiency]Let C = [MC, A€, VC, G€, FACO be a
circuit andBC be its behavior. Then a 9ét] VC is caltdaservationally sufficient
for BC iff there exists an automatonFAY = AV, QV, AV, TRY,uV,qyO

A = Vn AC, suchthaBY is aafe abstractioof B¢ overV .=

By definition, the behavior of any set of observationally sufficient circuit variables
is safelycaptured by the corresponding safe abstraction. Here, the word ‘safely’ is
used to emphasize that safe abstractions never over-approximate the behavior of the
corresponding variables. We will refer to an observationally sufficient set of variables

as an OSV set.

Corollary 2.4 [Automata projections and safe abstractions]

Let C = [MC, AC, VC, GC, FACO be a circuit andB¢ be its behavior. LetJ V€ |
A = Vn AC, and FAC = [AC,vC QF AC TRE, {iC, S0 be a sub-automaton of
FAC such thatProj(V)(BS) = Proj(V)(BC) , andFAC s projectable ont

Then é\(} is a safe abstractionBf  oXérm .

This Corollary directly follows frorﬂé\c} being an exact abstractiorB6f over

Corollary 2.5 [Automata projections and safe abstractions]

Let C = M€, AC, V€, GC, FACObe a circuit andB©  be its behavior. Moreover, let
VIOVE, A =Vn A°, be suchthaFAG is an automaton projection, andlgt  be

the behavior of AG . TheB§ is a safe abstractioB®f  dtex

This Corollary directly follows fromBG being an exact abstractiorB&f over
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2.6 Formal Proofs

In this section, we present our proofs of Theorems 2.3 and Corollary 2.5 by first intro-

ducing a lemma that is used in the proofs.

Lemma 2.6 [Over approximation by collapsed automata]

Let FAC = [AC, VE QC AC TRE uC, q§0 be any automatonV OVE , and
A = Vn AC. Let FAG be the collapsed automaton BA©  onto , a8  be its

behavior. TherBG O Proj(V)(BC) =

Proof (Sketch) We prove this Lemma by way of contradiction. Suppose
BS U Proj(V)(BC) is not true. Then, there must exist a trace of shortest length
ty, O Proj(V)(B®) such that t,0BG . Let t, = Proj(V)(t) , where

t = gg...0;...0,_1-.-0, 0 BC is any trace whose projection ontd yieltls and
whose last transition is by a variableVh . Here, any indicated pair of stptes , |

of tracet ,0<j<n-1,are/ -incompatible states that are separated by a sequence of
states that are/ -compatible witqj . Let stajé] Q° be the state immediately
preceding stateq, on tracd . Thus, there exisdd]l Al ¢ such that
(09,8 q)OTRC. But then by construction of FAG it follows that
(Proj(V)(q), Proj(V)(a), Proj(V)(q,)) O TRG. However, sinceq andy,_, are
V-compatible, we will have(Proj(V)(q,_,), Proj(V)(a), Proj(V)(q,)) O TRG

Now, sincet,, is the shortest trace of interest, we must igve: Proj(V)(t") O BG ,

wheret' = qg...0;...9,_, O BC is a prefix of tracé . Now, on one hand we have
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t\, = Proj(V)(t) = Proj(V)(dyd;...6,_;) O BT, and on the other hand we have
(Proj(V)(a,_4), Proj(V)(a), Proj(V)(q,)) OTRG. It then follows that
Proj(V)(geQy---d,_19,) O BG, which in turn implies that,, = Proj(V)(t) 0BS .

Since the latter result yields a contradictigy, 0 Proj(V)(BC) is indeed #rue.
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Theorem 2.3: Necessary and sufficient conditions for projectability of an
automaton] Let FAC = [AC, V¢, QC, AC, TRE, u€, q§Ube any automatory O VC
be a set ofexternalvariables, andA = V n AC . The collapsed automafeAg is
then an automaton projectioiff for any pair of statesq, ;0 Q¢ such that
q; Ulagly, and (g,a o) 0TRC is a W, -transition (i.e.,
V n Changedgq;, a, ;) = W # [0), and for any pair of states, g; [ Q€ suchthat
q'j Olgly, q; Ulqgl,, and (q'j, b, qj) OTRC, there exists a pair of states
a,9,0Q%, q 0[ql, . d)0[q], , such tha(q, c, g;) D TRC is &, -transition

and there exists a (possibly empty) sequencé of -compatible :~:tatequrorqI nto

Proof (Sketch)FAS is an automaton projection B = Proj(V)(B®) . We already
know from Lemma 2.6 thaBG O Proj(V)(B®) . ThuBG = Proj(V)(B®)  would
hold iff for all t,, 0BG, t,, O Proj(V)(B€). We will show that the latter condition

holds iff the indicated condition of this theorem holds.

First we show that if the condition of this theorem holds, then fortalll BG :
t, 0 Proj(V)(BC). To prove this by contradiction, suppose that the conditions hold
but there exists a shortest trace, = qyQ;...q,_;0, 0 BS such that
t, O Proj(V)(BC). Considering trace,, , we must hay¢g,_,,a,q,) O TR , and
thus by construction ofFAG there must exist two statgsq; O QC such that
q; Ulaly, and (g,a ) 0TRC is a W, -transition, and
(d,_1 @, a,) = (Proj(V)(q;), Proj(V)(a), Proj(V)(d,)) - Sincet,, is the shortest

such trace, for its immediate prefix we hatg = q,q;...q,_, O Proj(V)(BC)
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Thus, there must exist a tracet' = dy...q5...q,_, O B¢ such that
t'y, = Proj(V)(t'). Here, any indicated pair of stateg,, q'. of trate
0<m<n-1, areV -incompatible states that are separated by a sequence of states
that areV -compatible witly,, . Thus,, = Proj(V)(d'yd..-d'h_1) .thj be the
state immediately preceding statg, _; on trdce vmr] b, q, ;) OTRC . As
noted previously,q,,_; andq j arey -incompatible states. Moreover, since
Proj(V)(d\,_,) = Proj(V)(q;), we haved,_; U[q], andq'j Olg]y, - Now
(with q; = d',_,) it follows from the conditions of the theorem that there exists a pair
of statesq,, g, 0 Q¢ ,q U [ai], ) 0lal, . suchthdyg,c, d))0 TR isw, -
transition, with a (possibly empty) sequence\of -compatible statesffpm ¢, to
This is equivalent to  saying that  there exists a trace
t" = g...q...0p_1---G,0; O B¢, and thusProj(V)(t") O Proj(V)(B®) . How-
ever, note that sincey, q', _, U [q],, ,ardjc d})0 TRC idM, -transition, then
d, O [aily, = [dnly and thus
Proj(V)(t") = Proj(V)(d'od;---d',_19}) = 9pd;---d,_1d,- But the latter implies
thatt, = qyQ;..-9,_1d, O Proj(V)(B®) , which is a contradiction.

Next, we show that if for alt,, 0 BG t,, O Proj(V)(B®) , then the condition of
the theorem holds. To prove this by contradiction, suppose fortall BG :
ty O Proj(V)(BC), but there exist a pair of statep, g; 0 Q¢  such thatl [q;],,
and(q;, a, d;) O TRC is aw,, -transition (i.,eV n Changedq;, a, d;) = W0 ),
together with a pair of stateq'j, q; O0QC  such thatg Olagly, qj,D [g], . and

(d, b, g;) O TR, but theredoes noexist any pair of stateg;, ; 0 Q% ¢ O[q], .
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dq, U [ql, . such that(q, c, d;) O TR® is &V, -transition with a (possibly empty)

sequence o -compatible states frcq]n gio . Note that sfogen, ;) O TRC isa
W,, -transition, by construction of FAG we have
(Proj(V)(q;), Proj(V)(a), Proj(V)(d,)) O TRG. Now let

t = do...q50;...9,9, U BC be any trace such thaiy, O (g, 4 /0[al, .

(g, ¢ d) OTRC, andq, is reached fronu]j through a sequencé/of -compatible
states, and lett', = Proj(V)(t') . The last state transition & would be
(Proj(V)(q,), Proj(V)(c), Proj(V)(d,)) O TRG, but that cannot ever be equal to
(Proj(V)(q;), Proj(V)(a), Proj(V)(d,)) O TRG, becausegq, ¢, ;) D TRC isot

a W, -transition (note thatg, U [q;],, ). Thus, the last state t4f cannot be
Proj(V)(q;), while because of Proj(V)(q;), Proj(V)(a), Proj(V)(q,)) OTRG ,
there exists a trace, 0BG  whose prefix is same as thatof  but its last state is
Proj(V)(qd,) . It then follows that for such",, 0BG t",, O Proj(V)(B®) whichis a

contradictions

Corollary 2.4: [Automata projections and safe abstractions]

Let C = MC, AC, VC, GC, FACO be a circuit andB¢ be its behavior. LetJ V€ |
A = Vn AC, and FAC = [AC,VC, QS AC, TR, [iC, g§0 be a sub-automaton of
FAC such thatProj(V)(B®) = Proj(V)(BS) , andFAC is projectable onio

Then I§\(} is a safe abstractionBf  o%érm .

Proof  (Sketch) Since F~A$ is an automaton projection, we know that

BG = Proj(V)(B®). Now, since Proj(V)(B®) = Proj(V)(BS) , we will have
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BG = Proj(V)(BC): i.e., B is an exact abstraction &  over . But thBf

would also be a safe abstractionBS oVelm

Corollary 2.5: [Automata projections and safe abstractions]
Let C = [MC, AC, V€ GC, FACO be a circuit andB€  be its behavior. Moreover, let
VIOVE, A =Vn A®, be suchthaFAG is an automaton projection, andlgt  be

the behavior ofF AG . TheB{ is a safe abstractioB®f  dtex

Proof (Sketch) The proof of this corollary directly follows from Corollary 2.4, by

letting FAC = FAC .
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Chapter 3

Induced Hierarchical Verification of SI, Theoretical

Framework

In the previous chapter, we introduced the notion of a safe abstraction as a behavior
over a subset of circuit variables which may under-approximate the actual behavior of
those variables, but is guaranteed to be exact if the circuit is failure-free. For a circuit
that has a safe abstraction, we introduce in this chapter the notsubefircuitsof the

circuit. Such sub-circuits are derived from the safe abstraction andirthet blocks

where circuit blocks are themselves the result of partitioning the circuit using the
observationally sufficient variables of the safe abstraction. We prove in a main theorem
of this chapter that for circuits which have a safe abstraction, failure-freedom of the
circuit can be determined based on the failure-freedom subscircuits This impor-

tant result is the basis of our framework for induced hierarchical verification of speed-

independence, as will be seen in this chapter.
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3.1 Partitioning a Circuit into Circuit-Blocks

In this section, we describe the notion of partitioning a circuit into circuit blocks using

a selected set of circuit signals.

Definition 3.1 [Circuit block] Let C = [MC, AC, V€ GC€ FACO be a circuit and

EC O AC be a non-empty subset of circuit signals which we eaternalsignals. We

call HC = AC—EC as the set of hidden signals of the circuit. RE 0 M¢ x M€ be
a relation such that for any two circuit modulés’, M! O MC (I\/Ii, Mj) O RE iff
Ain Al n HC# 0. In other wordsM'  and!  are related RE  iff there exists a
circuit signala 0 H¢ which is a common 1/O signal of the two modules. Note that
RE is a reflexive and symmetric relation. L&EC  be the transitive closure of the
relation RS ; that is, RICOORC and for any modules’, M!,M“OMC | if
(M, M)ORC and (M) MY ORLC then (M, M*)ORLC . SinceR:C is a
reflexive, symmetric, and transitive relation, it is an equivalence relation over the set of
circuit modules, and partitions that set intof=1 equivalence classes,

ME 1, ..., ME (¢, each called aircuit block =
Let ME ;, 1<i<rg&, be any circuit block. We define

« XE; = {a0EC|OMIOME;,al X1} as the set obxternal inputsof circuit
block ME ; ;

«ZE; = {aOEC|OMIOME;,al Zl} as the set oéxternal outputf circuit
block ME ; ;

« YE; = {yOVC|OMIOME ;, yOYl} as the set obtate variablesof circuit
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block ME ; ;
«HE; = {abDHC|OMIOME ;,ad Al} as the set ohidden (internal) signals
of circuit blockME ; ;
« AE; = XE ;O ZE, OHE, as the set ddignalsof circuit blockME ; ;

'VI(E:,i

AL ;O YE ; as the set ofariablesof circuit blockME ; ;

By definition, the equivalence relatidREC  which partitions the circuit into circuit
blocks is such that for any pair of circuit modullt ad belonging to two differ-
ent circuit blocks (i.e.(Mi, Mj) ORC ), i feedsm' through a common 1/O sig-
nal (i.e., (z,j(, x:) [0 KC ) then the common 1/O signal must be an external signal (i.e.,
z|j( 0 EC). In other words, circuit modules which belong to different circuit blocks
would never feed each other through internal signals. This further emphasizes the fact
that the circuit modules of any circuit block can communicate with the rest of the cir-

cuit only through external signal transitions.

It is to be noted that in general, the set of external signals of a circuit block is a
subset of the external signals of the circuit; iXg ; 0 Z¢ ; DEC . Thus some signals

in EC may be neither an input nor an output of a circuit block.

Example 3.1 Figure 3.1 shows three different partitions of a four-stage FIFO
controller. For Figure 3.1(a)s, = {rq, ay} , for Figure 3.1(lg, = {a;,a,} , and
for Figure 3.1(c),E5 = {r a, ag, a4} .E, , for example, partitions the circuit into

two blocks, a left block Mg ; and a right blockMg , . Thus we have
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Fig. 3.1Three different partitions of the four-stage FIFO controller.

{i, cy,c5} DMgzyl, ngl = {a,} and ZEZ'1 ={a;} , Ygzl =0,
HE 1 = {ro 8}, and Ag | = {ry, ay a;, @} . Note that a circuit block may not

have any hidden signals, as is the case with the left circuit block induded by

3.2 Safe Abstractions and Sub-circuits of a Circuit

In this section, we define our notion sfib-circuitsof a circuit. This notion is defined
only in association with a safe abstraction for the behavior of a circuit over a selected
set of its signals. A sub-circuit of such a circuit is the closed circuit composed of a cir-
cuit block and its abstraenvironment moduleyhere an environment module of a cir-
cuit block is themirror of a safe specificatiorof the circuit block, and a safe
specification is in turn obtained from the safe abstraction of the circuit. We show in the
next section how the failure-freedom of a circuit is related to the failure-freedom of its

sub-circuits.
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3.3 Environment Module of a Circuit Block

Let C = [MC, AC, VC, GC, FACObe a circuit and8© be its behavior. D&tC O VC |
EC = ACnWC, and FAW® = [EC, WC, QWS AW, TRV uWe g¥¥“0 be an
automaton whose behavi@W® s a safe abstractioB®f over (it is
observationally sufficient foB¢ ). We calNC  the set@fternal variablesEC the
corresponding set afxternal signalsandWC —EC the set oféxternal state variables.

Let ME 4, ..., ME ¢ be the set of circuit blocks & as it is partitioned by the set of
signalsEC . The safe abstracti®®  which is an approximation of the behavior of

the circuit variablesW® specifiesfor each circuit blockME ;  how its I/O signals

interact with each other and with (possibly) other external circuit variables.

Definition 3.2 [Safe specifications, and safe specification sets]

Let C = [MC, AC, V€ GC, FACO be any circuit for which there exists a behavior
BWC that is a safe abstraction &  over soWw 0VC | &td= ACn WC . Let
ME ; be any circuit block ofC induced bg® . L&t ; DWC  be any set of circuit

variables satisfying the following conditions:
« XS, 0V, i;ie., Vi includes all external inputs of circuit blobk€ ;
«ZE, 0V, i;ie.,V§, i includes all external outputs of circuit blodk€ |
. FAQ’A/V&ji the collapsed automaton BAW® ori&ﬁ,, i Isaprojection automaton.

We then define a new automathA\(,:v, i by applying the following modifications to

FA\%VchiZ
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«foranyad Z&; andq O Q\%chji , if there exists rgp O Q\\%;:i such that
(g,a d) O TR‘%i , then (a) add state transitiqq, a, d) TER\?V, i ,where state
g (that needs to be added@ﬁ,, i ) Iissuch that
AR, i(@)(2) = A (a)(a) # AW, i(d')(a) and for all otheb 0V ,b# a |
A, i(a)(b) = N (a)(b) = A, i(d)(b), and (b) lefi;, (d, &) = F .
Then we say thaé\(,{,y i , the behavior of automatéh\(fv, i , &ake specificatiofor
circuit block ME ; , derived from the safe abstractiBW® . We ¢6f ; as the set of
inputs of the safe specification, ad§ ;  as the set of outputs of the safe specification.

We also call the (non-empty) set of all possible safe specificatiomg?f aatbe

specification seof ME ; and denote it bB, ; =

Note that while automator’lFA\‘A’/chji is faiIure-freéA\?v,i is not, and contains
newly introduced failure state transitions. Specifically, the failure state transitions
introduced into the safe specificationMdfc ;  imply that Mg ;  to be failure-free, it
should not produce any output transitions that are not originally present in safe
abstractionBW® . Note that sindeAW®  and herﬁ;é%ji do not originally include
those failure transitions, and the behaviors of those automata beyond such unexpected
failure transitions are not specified, we had to furrﬁéh(fv, i with that information. In
doing so, we simply specify the state entered immediately after a failure transition to
be one which differs from the preceding state only in the value of the changed output

signal. These modifications introduce new traces into the behaviE?;A&‘i , com-

pared to that 01FA\‘§VCC . However, all the newly introduced traces are failure traces,

W, i
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and their failure-free prefixes are already in the behavid?@vvcj _ (see Lemma 3.8 in

the formal proof section of this chapter).

The definition of a safe specification of a circuit block implies that a circuit block
can potentially have many safe specifications, as long as the alphabet of their automata
satisfies the indicated conditions. It also implies tB&° is itself a safe specification
for any circuit block it induces. AlthougBW®  can always be used as a safe specifica-
tion for any circuit block, reducing it to other smaller safe specifications by means of
projecting its automaton will often speed up the overall hierarchical verification pro-

cess.

Example 3.2Figure 3.2.a depicts a four-stage FIFO controller that is partitioned into
two circuit blocks by the set of external signdls= { a;, a,} (Figure 3.2.b). Figure
3.2.c depicts the state diagram of a safe abstraction of the circuit behavicEover . As
indicated in Figure 3.2.d, the safe abstraction is used to derive safe specifications for
each of the two circuit blocks. While the signals of the safe abstraction do not have any
input/output attribute, an explicit distinction is made between the input and output
signals of each of the two safe specifications. In this example, the graph of the
automaton of each safe specification contains that of the safe abstraction (here, the safe
abstraction, and not a projection of it, is used to derive the safe specifications).
However, each safe specification also has additional transitions identifying unspecified

output transitions; i.e., any output transition that is not present in the safe abstraction.
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Definition 3.3 [Environment module] Let C = [MC, AC, VC GC€, FACO be any
circuit for which there exists a behavi@W® that is a safe abstractioB%f over
someWC OVC , anE® = ACn WC . LeME,; be any circuit block 6  induced
by EC, and let Bf ;O By ; be any safe specification féAc; . Finally, let
A% i OV i be the subset of/§ ; consisting of circuit signals only and no state
variables. Then theenvironment moduleM$ i = X%, i, 2%, i, Y% i FAW, 0 of

ME ; corresponding tc%\‘,:\,,i is defined as follows:
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'\A(vcv,i = v\?v,i—A\(/:V,i-
I\A/I\‘,:v,i is in fact a virtual circuit module abstracting the environment of circuit

block ME ; .=

It is easy to verify that (a) the input signals of the environment module are exactly
the external output signals of the circuit block, (b) the output signals of the environ-
ment module include all the external input signals of the circuit block, and possibly
some additional signals frola¢ , and (c) the state variables of the environment mod-

ule are a subset of the circuit’s external state variables.

Since an environment module of a circuit block is defined based on a safe specifi-
cation of the circuit block, a circuit block (E3 i may have many possible environment
modules each corresponding to a different elemerB@fi . The safe specifications of
a circuit block (and thus the corresponding environment modules) may differ in terms
of the size of their representation (e.g., automaton size) which is generally a monoton-
ically increasing function of the number of automaton variables. In our framework,
although the safe specifications of a circuit block are all equivalent in terms of their
utility for hierarchical verification, we prefer the ones with smaller representations

over others.

The environment modul&’lvcv, i d‘ﬂg i defined above is in factrthgor of the
safe specificatiorﬁ\?\,’ i derived from the safe abstracB [27]. As indicated in
the definition ofM \9v, i , Its set of input signals is exactly the set of output signals of the

safe specification; its set of output signals includes the set of input signals of the safe
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Fig. 3.3Deriving safe specifications for circuit blocks from a safe abstraction.
lllegal input transitions of the environment modules are illustrated with dotted arrows.

specification; its set of internal state variables consists of all the state variables of the
safe specification, and its automaton is the same as the automaton of the safe specifica-
tion. Thus not only the role of inputs and outputs have changed from the safe specifica-
tion to the environment module, but also failure state transitions of the safe
specification that corresponded to unexpedaatput transitions of the circuit block

are mapped to illegainput transitions (input chokes) of the environment module.

These changes exactly characterize a mirroring procedure.

We need to emphasize that environment modules of circuit blocks of a circuit are
defined only given a safe abstraction of circuit behavior over the (observationally suffi-

cient) set of external variabl&§©

Example 3.3 An example of deriving environment modules for circuit blocks of a
partitioned circuit from their safe specifications is shown in Figure 3.3. Each

environment module is simply the mirror of the corresponding safe specification of
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Figure 3.2. Thus, unexpected output transitions of each safe specification are
translated to illegal input transitions at the corresponding environment module. In this
example, the automaton of the environment module of the above circuit block turns
out to be isomorphic to the automaton of a buffer, and that of the bottom circuit block

turns out to be isomorphic to the automaton of an invarter.

3.4 Subcircuits

In this section, we show how a circuit block together with its environment module cre-

ate asub-circuitof the original circuit.

Definition 3.4 [Sub-circuit] Let C be a circuit andV¢ O VC EC = ACn WC | and
FAWS = [EC, WC, QW AWE, TRVE, uWe, g¥¥“0 be an automaton whose behavior
BWC is a safe abstraction @€ ov&/C (thW¥C is observationally sufficient for
BC). We then calWC€ andAC as the set@fternalvariables, and the set of external
signals ofC , respectively. LeME ,, ..., ME ¢ be the set of circuit block<of . For
any circuit blockME ; [ME || = ng; , and any environment modi, ;  of it, we

can devise aub-circuitC§, ; = C' = M€, A%, V<, GC, FACDas follows:

e« MC' = Mg,iDI\A/I\(,:V,i;

« AC = A, OAE;
«VC = ACOVE i OYE;;

« GC = [NC KC[Ois such that
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e NC = {N1 .. ,N"i*1} and Ni is representative of circuit module
MiOMC;
* K = {(2,x) DKE|Mi, MM OME ;} O {(%x)|MPOME ;.2 = x])
0{(z, %)|MIOME 2, = %},
where signals of\A/I\(,:V, i are identified b>7 a ;
« FAC = [AC, VT, QC AC, TRC, u<, q§Ois the composition of the automata
FAL ..., FA"% FAR ;.=
Thus, informally speaking, sub-circu(r\(,{,yi is devised by cutting circuit block
Mg,i out of C and connecting it to environment modlﬂﬁ?\,, i accordingly. We note
that (a) since the circuit modules of circuit blobkE ;  also belong to cir€uit , they
are all initial-state-compatible, and (b) siné&,l i --driven fr@y® by way of pro-
jecting its automaton--is a safe specification, the initial statEA/@fv, i is compatible
with the initial state ofC , and therefore with that of all circuit modulesvi ; . The
initial-state-compatibility of all circuit modules OC\E:VJ guarantee that the circuit

automatorFAC is well-defined.

Example 3.4Figure 3.4.a depicts the four-stage FIFO controller of Figure 3.2 that is
partitioned into two circuit blocks by the set of external signéls- { a;, a,} . As

mentioned in Example 3.3, the environment module of the left circuit block has the
automaton of a buffer, while that of the right circuit block has the automaton of an

inverter (remember that in deriving those specifications from the safe abstraction, no
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Fig. 3.4A four-stage FIFO controller and its sub-circuits.

projection was performed). The combination of each circuit block and its environment

module has defined a sub-circuit as shown in Figure 3.4.d.

We have shown how given a safe abstractBy¥” for the behavior of a cEcuit
over a set of observationally sufficient variabl&§ , the sub-circuits of the circuit can
be constructed. In our hierarchical verification framework, the original circuit is said to
be at the 1st level of hierarchy, while its sub-circuits are said to be at the 2nd level of
hierarchy. Given a safe abstraction of the behavior of cirGt ; over a correspond-
ing set of signaISNCV°V~i , the subcircuits Gﬁ, i can be similarly constructedjThe th
sub-circuit of C§, /i Is thus denoted b@CW' . This procedure can be repeated up to
any finite level of hierarchy at which the size of a sub-circuit is small enough for the

purpose of flat verification. The relationship between the verification of a circuit and

that of its sub-circuits is the topic of the following section.
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3.5 Circuit Failure-freedom and Sub-circuits’ Failure-freedom

In this section, we present a key result which is the basis of our framework for hierar-
chical verification of speed-independent circuits and systems. We show how the prob-
lem of verifying failure-freedom of a circuit can be recursively broken into a collection
of smaller problems of verifying the failure-freedom of the sub-circuits of the circuit.
Since verification of failure-freedom has computational complexity that is worst-case
exponential in the number of circuit variables, such hierarchical approaches which are
basically divide and conquer techniques can significantly speed up the verification pro-

cess.

The two theorems of this section collectively suggest that if there exists a safe
abstraction of the behavior of a circuit over a set of external variables, then the circuit
is failure-free iff all of its corresponding sub-circuits are failure-free. For the purpose
of clarity, we first present each theorem, its implications, and some intuition behind its
proof. We then present a more comprehensive sketch of the proofs of the two theorems

for the interested reader.

Theorem 3.1 [Circuit versus sub-circuit failure-freedom, ]

Let C = [MC, AC, V€ GC, FACO be any circuit for which there exists a behavior
BWC that is a safe abstraction &C  over somé* O VC | &fdl = AC n WC

Then, if any sub-circuiC{; ; is not failure-free, thén s not failure-fiee.

The above theorem states that a negative verification result for any sub-circuit of a

circuit is always indicative of the failure of the circuit itself. Thus, verifying the fail-
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ure-freedom of a circuit by way of verifying its sub-circuits can never generate a false

negative result.

The intuition behind the proof of this theorem is as follows. A sub-circuit failure is
an illegal input signal transition either at some ordinary circuit module of the corre-
sponding circuit block (e.g. a hazard), or at the environment module (i.e., an input
choke to the environment module, or equivalently, an output transition unexpected by
the safe specification of the corresponding circuit block). However, (a) any failure at
an ordinary circuit module of the sub-circuit is guaranteed to be identically present in
the original circuit; this is true since a sub-circuit is actually a circuit block which is
operated in an abstract environment that is never an over-approximation of the actual
environment of the circuit block, and (b) any input choke to the environment module
of the sub-circuit indicates that the safe abstraction, from which the environment mod-
ule is derived, is an under-approximation; however, by definition of a safe abstraction,
this can be true only if the original circuit was not failure-free. Thus, any sub-circuit

failure is always indicative of some circuit failure.

Theorem 3.2 [Circuit versus sub-circuit failure-freedom, 11]

Let C = [MC, AC, V€ GC, FACO be any circuit for which there exists a behavior
BWC that is a safe abstraction &  over soM& OVC | &fd= ACn WC f
all sub-circuitsC, 4, ..., Cf, (¢ are failure-free, the , itself, is failure-fuee.

The above theorem states that positive verification results for all sub-circuits is

always indicative of the failure-freedom of the circuit itself. Thus, verifying the fail-
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ure-freedom of a circuit by way of verifying its sub-circuits can never generate a false

positive result.

The intuition behind the proof of this theorem is as follows. A circuit failure is an
illegal signal transition at the input of some circuit module (a driven module), gener-
ated by another circuit module (a driving module). This failing signal is either an
external signal or an internal signal of the circuit. If the failing signal is external, then
either its failing transition is captured in the safe abstraction or it is not. If a failing
external signal transition is captured in the safe abstraction, then an identical failure
must have manifested itself in the sub-circuit containing the driven module. If a failing
external signal transition isot captured in the safe abstraction, then the under-approx-
imated behavior of the driving module would have manifested itself as a choke to the
environment module of the sub-circuit containing the driving module. Thus, any cir-
cuit failure on an external signal is guaranteed to be captured as a failure in some sub-
circuit. On the other hand, if the failing signal is an internal circuit signal, then an
identical failure would have manifested itself in the sub-circuit containing the driven
(and the driving) circuit module, if the specification of the corresponding circuit block
Is exact; thus, any circuit failure on an internal signal is also guaranteed to be captured
as a failure in some sub-circuit. Hence, if all sub-circuits are verified as failure-free,

then the circuit must have been failure-free itself.

Before we present our proofs of Theorems 3.1 and 3.2, we would like to further

signify the dual role of external variables in our verification framework; i.e., (a) being
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the set of variables whose behavior is approximated by a safe abstraction, and (b) con-

taining the set of external signals that partition the circuit into circuit blocks.

As indicated by the two theorems of this section, for any circuit which has a safe
abstraction over a set of external circuit variables, there exists a particular relationship
between the failure-freedom of the circuit and that of its induced sub-circuits. We are
specifically interested in this particular relationship because it is the foundation of our
hierarchical verification framework. Here, we would like to show that the relationship

of our interest do not generally exist if the set of circuit blocks asyigrary.

We define amarbitrary circuit block as any subset of circuit modules. We also
define anarbitrary set of circuit blockgo be any set of arbitrary circuit blocks. The
input andoutputsignals of the circuit blocks of an arbitrary set are defined as follows:
any signal that is driven by a circuit module in one circuit block and drives a circuit
module in another circuit block is an output of the first circuit block and an input of the

second circuit block.

Consider Figure 3.5 which depicts tvawerlappingarbitrary circuit blocksCB;
and CB, . Assume that signal is driven by the common portiolC&; amy ,
and drives modules in each ¢fB; a@B, . Our definitioringfut signals, given
above, would not labed  as an input signal of eithelGB;, Cd3, ,simce is actu-
ally driven from within both circuit blocks. On the other hand, Bor  to be labeled as
an outputsignal of either of the two circuit blockg has to be an ingignal of a

third circuit block; in such a casa, would be an output of I Gyl



85

CB,

-
.

CB,

Fig. 3.5Two overlapping arbitrary circuit blocks

Next, we describe a set of necessary conditions that an arbitrary set of circuit
blocks has to satisfy before their failure-freedom can have any significant relationship

to that of the circuit.

(i) An arbitrary set of circuit blocks must be a covering set for the circuit modules; i.e.,
each circuit module must belong to at least one arbitrary circuit block. This constraint
is to guarantee that verification of a circuit by means of verifying its sub-circuits is

inclusive and there is no circuit module which is not verified within any sub-circuit.

(ii) Input signals of any arbitrary circuit block must all be external. This constraint is to
guarantee that the environment module of the circuit block which is obtained from the
safe abstraction--and thus lacks direct information regarding the behavior of internal
signals--can appropriately drive all inputs of the circuit block. Since input signals of a
circuit block are output signals of other circuit blocks, this constraint also implies that

output signals of any arbitrary circuit block must all be external.

(iii) If two circuit blocks overlap, then any signal which is driven by a module com-
mon to the two circuit blocks has to be external. This constraint is to avoid a particular

problem that is illustrated in Figure 3.6. Figure 3.6 depicts two overlapping arbitrary
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Fig. 3.60verlapping arbitrary blocks with a non-external common signal.

circuit blocksCB; andCB, . Assume th&t ar are (external) output signals of
CB,; andCB, , respectively, and is an internal signal driven by a circuit module in
the common portion of the two circuit blocks. Moreover, assume that the only
sequence of transitions that can possibly occur on the signdbs , ¢and in the origi-
nal circuit is c+, a+, b+, a-, b-, c- , such that+ is required fa+ a+ s required

for b+, andb+ is required foma- . Assume that the lower level circuit is failure-free
and that there exists a safe abstraction over the set of its external signals (ndite that
andc belong to the set of external signals, but aot ). Such a safe abstraction would
have the sequence of transitions, b+, b-, c- . This new sequence lacks any informa-
tion about the relative order of transitions on sigaal  with respect to those of signals
b andc . As an example, this sequence suggestsCﬂ&t (the environment module of
CB,) can produce &+ transition right afterca  transition is producedIBy

Thus, in the sub-circuit which is the composition 618, afB;, c& would

enable not onlya+ (througlB, ) but aldm+ (througiBz ); howevedr-if occurs

beforea+ , it would enable- (througB, ), which is equivalent to disabbrg
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which was already enabled ly+ . In other words, in the sub-circuit associated with
CB,, signala can become enabled and then disabled without having a chance to fire.
This situation will be detected as a failure in that sub-circuit, while the original circuit
was in fact failure-free. In such a case, taking the sub-circuit failure as an indication of

a circuit failure would generate nothing but a false negative verification result.

In general, overlapping pairs of arbitrary circuit blocks that have non-external
common signals do not always satisfy the particular conditions of the example of Fig-
ure 3.6 which led to false negative verification results. However, by disallowing non-
external common signals all together, the possibility of generating such false negative

verification results is removed.

It can easily be seen that any set of circuit blocks creategdoijtioning a circuit
by a set of external signals happens to satisfy our indicated set of necessary conditions.
As proved next, such circuit blocks, together with the safe abstraction over the set of
external variables, define sub-circuits whose failure properties do in fact relate to that

of the circuit in the ways suggested by Theorems 3.1 and 3.2.

3.6 Formal Proofs

We present our proofs of Theorems 3.1 and 3.2 by first introducing some lemmas and

corollaries which are used in the proofs.

Lemma 3.3 [Projection of safe specificationslet C = M€, AC, V€, G€, FACObe

any circuit for which there exists a behaviBV°  that is a safe abstracti@¥ of over
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someWC OVC , anE® = A©n WE . LeME,; be any circuit block &  induced
by EC, andB{,; be a safe specification M, . Themoj(V, ;)(BW) O B, |

andFF (B ) = Proj(V& )(BW) .a

Proof (Sketch) FAA\?V,i --the automaton Oé\?\/,i --is obtained frol="nA\\§V§i --the
projection of automatorF AW® ont&’\?v,i --by solely introducing new failure state
transitions, which in turn introduce new failure traces into beha@{y ; . Thus, we
have B\%i OB% i andFF (B, i) = B\%ii . On the other hand, by definition of an

automaton projection we know thﬁi\‘»j‘g‘ = Proj(\A/\(f\,, D (BWS) . It then follows that

FF(BW, i) = Proj(Viy, )(BY). =

Lemma 3.4 [Under approximation of the 1/O behavior of a circuit block] Let
C = [MCS, AC, V€ GE€, FACObe any circuit for which there exists a behavB¥©
that is a safe abstraction 8¢  overso€ O VC  &fd= ASn WC  NIgt;
be a circuit block of C , and I\A/I\%,,i be its environment module. Then

Proj(Af, i)(BW) O Proj(Af, i)(BC) . =

Proof (Sketch) SinceBW® is a safe abstractiorB6f oWy O VC , we have
BWC 00 Proj(WC)(B°), )

and by applying functioProj(.)(.) to both sides of relation (1) we have
Proj(AY, i)(BW) O Proj(Af, i) (Proj(WC)(BC)). (2)

However, by Lemma 2.1 we have

Proj(A{, ) (Proj(WC)(BC)) = Proj(Af, i)(BC). 3)
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From (2) and (3) we conclude that

Proj(A%, ;)(BW®) O Proj(A¥, ;)(BC). (4)

Lemma 3.5 [Properties of traces captured in a safe specification]Let

C = [MCS, AC, V€ GE€, FACObe any circuit for which there exists a behavB¥©

that is a safe abstraction B¢  over sor¢c O VC | d8d = ACn WC | Let
C' = C{ ; be any sub-circuit ofC , and[1 B¢ be any trace for which there exists
tY%i 0 B, ; such thatProj(V§ )(t) = tY&i . TheProj(VC)(t) OBC . Moreover,

if t 0 BC is any trace such tha&roj(V{, ;) (t) = Vi therd Proj(VC)(BC)

Informally speaking, Lemma 3.5 states that if a circuit trace is successfully
abstracted within the safe specification of circuit bIcMIE i (i.e. by ttce ), then
not only (the projection of) trace will be (locally) present in sub-cireZiit= C\(}\,’ i ,
but also any other tracé  of sub-circ@t that adheres to tr4ee --and thhusto --

will be (globally) present in circuiC =

Proof (Sketch) We know that the 1/0 signals of circuit bIoM<g i (corresponding to
sub-circuitC{; ; ) via whichM§g ; interacts with its actual environment (i.e., the rest

of the circuit) are all external signals; that is,

XE, 02z, OEC, (5)
whereEC 0 WC s the set of external circuit signals. We also know &fat; , the I/O
signals of environment modull ;  via whidid{ ;  interacts with circuit block

ME ., are all external signals, and in particular
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(Xg,02zE,)0AK,  DECOWC, (6)
Since Ay ; O V& i OWE | from (6) have

(XE,02zE ;) OAK, OV, OWC. (7)
From (7) andDroj(\A/\(,{,, i)(t) = £V , and by using Lemma 2.1 we have

Proj(Xg; 0 ZE (1) = Proj(XE; 0 zE)(t%) ®)
Let at anda!v be the strings associated with tracesB¢ #d O B\%,, i , respec-
tively. Then from (8) we have

Proj(Xg; O ZE)(al) = Proj(XE ;O ZE;)(av). (9)
In equation (9),Proj(X(E37i 0 ZE, ;)(a') corresponds to a sequence of transitions on
the 1/0O signals of circuit blockvi gi when it is operating within its actual environ-
ment, circuitC ; equivalentIyProj(Xg, O Zg ;)(a') is asequence of I/O signal tran-
sitions of the actual environment of circuit blocM&; . On the other hand
Proj(X,gi O Zg ;)(av) corresponds to a sequence of 1/O signal transitions of the
safe specification of circuit block ¢ ; BX i ; equivalentRyoj(Xg ; O ZE ;)(av)
is a sequence of I/O signal transitions of the abstract environment of circuit block
ME-M{ i.
By a similar argument, if 0 BC is such tharoj(V{, i) (t) = tV&i  then we have

Proj(X€; 0 ZE)(t) = Proj(Xg; 0 ZE )(t¥%), (10)
and if we leta’ be the string associated with tri¢eBC then from (10) we have

Proj(Xg; O ZE;)(a") = Proj(Xg,; 0 ZE ;)(@v). (11)
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In equation (11)Proj(X(E37 i O zg, ;)(a') corresponds to a sequence of transitions
on the 1/O signals of circuit blociu g,i when it is operating within its abstract envi-
ronment, M ; ; equivalentlyProj(Xg ; 0 ZE ;)(a") is a sequence of I/O signal
transitions of the abstract environment of circuit blddg ;  , as also confirmed by the

right side of equation (11).

From equations (9) and (11) we conclude that

Proj(Xg ; 0 Zg;)(a") = Proj(Xg; 0 ZE )(a). (12)

Now, consider circuit blockM € ;  interacting via its—-all external--1/O signals with
(a) its actual environment, and (b) its abstract environm?&ﬁ; i whose automaton

behavior isé\%,, i . Equations (12) suggest that circuit bIcM:E i can experience, the

same sequence of I/0O signal transitions within both environments.

Naturally then, the original environment M‘E:,i is not distinguishable from the
abstract environment df1¢ ;  when their sequence of interactions Mfh adhere
tot (as well ag' ). On the other hand, the behavior of any circuit block (i.e., its set of
all possible traces) is inherently unique per any unique sequence of 1/O interactions.

Intuitively, it then follows that

« (i) the same sequence of transitions\¢f (the collection of variabled ©f
and I\A/IVCV, i ) along traca of the original circuit must also be observabl€'in
(the sub-circuit composed d¥l £ ; ardy ; ). In other words, we must have
Proj(VC®)(t) O BC;

« (i) the same sequence of transitions\6f along trice  of sub-ci@uit  must
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also be observable i@ . In other words, we must taueProj(VC)(BC)

Claim (i) above (and similarly, claim (ii)) can be proven by an induction on the
length of tracet (and that df ) and the enabling conditions of circuit modules of
ME ;. The inductive proofs of the two claims are very similar. However, for the sake

of completeness, we present both of them in what follows.

« (i) Consider the original circuiC and its sub-circu@® . Lefl B¢  be any cir-
cuit trace. The circuit modules &IE ;  have a unique initial state in tibth ~ and
C'; that is, the two circuits are initial-state-compatible. Now, since the initial
state of any circuit uniquely defines the trace of that circuit which has a length of
one, for the base case dfen(t) =1  we ha®roj(V®)(t) OB . Now
assume thaProj(V<)(t,) OB holds for any tracel) B¢  of length  for
which Proj(V{ i)(t,) = tV%i OB ;. (Note that trace’% , corresponding to
tracet,, , is not necessarily of length , and the subscript is only to emphasize the
correspondence.). We show that any trgce, 0 B¢ of lemgthl , such that
t, is the prefix oft,, ;, andProj(V{, )(t,,,) = tY& OB% ; will satisfy the
condition Proj(VC)(t, ., ;) O BC . To see this, if the last state transitiort of ;
involves no variables of c , then obviously
Proj(VC)(t,.,) = Proj(v®)(t,) O BC. Otherwise, any variable ofC'
involved in the last state transition gf,,, s either driven by a modulsfa,
or by one outsideM & ; . First consider the case in whitf ; drives a changing
variable of the last state transition @f,, : since the modules/gf, have

experienced the same set of signal transitions in lidth  @nd , up to the last
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state transition of . ; , their state prior to the last transition is the same in both
circuits, and thus at that point any signal ME i which is enable@in is also
enabled inC' . Secondly, consider the case in which a changing variaile of  in
the last state transition af,, ;  is driven by a module outditie ; : shige
is the automaton behavior 1%, ;  amtoj(VE, i)(t,, 1) = tV8 OB ; ,the
transitions of any such variable (who has to be an external variable) along trace
t,,, are preserved in the automatonl‘?dﬁ,l i ;thatis, any such variable changes
are also enabled i€ . Thus in both cases we observe that any change of vari-
ables ofVC' that occurs at the last state transition} of; in the original circuit,
is also enabled at the last state ®Bfoj(V<)(t,) in sub-cir€iit . It then fol-

lows thatProj(VC)(t, ., ) OBC .

« (i) Consider the original circuiC and its sub-circu@@ , and tefl B¢ be any
sub-circuit trace. Sinc€ an@  are initial-state-compatible, for the base case
of Len(t) =1 we have t'0OProj(V€)(B€) . Now assume that

t', 0 Proj(VE)(BC) holds for any tracet', 01 B¢ of lengtm for which
Proj(V§, (t,) = tYi where tV%i O BS ; . (Note that trace’%: , corre-
sponding to trace',, , is not necessarily of length , and the subscript is only to
emphasize the correspondence.).We show that any tface ] B¢ of length
n+1, such thatt', is the prefix of ,,; Proj(V& )(t,,1) = t},@i , and
tr\;/yfvvi 0B, i, will satisfy the conditiont',, , 0 Proj(VC)(BC) . To see this,
any variable ofC' involved in the last state transitiort’gf, ;  is either driven by

amodule inME; or byM{ ; . First consider the case in whidig ; drives a
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changing variable of the last state transitiort'qf, ;  : since the modulbstof
have experienced the same set of signal transitions inGoth Cand , up to the
last state transition of ., ; , their state prior to the last transition is the same in
both circuits, and thus at that point any signaM)E i which is enabled in  is
also enabled irC . Secondly, consider the case in which a changing variable of
C' in the last state transition ¢f, , , isdriven B ;  and is thus a variable in
V& i: from Y% OProj(V§ )(BC) and Proj(V, )(t,.,) = tV& we
know that Proj(V, i)(t',+ 1) O Proj(V{, i)(BC) , suggesting that any§; ;
changes inC' and along,,,; are also enablecCin . Thus in both cases we
observe that any change of variablesut that occurs at the last state transition

of t',, ; in sub-circuitC' , is also enabled (possibly after a sequence of\ffén-

signal transitions) irC . It then follows thét , , O Proj(V<)(BC) =.

Corollary 3.6 [Properties of traces captured in a safe abstraction] Let

C = [MCS, AC, V€ GE€, FACObe any circuit for which there exists a behavB¥©

that is a safe abstraction &©  over somé 0VC | LtétBC be any trace for
which there existsW" 0 BW®  such th&roj(WC)(t) = tW¢ ,andlgt= C§; be
any sub-circuit ofC . TherProj(VC)(t) O B¢ . Moreover, if 0 B¢ s any trace

such thatProj(V\ i) (t) = Proj(V& i)(tW°) , thew' O Proj(VC)(BC).

Informally speaking, Corollary 3.6 suggests that if a circuit trace is successfully
abstracted by a safe abstraction (i.e. by tre¢e ), then not only (the projection of)

tracet will be locally present in any sub-circuit of the circuit, but also any ttace  of
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any sub-circuitC' that adheres to tracé"  --and thus to --will be (globally) present

in circuitC . =

Proof (Sketch) SinceProj(WC)(t) = tW° an¥{, ; OWC , by Lemma 2.1 we have

Proj(V{, )(t) = Proj(V{, i) (t"°). (13)
SincetW® 0 BW® | we have

Proj(Vig, ) (tV) O Proj(V, i) (BV). (14)
From (13) and (14) we have

Proj(Vig, ) (t) O Proj(Vi, i) (BWC). (15)
From Lemma 3.3 we have

Proj(Viy, )(BY) DBy, i (16)
From (15) and (16) we have

Proj(V, )(t) = tY& 0B, ;. (17)
It then follows from (17) and Lemma 3.5 tHatoj(VC)(t) O BC
On the other hand, froRroj(V{, )(t') = Proj(V{, ) (tW°) and (13) we have

Proj(V{, )(t) = Proj(Vi, )(t), (18)
and then from (17) and (18) we have

Proj(V&, i)(t) = tVii, (19)

It then follows from (19) and Lemma 3.5 thafl Proj(VC)(BC) = .
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Note that conditionProj(V\ i)(t) = Proj(V{ )(tW°) of Corollary 3.6 is

equivalent toProj(V{, ;)(t') O Proj(V{, i) (BWS) .

Corollary 3.7 [Circuit and sub-circuit behaviors]

Let C = M€, A€, VC, G, FACO be any circuit for which there exists a behavior
BWS = Proj(WC)(BC) that is a safe abstraction 8© over som& OVC | and let
C' = C{ ; be any sub-circuit o€ . TheRroj(V<)(B®) OBC u.

Informally speaking, Corollary 3.7 suggests that if a safe abstraction of the behav-
ior of a circuit is exact, then the projection of the circuit behavior will be locally
present in any sub-circuit of the circuit. That is, there is no circuit trace not exhibited

by each sub-circuit.

Proof (Sketch) For the special case B = Proj(WC)(B€) ,forany B¢  there
exists atW® O BW® such thaProj(WC)(t) = tW® | and thus by Corollary 3.6 we

haveProj(VC)(t) O BC . It then follows tha®Proj(VC)(BC) 0 BC u

Lemma 3.8 [Under approximation of reduced sub-circuit behaviors] Let

C = M€, A€, V€, GC FACO be any circuit for which there exists a behavior
BWC O Proj(WC)(BC) that is a safe abstraction dB¢  over sonwC OVC |
EC = AnWC, and let C' =C§; be any sub-circuit ofC . Then

RedB®) O Proj(VC)(BC). s

Informally speaking, Lemma 3.8 suggests that the behavior of any sub-circuit of a

circuit with a safe abstraction, when reduced, is completely present in the projection of
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the circuit behavior. That is, there is no prime trace of the sub-circuit not exhibited by
the circuit. Note that a prime trace, if not failure-free itself, has an immediate prefix

that is failure-free.

Proof (Sketch) By Lemma 3.4, we know theroj(A%, ;)(BW®) O Proj(A¥, i)(BC) ;
thus, the possible interactions of circuit-blodk ;  with the rest of the circuit can
only be under-approximated by environment modhﬁ(&“ . To see this, note that
environment moduIeMVCV, i is directly derived from (a projection BHY° by solely
labeling unexpected signal transitions at thputs of I\A/I\?V,i as failure transitions;
thus, the behavior of theutputsignals ofI\A/I\(,:v,i --who serve as the input signals of
circuit block Mgi --exactly adhere tBW° . Now, within such an under-approximated
abstract environmenf/l\%,,i , the (reduced or prime) behavior of circuit bM@(i

can only be an under-approximation of the behavior ME,i within its real
environment; i.e., RedB®) 0 Proj(VC)(B®) . This relation is stated over
Red(B€), and notBC . The reason is thatBS  contains an input chok&I{p ; ,
since the reaction ofx?l\?v,i to that choke is not originally specified by the safe
abstraction, any behavior beyond that failure point can be a spurious behavior
(introduced by our arbitrary choice of the destination state of a failure transition), not
necessarily present in the original circuit. However, the fact that the above relation
holds forRedB€) and noBC does not make it any less attractive. This is true since
only the first fault along any trace is significant to us; i.e., we only care about prime

traces and behaviors.
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More formally, consider any prime tra¢el] B¢ andl%_ = Proj(\A/\(,:\,, i) (t)
. . . "C ) Wc . "C . WC
There are two cases; elthé\r‘}\%’i O Proj(Vw. i) (BY) q';vcv,i O Proj(Vw, ) (BYY)
In case of t'Vva-D Proj(\A/\(,:v‘ N (BWS) |, Corollary 3.6 immediately suggests that

t' 0 Proj(V®)(B®). So, consider the case df.c O Proj(V, ) (BWS) , where

Wi
t'»%hi must be a failure trace &' ending with an input choke to environment module
M ;. Lett" O BC be the immediate prefix af . Note that sirite is a prime failure
trace, its prefix t" will  be failure-free, and we will have
t'gg, = Proj(V, i) (t") O Proj(V )(BW). But then by Corollary 3.6 we will
havet" O Proj(V<)(BC) . This suggests that the moduledi ; can experience the
same sequence of signal transitiond'of inbGth @hd |, reaching a common local
state inME ; atthe end df . But then, any signal\d ; which is enabledin  at
the end oft” is also enabled @ ;thatis, the last (failure) dtatesitionof C' along

t' is also enabled ifC , although tlmeachedstates may not be compatible. In other
words, t' 0 Proj(VC)(BC€) for the case of'\A/chyi 0 Proj(V 1)(BW°)  (again, note
that the last signal transition @f is presentPmoj(VC)(B€) , but probably not the
last state oft' ). Thus we have shown thafl Proj(V)(BC) holds for any prime
tracet' 0 BC , which is equivalent to sayifed B€) O Proj(VC)(BC) = .

At this point we are ready to present the proof of the main two theorems of this

section, Theorem 3.1 and Theorem 3.2.
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Theorem 3.1. [Circuit versus sub-circuit failure-freedom, 1]
Let C = [MC, AC, V€ GC, FACO be any circuit for which there exists a behavior
BWC that is a safe abstraction &© over somé OVC | dfd = AC n WC

Then, if any sub-circuiC'= C{, ; is not failure-free, theén is not failure-free.

Proof (Sketch) Lett' 0 BC be any (shortest) failure trace@f  which is prime; i.e.,

t' 0 RedB€). By Lemma 3.8 we havRked(BC) O Proj(VC)(B€) , which together
with t' 0 Red(B®) suggest that' 0 Proj(VC)(BC) . Thus, there must exist a trace

t O BC such thatt' = Proj(VC)(t) ; that is, the variables of sub-circdit can
observe the same sequence of transitions (thét of )inGoth Cand . Now, consider
the last state transition of traded B¢  which is by assumption a failure transition.
The failing circuit module ofC' (experiencing an illegal input signal transition) is
either an ordinary module @'= C{, ; (and thus a modul&of ), oritis environment
module I\A/IVCV, i . If the failing module ofZ" is an ordinary module, then the failure is
obviously a failure ofC as well, since the failing module can experience exactly the
same sequence of events in b@h a&id . On the other haﬁ/tﬁ,jﬁ Is the failing
module of C' (i.e., the transition of an external signal is causing an input choke to
I\7IVCV, i), then the actual output behavior of circuit blotszkgi must have been under
estimated by safe specificati(ffﬁ,, i ; but this can happen only if the behavior of the
external variable®VC was under-approximated by safe abstraB#6n . (Remember
that safe specificatioﬁa\(fv, i which defines the expected input transitioﬁd;\%,@ﬁ is
obtained via a projection of safe abstractiBW® .). However, by definition of a safe

abstraction,BV° is obliged to exactly resemble the behaviowsf if cirGuit  is
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failure-free; in other words, iBW® is not exact, the&d is not failure-free. Hence,
input chokes toI\A/I\?V, i are always indicative of circ@t failure. This completes our
proof that any failure in any sub-circu@’ is always an indication of failure of circuit

C.»
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Theorem 3.2. [Circuit versus sub-circuit failure-freedom, 1]
Let C = [MC, AC, V€ GC, FACO be any circuit for which there exists a behavior
BWC that is a safe abstraction & over som& OVC | &fd= ACnWC | If

all sub-circuitsC{ ,, ..., C{ ¢ are failure-free, th&h s, itself, failure-fiee.

Proof (Sketch): We prove the failure-freedom@f by way of contradiction. Suppose
C is not failure-free. Under this assumption, and by the definition of a safe
abstraction, we must have BW°OProj(WC)(BC) ; that s, either

BWC O Proj(WC)(BC) or BV = Proj(WC)(B°).

If BW°OProj(WC)(BC) is the case (i.e., BN  under-approximates
Proj(WC)(B®)), then there must be a shortest trace d,...q;...q...rd,, ; 0 B®
such thatt,,c = Proj(WC)(t) = Proj(W°)(dy...0;..-Gpn---rd,+ 1) O BWS . Here,
all and only those states of trade  which are entered with some external variable
change are labeled as 0s< j<n+1 . Thus any pair of stgfes q:jmg are sepa-
rated by maximal non-observable sub-traces of . (A non-observable sub-trace is one
which does not contain any external variabl@¥ ) changes.). $tate is the next to
last state of tracé , and there must be an external signaEC 0 WC which is
involved in the transition from state to stagg,,; . There must then exist a unique
circuit block M ; such that signah is an external output signalM ; , that is
al ZE ;. Now considett' = q...q;...q,...r ,the immediate prefix bf , and its pro-
jection t',c = Proj(WC€)(t') = Proj(W¢)(dy..-q;---9,) - (Note that the projection

of the last maximal non-observable sub-tracet'of is the sameraf{W°<)(q,,) ).
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Sincet is the shortest trace of interest, we must hgyel] BW* ; but then by Lemma
3.5 we must havé®roj(VC)(t') 0B ,whe@'= Cf ; .Hence, the circuit modules
of block ME; can experience the same sequence of transitions (that of
Proj(V®)(t'yc)) inbothC andC'= C§ ; . But this suggests that external output sig-
nala of M§ ; is enabled at stateroj(V<)(q,) = Proj(V)(r) .On the other hand
B\?V, i, the safe specification oM E,i , Specifies any transition of sigmal at state
Proj(V®)(r) as a failure transition; this is true becaugg. 0 BW® implies that
Proj(V®)(tyc) O Proj(VE)(BW®). Now, since on one hane is enabled at state
Proj(VC)(r) of C', and on the other hand it is not expected to be enabled by safe
specificationé\?vl i ,anytransition @& will cause an input choke to environment mod-
ule I\A/I\?V, i , suggesting tha' is not failure-free. But all sub-circuit€Cof  are failure-
free by the conditions of Theorem 3.2. Thus, the assumptio@ of  not being failure-

free leads to a contradiction in the cas®¥f O Proj(WC)(BC)

Next, under the assumption &  not being failure-free, consider the case of
BWS = Proj(WC)(BC). Then, there must exist a shortest (prime) failing trace
t = gg...Q;...q,...r'r B¢, an internal signala0 H® , a unique circuit module
Mi O MEC of circuit C, such that signabd XI  has a transition from state rto
which is illegal. There must also exist a unique circuit blobkg ; such that
MIOME;. By Corollary 3.7, BW® = Proj(W€)(B€) implies that
Proj(VC)(t) OBC. This implies that the above failure at circuit elemevt will

also be present iﬁi\(,:\,’ i, suggesting tlﬁzﬁ,’ i is not failure-free. Thus, the assumption



103
of C not being failure-free leads to a contradiction in the case of
BWS = Proj(WC)(B°).
We have just shown that the assumption®f not being failure-free always would
imply the presence of some failure in some sub-circuit which is in contradiction with
the conditions of Theorem 3.2. Thus circ@it  must be failure-free if all of its sub-cir-

cuits are failure-freem
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Chapter 4

Induced Hierarchical Verification of Speed-Independence,

Issues

In this section, we first compare our proposed framework for hierarchical verification
of speed-independent circuits with that of complex-gate verification, in terms of how
the two frameworks choose the set of external variables over which safe abstractions
are found. Next, we discuss the issue of choosing sets of external variables that are
observationally sufficient (OSV sets), and how the choice can affect the performance
of hierarchical verification. Finally, we introduce the concept of sequential hierarchical
verification (SHV) as a heuristic that can improve the performance of hierarchical ver-
ification through better informed decisions; on the selection of external variables, and/

or on the order in which sub-circuits are verified.

4.1 Circuit Blocks Versus Complex-Gates

Our proposed framework for induced hierarchical verification of speed-independent

circuits is a generalization of a previous technique for two-level hierarchical verifica-
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tion of speed-independent circuits, called complex-gate verification [64, 65]. Both
frameworks try to find a safe abstraction of the circuit behavior over a set of external
variables which is then used to induce hierarchy in verification of the circuit. In this
subsection, we compare the two frameworks in terms of their constraints for selection
of sets of external variables, and how such constraints affect the requirements and per-

formance of the two frameworks.

In complex-gate verification, the set of external circuit variables over which a safe
abstraction is found is taken as a superset of all output signals of sequential circuit
modules. Then, for any module with external outputs, the module and the combina-
tional cone of logic driving it are collapsed into a complex-gate and complete reach-
ability analysis is performed on the collapsed circuit to find the behavior of its set of
external signals. Such sets of external signals partition a circuit into circuit blocks each
of which containing one or more complex-gates. Once a safe abstraction is found, each
circuit block can then be checked for conformance to its specification which is derived
from the safe abstraction. Note that since the complex-gate circuit has less signals, its

full reachability analysis is less expensive than that of the flat circuit.

First of all, note the limitation of this technique in not being able to hide outputs of
sequential modules. This limitation is not present in our more general verification
framework. Being able to hide more signals, our framework can potentially outper-

form this technique when deriving safe abstractions.
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Fig. 4.1A portion of a circuit with a multiple fan-out signal. a
(b) Complex-gate circuit. (c) Equivalent overlapped circuit blocks.

A second limitation of this approach is concerned with the verification of individ-
ual complex-gates. It very often is the case that complex-gates of a circuit overlap (See
Figure 4.1). Overlapping arbitrary circuit blocks and their associated problems were
discussed in a previous section. We noted that any signal in the common portion of two
overlapped arbitrary circuit blocks has to be external. However, in complex-gate verifi-
cation approach, all signals of the common portion of two complex-gates are hidden,
since they are internal signals of each of the two complex-gates. This suggests that a
complex-gate with overlapped logic cannot be verified individually. There are two
ways to solve this problem (See Figure 4.2). The first solution is to add to the set of
external signals, any signal which would have otherwise forked into two different (sin-
gle output) complex-gates. This solution will increase the number of external signals,
and thus add to the complexity of deriving safe abstractions. Another solution is to
combine overlapping complex-gates into multiple output complex-gates in such a way
that no two multiple output complex-gates overlap. (Note that such multiple-output
complex-gates are in fact same as the circuit blocks induced by partitioning the circuit

by the set of external signals.). This solution can potentially result large circuit blocks
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Fig. 4.2Two solutions to the problem of overlapping complex-gates.

(b) Including signal a in the set of external signals, and thus increasing the number of circuit blocks,
(c) Combining the two single-output complex-gate into a larger two-output complex-gate, reducing
the number of circuit blocks.

whose verification would be more expensive than smaller ones. Such large blocks may
need to be further partitioned into smaller blocks by choosing the signals that fork into
multiple complex-gates as the external signals of the next level of hierarchy. This solu-
tion can be less expensive than the first one. However, both solutions reveal that to cor-
rectly verify the circuit in this framework, not all outputs of combinational modules
can always be effectively hidden. This limitation, together with not being able to ever
hide the outputs of sequential modules, highlights the advantage of our more general

framework.

4.2 Selection of OSV Sets for Hierarchical Verification

One of the most controversial issues with our hierarchical verification technique is the
problem of choosing the set of external variables. While this problem, in its most gen-
eral form, can be an interesting subject for future research, some ad hoc and inherent

solutions are already available for it.
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Very often, observationally sufficient sets of circuit variables--over which safe

abstractions exist--have high correlations with handshake signals of the circuit. Since
full handshake protocols are an essential part of any speed-independent design, espe-
cially at higher levels of design hierarchy, coming up with OSV sets is not a hard prob-
lem, and designers can easily make an initial guess for an OSV set. If the observational
sufficiency of such a set can not be proven (e.g., an attempt to find a safe abstraction
over that set fails), it is often easy to figure out which signals/variables were involved

in violating the safety of the abstract behavior. Such signals/variables can then be
added to the set of external variables, and this procedure can be repeated until a safe
abstraction, and thus an OSV set, is found. This approach usually works very well,

unless the initial guess is not a good one.

It is to be noted, that failure in finding a safe abstraction over an OSV set would
cause a failure in recognizing its observational sufficiency. We can ensure that a set is
OSV only when we are successful in finding a safe abstraction (i.e., when the underly-
ing sub-automaton is projectable); otherwise, we had better choose another set of
external signals and see if we can find a safe abstraction over them. On the other hand,
increasing the size of a set of external signals is not always a guarantee that it will
eventually become OSV, and stay OSV from that point on. In general, a set of vari-
ables which is an unrecognized OSV set can easily loose the property by inclusion of a
new variable(s), or it may retain the property but not be recognized as an OSV set

again.
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Fig. 4.3An example of technology mapping

As the circuit is broken up into smaller and smaller circuit blocks, it becomes
harder to choose sets of external signals, since not much handshaking may be present
inside small pieces of the circuit. As we discussed in the section about complex-gate
verification, the output signals of combinational gates can be hidden in many cases.
Exceptions can include cases where the output of a sequentigh@ateio beabsent

from an external set of handshake signals.

To solve the problem of which sequential module outputs to hide, the circuit
designers can once again come to help. An example of this case is in technology map-
ping of Sl circuits using sequential decomposition [21, 25, 46]. Sequential decomposi-
tion substitutes a multi fan-in gate with a functionally and behaviorally equivalent
cone of logic that is composed of gates with smaller fan-ins (See Figure 4.3). Since
only the output of the new cone is expected to behave exactly as that of the original
gate, and in that case, the behavior of the newly introduced signals connecting the set
of modules is insignificant, they can all be hidden, even if they are outputs of sequen-
tial gates (See Figure 4.4). This is very similar to the case of complex-gate circuits.
First, remember that for any circuit, the set of signals of the corresponding complex-

gate circuit is always an OSV set. Secondly, note that when a module is decomposed,
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Fig. 4.4An example of sequential decomposition in technology mapping.
The newly introduced signal Z' can be hidden during hierarchical verification.

the resulting modules can be thought of as collapsing into the original module, as if the
original module is gpseudocomplex-gate. It then follows that the new signals intro-

duced by sequential decomposition can all be hidden.

4.3 Sequential Hierarchical Verification, SHV

In this section, we present some general directives which can potentially speed up
hierarchical verification. We will also discuss the issues involved with such proce-

dures.

As was mentioned in the previous section, OSV sets are very often a collection of
handshake signals of the circuit. For circuits that are composed of a large number of
communicating circuit blocks, the number of handshake signals can be very large.
(This can also be true at lower levels of the design hierarchy.). However, since the cost
of finding a safe abstractions is exponential in the size of the selected set of external
variables, we are much more interested in smaller sets. Smaller OSV sets may not rep-
resent all the circuit blocks of a particular level of the design hierarchy; i.e., a smaller

OSV set usually represents larger circuit blocks, and a larger circuit block may encom-
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Fig. 4.5An abstract illustration of Sequential Hierarchical Verification.

SHV can be directed by the knowledge of possible failure locations. Blocks of the circuit at the
highest level are ordered by the possibility of failure existence. At each level of hierarchy, the larger
circuit block is further partitioned into two circuit blocks, a small one and a large one, such that the
location of the next highly possible failure falls in the smaller block.

pass a couple of circuit blocks associated with a larger OSV set. Smaller OSV sets
very often include the handshake variables among subsets of communicating circuit
blocks, where the circuit blocks within each subset have direct mutual communica-
tions. Thus, smaller OSV sets tend to partition the circuit into circuit blocks, such that
each circuit block is collection of adjacent circuit blocks associated with a larger OSV
set. Now, given a small OSV set, its circuit blocks can be further partitioned into
smaller ones. This suggests that smaller OSV sets increase the depth of hierarchical
verification, but speed up the derivation of safe abstractions. There is a trade off
between the speed up of deriving safe abstractions and the increase in the depth of
hierarchy. However, since the former has an exponential cost and the latter has a sub-

exponential cost, smaller OSV sets are better preferred.

Now, consider the case in which the size of the circuit blocks associated with a
small OSV are not balanced: i.e., some of the circuit blocks are small and can be veri-

fied in fewer levels of hierarchy. If such OSV sets exist for a given circuit and the
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designer is most concerned about design errors located in the smaller circuit blocks,
the verification procedure can be sped up by first verifying those small circuit blocks,
and proceeding to other circuit blocks only once the small ones are found to be failure-
free. In this paradigm, the larger blocks are broken into smaller ones in a similar fash-
ion; that is, OSV sets are chosen in such a way that culprit design errors are most prob-
ably located in smaller circuit blocks. We call this verification paradsgquential
hierarchical verification or SHV (See Figure 4.5). Note that although this technique
can potentially speed up finding failures, a final decision on failure-freedom of any

block of the circuit cannot me made until all blocks are verified as failure-free.

Knowledge of the possible location of design errors is not the only motivation for
SHV. Another motivation for SHV can be the relative ease of finding safe abstractions.
For example, consider a circuit which is to be verified against a specification. The cir-
cuit can be thought of as a collection of cones of logic, each driven by the inputs of the
circuit and driving one output of the circuit. Now, if there exists a (reasonably) small
cone of logic and a small OSV set containing the I/O signals of that cone, then that
cone can be verified quickly, and the rest of the circuit can be verified in a similar fash-
ion, sequentially (See Figure 4.6). Here, the SHV paradigm is directed towards speed-
ing up the verification, without necessarily having the knowledge of the possible

location of design errors.

Finally, it is to be noted that the performance of any SHV procedure is very depen-

dent on the choice of appropriate OSV sets (and their existence), and ordering of veri-
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Fig. 4.6 An abstract illustration of Sequential Hierarchical Verification.

SHV can be directed by the ease of deriving safe abstractions for cones of logic. Cones of logic
are verified in the specified order. At each step, the next cone constitutes a single small circuit
block, while the remaining cones constitute a large circuit block(s).

fication of the circuit blocks at each level of hierarchy. While designers (as well as
their intuition) should be able to guide such SHV approaches in many cases, devising

heuristics for SHV verification can be an interesting subject for future research.
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Chapter 5

Finding Safe Abstractions

Our hierarchical verification framework was presented in a previous chapter, along
with a proof of its correctness. In this framework, a safe abstraction of the behavior of
a circuit over a set of external variables is used to verify sub-circuits of the circuit that
are induced by the safe abstraction--in a recursive and hierarchical fashion. This hier-
archical approach, assuming that there are efficient techniques to derive safe abstrac-

tions, can speed up the verification process.

Safe abstractions and efficient techniques to actually find them are the subject of
this chapter. We use a partial order technique to find safe abstractions. This partial
order technique constructs a subtle sub-automaton of the circuit automaton by partially
exploring the state space of the circuit in a delicate fashion. The circuit sub-automaton
is constructed with the goal of preserviali external variable transitions and main-
taining as little number of interleavings of internal variable transitions as possible. By
construction, if the sub-automaton is projectable onto the set of external variables, then
the behavior of its projection is guaranteed to be a safe abstraction of the circuit behav-

ior. Since partial order techniques are reduction techniques that mitigate the state
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explosion problem, by using them in deriving safe abstractions we have achieved our

goal of efficient hierarchical verification.

This chapter is organized as follows. In Section 5.1 the general concepts and termi-
nology associated with partial order reductions are introduced. In Section 5.2 we show
how a particular class of partial order reduction techniques can be utilized for our spe-
cific problem of finding safe abstractions. This technique is capable of constructing a
sub-automaton of circuit automaton that preserves the behavior of external variables of
failure-free circuits. We know from the previous chapter that if such sub-automaton is
also projectable onto the set of external variables, its projection would be a safe
abstraction. Based on the requirements of this particular partial order technique, we
then derive a set of constraints for the set of external circuit variables. Finally, we
present a first partial order reduction algorithm and proof its correctness in generating
reduced state spaces that can be used for finding safe abstractions. In Section 5.3, we
present an enhanced partial order algorithm as a complete solution for finding safe
abstractions. This algorithm is also furnished with an embedded procedure for on-the-
fly projection of the constructed sub-automaton. The correctness of the enhanced algo-
rithm is proven, and the chapter is closed by presenting an optimized version of the
algorithm which can further improve the performance of partial order reduction for

finding safe abstractions.
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5.1 Some Background

Formal verification paradigms that are based on state space exploration can often
greatly benefit from partial order reduction techniques that help attack the state space
explosion problem [1, 62, 63, 32, 33, 81, 82]. In asynchronous systems, which are
highly concurrent systems, one source of state space explosion is the expoméntial ()
number of possible interleavings af  concurrent events. If the concurrent events are
independentthen all such interleavings are equivalent since they all lead to the same
state. Now, if the property of the system to be verified does not depend on the ordering
of such concurrent (independent) events, it would suffice to explore just one represen-
tative interleaving of them from the set of all possible interleavings. Consequently,
during state space exploration, at each state it suffices to exploeanate set of
enabled transitions, rather than all of them. This can usually lead to significant reduc-
tion in the size of the explored state space, especially for highly concurrent asynchro-
nous systems. In our framework, we use partial order reduction in finding a safe
abstraction of the behavior of a set @fternalcircuit variables. As we will see, our
partial order reduction, assuming that tbeternalvariables aréndependenof the
internal variables, explores in a failure-free circuit only one interleavingndepen-

dent internal transitionswhile exploring all possible external transitions (and thus
their interleavings). The explored sub-automaton of the circuit automaton will thus
preserve the exact behavior of the external variables of a failure-free circuit, and thus,

if it is also projectable onto the set of external variables, its projection would be a safe
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abstraction. The details of this approach are the subject of the following sections of

this chapter.

In the following subsections, we review the portion of the general framework for
partial order reductions [1, 62, 63, 32, 33, 81, 82] that is relevant to our work. Instead
of presenting the associated concepts in their original (general) form, we have occa-

sionally tailored some of them into our own framework, only to ease the presentation.

5.1.1 Partial Order Reductions

Peled [62] gives a very concise and yet complete overview of partial order reduction
techniques for the analysis of concurrent systems that are modeled with interleaved
semantics. In his overview, the general concepts in partial order reductions are pre-
sented first, followed by different sets of conditions that must be met for valid reduc-
tions in formalisms that include among others LTL (Linear Time Logic), CTL

(Computational Tree Logic), and process algebra.

In our framework, a two step procedure is proposed for finding safe abstractions.
The first step involves finding a sub-behavior of a circuit that would preserve the
behavior of external variables of a failure-free circuit. This problem is shown to be
equivalent to the problem of generating a reduced state space of the (failure-free) cir-
cuit such that for each trace in the full state space, therstistgering equivalent trace
in the reduced one. Partial order reductions for LTL (Linear Temporal Logic) are

claimed to precisely generate what we are looking for; a reduced state space that is
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equivalent to the full onep to stuttering Thus, even without going over LTL logics,
we have been able to prove the correctness of our partial order technique for finding
safe abstractions by showing that it satisfies all the necessary conditions (for LTL), and

that it is thus valid by construction.

Our following overview of partial order reduction techniques is accordingly
restricted to the domain of reductions for LTL [62]. However, since we directly focus
on conditions for stuttering equivalence (and not general LTL properties) we will skip

an overview of LTL logics.

We will introduce the relevant concepts, and give specific examples that will grad-
ually form the connection between the general reduction technique (for stuttering

equivalence), and our quest for finding safe abstractions.

Definition 5.1 [Finite transition system] [62] A finite transition system is a triple
FTS= OFA AR I where FA= AV, QA TR, g0 is a finite state
automaton,AP is a finite set gropositions and L:Q — 2AP is anassignment
function For any sequence of statés= q,q,0,... , we define the corresponding

propositions sequence &rop(t) = L(qy)L(q;)L(qy).... =

Example 5.1 Let C = [MC, AC, V€, G, FACO be a circuit andVC O VC be a set

of external variables. We can then define transition sy$tais® = [FAC, APC, LCO

as follows: AP = { Proj(W¢)(qg)|q 0 Q¢} , andL®(q) = Proj(W¢)(q) . Thus,

the transition system simply assigns to each state of the circuit autordten , the

projection of that state onto the set of external variablés, s
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As mentioned in [62], partial order reduction is based on several observations
about the nature of concurrent computations and specification formalisms. The first
observation is that concurrently executed transitions are afbemmutative This is

usually formalized in the definition aidependence

In the following, we have tailored the general notion of independence [1, 62, 63,
32, 33, 81, 82] to our own framework, so that it appropriately accounts for the particu-

lar way that we label the states of a transition system.

Definition 5.2 [Independent variables][62]

Let FAC = [AC, VC, Q¢ AC, TRE, uC, g§Ube a circuit automaton. A pair of distinct
variables v, wJ V€ areindependentwritten v Ow if for all statesqO Q° , if

v, w Enabled(q), then for all transitiongq, a, d) O TR® that change but not

w, w is enabled ind , and for all transitior{g}, b, d') O TR®  that change but not
v, Vv is enabled ind' , and there exists a unique stgitél Q€ such that all -transi-
tions (there has to exist at least one) from stite  that change ,abdall -transitions
(there has to exist at least one) from stgte  that chamge legdto ;i.e., any two
stringsa, b andb, a from statq that change awd (in different orders) always

lead to a single stag" (hemg,b0 AC e m).

Intuitively, two variables are independent if no transition that changes only one of
them can disable the other one, and any order of execution of two signal transitions,
each changing one of the variables, leads to the same global state. The independence

relation on the variables of a circuit automaton is irreflexive and symmetric. It is also
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notable that by the above definition of independence, two variables that can change

simultaneouslyy a single state transition, are not necessarily dependent.

Let g be any state, and and be any two enabled independent varialdes at
Then if (9,8 d)OTRC is any transition changingv but notv , and
(g, b, d"), (d, b, ") O TRC are any pair of transitions changimg  but not , then we
must have(q", a, ") O TRC is also changing . If a specification is only interested in
the first and last states, argfl’ , then we do not need to explore the transitions of
bothv andw fromqg . Otherwise, one must consider the possibility that the value of
propositions might be different at the intermediate states ¢ind , and even be differ-
ent from those aty og" , and if so, the transitions of both variakles vand  might

need to be explored from staje for a valid partial order reduction.

Example 5.2Let M be any module of a circul€  such th¥t# 0 ;i.e., the module
has internal variables. Assume that all (local) states of moddie are reachable
within a given circuit. Letv 0 Al andv 0 Vi — Al be any pair of module variables for
which there exists a transition(q, v, d) O TRC that changes both variables
(AC(q)|w#AC(q)|w), thenv andw are simply changing simultaneouslygat . On
the other hand, ifw is enabled i  but disabled th without being changed
(AC(ag)|w = AC(q)|w), thenv andw are dependent. Similarly, ¥f  anwd are
enabled ing and there exists a transitigp u, d) D TRC ulJ A Q¢ , that changes

w and disabley ,thenagain amd are depensent.
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Fig. 5.1Module description of a fair arbiter element.
(a) A fair arbiter element. (b) The module automaton of the fair arbiter.

Example 5.3Figure 5.1 shows the module automaton of a fair arbiér . From the
module automaton, it can be seen tha#lif ~ is amodule in a ci@uit , and there exists
g0 Q€ such thatProj(Vi)(g) = 00000 ,r1,r20enabledq) , andl and2

cannot disable each other@t |, then different states can be reached from depending
on which signalrl orr2 makes its transition first. Thus, signials afd are
dependent in circuilC . Note that variable is also enabled at sjate , however,
transition of signak1 will disable it. Thus, variablgs and are depende@t in
Finally, p can simultaneously change with all other three sigm@lsal , ahd

without being dependent with any of theam.

Example 5.4 Figure 5.2 shows the module automaton of a mutual exclusion (ME)
module M! . From the module automaton, it can be seen thit! if is a module of a

circuit C, and there existsqO Q¢ such thaProj(Vi)(q) = 0000 and
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Fig. 5.2Module description of a Mutual-Exclusion element.
(a) A Mutual-Exclusion element. (b) The module automaton of the ME element.

rl,r20enabledq), then regardless of the order in which signels  a@d  make
their transitions, a unique state can be reached if no other variable changes along the
two transitions and1l and2 do not disable each otheg at . Thus, the two signals
can (possibly) be independent. However, if one of them can disable the other one (e.g.,
if the circuit has a failure), then the two will be dependent. Now, assume there exists
g 0 Q€ such thatProj(Vi)(g) = 1100 . Then botal araR are enabledat , but
transition of either of them disables the other oné. aid are thus dependent,

however, this output choice is not considered a faiwre.

A taxonomy of all possible dependencies between circuit variables is summarized

in the following.
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(a) an input v that can illegally disable an output w, a failure.

(b) an input v that can legally disable an output w.

(c) output choice between two outputs v and w.

(d) an 1/O signal w that can disable an internal variable v,
without v changing simultaneously.

(e) an internal variable v that can change in a transition that disables
an output signal w, without simultaneously changing w.

(f) two /O signals v and w whose order can affect the
internal state of the corresponding module differently. One of them
simultaneously changes with u, and the other one disables u as in (d).

(g9) two internal variables v and w of a module. One of them
simultaneously changes with I/O signal u, and the other one
is dependent on u as in (d) or (e).

(h) two internal variables v and w of separate modules. One of them
simultaneously changes with common 1/O signal u, and the other

one is dependent on u as in (d) or (e).

u2

w
«—> (i) an internal variable v and a signal w,
w and u2 are dependent as in (b), (c) or (f),

u2 and v can change simultaneously.

u2

«—> (j) an internal variable v and a signal w,

v and ul are dependent as in (h),

ul and w can change simultaneously.

Fig. 5.3Classification of dependency between any two circuit variatéesiw.
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Observation 5.1 [Classification of dependencies between circuit variables]
Let C = [MC, AC, vC, GC, FACO be a circuit. A classification of all kinds of depen-
dencies between circuit variables is depicted in Figure 5.3. In the first two cases ((a)
and (b)), dependency is due to an input being able to disable an output of a module.
The incurred non-determinism can be associated with eithkgal (acceptable)
behavior (case (b)), or an undesirable failure (case (a)). Output choice (case (c)) is
another form of legal non-determinism where an output can disable another output; it
thus creates dependency between the two outputs (see Example 5.4). If any I/O signal
of a module can disable an internal state variable (case (d)), or conversely, if the inter-
nal state variable can change in a transition that disables the I/O signal (case (e)), then
the I/O signal and the internal state variable are dependent. Case (f) is different from
case (b) or (c) in that the two signals amd  do not necessarily disable each other;
rather, the module might reach different local states by different interleavings of the
two variables. As indicated in Figure 5.3.f, dependence of an internal vauable  with
one I/O signalv , and its simultaneous transition with another 1/0O signal  has made
the two I/O signals dependent. The four last cases are similar to case (f) in that if any
two variablesv andu are dependent, then any third variable  that can simulta-
neously change witlv | ) is also dependentwnv ( ). There might be other depen-
dency types that are missed in Figure 5.3, but the important result of this classification
is that any kind oflegal dependency between two circuit variables is the result of
dependencies of types (b), (c), (d), or (e) between (possibly other) pairs of variables

that are extended to other variables by means of simultaneity of transitions.
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Definition 5.3 [Simultaneity, prime, and failure-free dependency conditions]
Based on Observation 5.1, we define the sgirohe dependency conditioas the set
containing conditions (b), (c), (d), and (e) of Figure 5.3. We definesthrultaneity
condition to exist between any two circuit variables that can ever change
simultaneously. We call the union of prime dependency conditions and the

simultaneity condition afailure-free dependency conditioms

A second observation about concurrent systems with interleaved semantics is that
often the transitions of only a few variables can change the truth values of the proposi-

tional variables, and thus be visible.

Definition 5.4 [Invisible variables] [62] Let FTS = OFA AR I be a finite
transition system. A variable 0 VC isvisibleif for all transitions(q, a, ) O TR

that change variable , we haléq) = L(Q) = .

Example 5.5Let C = M€, A€, V€, GC, FACO be a circuit, W€ O VC be a set of
external circuit variables, anBTS® = [FAC, APC, LC0 be a finite transition system
as described in Example 5.1 (i.&$(q) = Proj(WC)(q) ). Then all variable®/sf

are visible. If in addition, W€ is such that no pair of variableg] WC and
w [ VC—-WC can change simultaneously, then amy] VC—WC would be an

invisible variablen
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Definition 5.5 [Stuttering equivalence][62]

Let FTS = OFA AR L be a finite transition system. The stutter removal operator
Stutt(.) applied to a propositions sequenge results in a sequBticE(p) where
each consecutive repetition of labeling is replaced by a single occurrence. Two propo-
sition sequences and aeguivalent up to stutteringf Stutt(oc) = Stutt(p).

Two sequence of statest andt' arestutter  equivalent if

Stutt( Prop(t)) = Stutt(Prop(t')). =

Example 5.6Let C = [MC, AC, V€ GC, FACO be a circuit, W€ O VC be a set of
external circuit variables, anBTS® = [FAC, APC,LC0 be a finite transition system
as described in Example 5.1 (i.e.¢(q) = Proj(WC)(q) ). Then for any trace

t = gy0;0,..- We haveProj(WC)(t) = Stutt(Prop(t)) =

The next notion that is defined in [62] is that ofparsistent functionin partial
order state exploration, the subset of enabled variables whose transitions are selected
to be explored from a statg  should be independent, not only of all the remaining
enabled variables in state , but also of any variable that can become enabled in a state

reachable frong by transitions of variables not in the selected set.

Definition 5.6 [Persistent functions and setgp2]

Let FAC = [AC, VC QF, AC, TRE, uC, q§ be a circuit automaton. A function
A:QC - VC is persistentf for every stateq [0 Q¢ the following holds: for all vari-

ablesvOA(q) , (av isenabledig v Enabledq) ), and (b)forany sequence of
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state transitions frong that changes variable¥/fry A(q) ownly, is independent
of all variables that can ever change (or become enabled) aloi(n). is then called

apersistent sevf variables at] =

As we will see in the following subsection, for partial order reduction we require a
selected set of enabled transitions that are explored from a given state to be persistent.
Note that by definition of a persistent set, a set that includes all enabled variables of a
stateq would be persistent gt . In general, we can possibly have more than one per-
sistent set of variables at each state . The choice of the persistent set can however
affect not only the structure of the explored state space, but also, the validity of partial

order reduction.

The last definition of this section is that of a TMSCC.

Definition 5.7 [Terminal Maximal Strongly Connected Component, TMSCC]

Let FAC = [AC, VC, QC, AC, TRC, uC, g§0 be an automaton (e.g., a sub-automaton
of a circuit automatorF AC ). A subs€® 0 QC  ist&rongly connected component of
FAC iff within FAC, all states inQ€ are reachable from all state<Qff . A strongly
connected component IRAC  maximalif it is not properly included in any other
strongly connected component, and ittésminal if there is no outgoing transitions

from it; i.e., there is no state not@®°  that is reachable from a St&€ im

By the above definition, a strongly connected component that is terminal is also

maximal, and thus a TMSCC.
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Definition 5.8 [Internal TMSCC] Let C = [MC, AC, VC, G, FACO be a circuit,
and WCOVC be a set of external circuit variables. WC  -compatible subset
Q€ 0 QC is called arinternal TMSCUff there exists a statg 0 Q¢  such that for any
stateq that is reachable fromm by any sequenc®\Sf -compatible states, we have
g O Q€ and there exists a sequence¥f  -compatible states@fom barkto .Note

that by the above definitiorQC 0 QC  is an internal TMSCC iff the above condition

holds for all stateg) [ Q€ . Moreover, this definition implies tigaft is closed, in the
sense that no sequence WC  -compatible states from any tat@° can leave
A€ u

5.1.2 Partial Order Reduction for Stuttering Equivalence

In partial order exploration of the state space of a system (e.g., a circuit), the transi-
tions of only a subset of enabled variables at any state  are explored. By carefully
choosing this subset, the properties of interest can be checked over the reduced state
space instead of the full state space, without incurring any false positive or negative
results. Under such conditions, the properly selected subset of variables at amy state

is usually called aampleset, and denoted b&kmple(q) O Enabled(q)

We are particularly interested in a partial order reduction that would generate a
reduced state space such that for each trace of the full state space, there exists a stutter-
ing equivalent trace in the reduced one. Assuming that depth first search (DFS) is used

for state space exploration, there exists a set of conditions for selection of ample sets
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that guarantee stuttering equivalence between the full and reduced state spaces [62].
Note that during DFS, reaching a state that is already on the search stack implies clos-

ing a cycle.

Conditions 5.9 [Ample sets for stuttering equivalencep2]

Let FTS = OFA AR Ll be a finite transition system. To generate a sub-automaton
FA (using DFS) that is stuttering equivalentEA |, it is sufficient for ample sets of

variables at each statgl] Q  to satisfy the following conditions.
C1l: Ample(q) is a persistent set.

C2: If Ample(q) # Enabled(q) (i.e.; g is notfully expanded)then all variables in

Ample(q) are invisible.
C3: For every TMSCC iFA , there exists at least one fully expanded stata [81].

To better understand conditi@il, consider any subtrade A that starts from

stateq . Two possible situations can happen [62]:

Case l.Let v be the first variable fromAmple(q) that changes aldang . Then
conditionC1 guarantees that is independent of all the variables that change before it
ont . Thus by applying the definition of independence repeatedly, all the transitions on
t prior to the transition byw can be commuted with the transitionvby . The result

would be a tracd’ starting fromg  whose first transition changes a variable in

Ample(q) .
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Case 2.f no transition by a variable immple(q) occurs dn , then by condition
C1, any variablev 0 Ample(q) is independent of all variables that change atong
Thus by definition of independence, one can form subtradé(s) startinggrom by
first firing any transition(s) changing variable , and then consecutively firing the tran-

sitions oft .

The above two cases suggest that for any sequence of trangitions from q state
of FA, there exists a sequende that starts by the transitions of a variable from
Ample(q).

ConditionC2 is to make the two subtracés atid in both of the above cases stut-
tering equivalent. First consider the case tahple(q) # Enabled(q) . Then none
of the variables inAmple(q) are visible. Now, moving a transition, that does not
change any visible variable, to the beginning of trac&€age ), or inserting such a
transition at the beginning of trade Cése 3, would not change the propositional
sequence of , and as aresult, ahd will be stutter equivalent. In thisCasad
C2 together suggest that would contain all the properties of ; confirming that it is
sufficient to explore fromg only transitions dAmple(q) . Next, consider the case
that Ample(q) = Enabledq) ; then we already explore all enabled transitions from

stateq .

When Ample(q) # Enabled(q) , the transitons of any variable
w [ Enabled(q)/ Ample(q) are deferred (note that  stays enabled in any state that
is reached fromg by a transition of a variable frohmple(q) ). Condit@®is to

prevent a situation in whickhmple(q) # Enabled(q) and the transition of a variable
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w [0 Enabled(q)/ Ample(q) can be deferred forever along a closed cycle of states
containing state . Note that if a variable that is enabled everywhere in a TMSCC does
not appear in the selected persistent sets of any of those states, then there could exist a
trace in the full state space that is not represented in the reduced state space by any
stuttering equivalent trace, which can lead to incorrect verification results. By enforc-
ing at least one state of each TMSCC of the reduced state space to be fully expanded,

this latter situation would be avoided.

An ample set that satisfies the above conditions insists on explatirenabled
transitions from a stat@r exploring the transitions of a persistent and invisible set of
variables only, such that at least one state of each TMSCC in the reduced state space is

fully expanded.

5.2 A First Partial Order Technique to Find Safe Abstractions

In this section, we present our first partial order reduction technique to find safe
abstractions. This partial order technique constructs a sub-automaton of the circuit
automaton such that, if it is projectable onto the set of external variables, its projection

would be a safe abstraction of the circuit behavior.

We first show how the first step in finding a safe abstraction can be formalized as a
search for a reduced state space that is stuttering equivalent with the full state space of
the circuit. This would assert that the partial order reduction of section 5.1.2, that gen-

erates stutter equivalent reduced state spaces, can be used in finding safe abstractions.
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Then we propose a set of conditions on external variables, and a strategy for selective
search (when using DFS state space exploration) that satisfy all the ample set condi-
tions for stutter equivalence (Conditions 5.9, Section 5.1.2). By construction, the
resultant partial order reduction would automatically be a valid one, and thus can be

used towards finding a safe abstraction.

5.2.1 Feasibility

In this subsection we show why and how partial order reductions can be used to derive

safe abstractions.

Theorem 5.2 [Behavior projections and stutter equivalence] Let

C = [MC, AC, V€ GC, FACO be a circuit, WC O VC be a set of external circuit
variables, and FTS® = [FAC, APC,LC0O be a finite transition system with
LS(qg) = Proj(WC)(q). If FAC is any sub-automaton oFAC that is stuttering
equivalent  with FAC (with  respect to FTSS ), then we have

Proj(WC)(B®) = Proj(WC)(BC).

Proof The above proposition is an immediate result of the following facts: because of
stuttering equivalence dFAC  andAC , for any trace BC there always exists a
trace TOBS such that Stutt(Prop(t)) = Stutt(Prop)) , and since
Stutt(Prop(t)) = Proj(WC)(t), we have Proj(WC)(t) = Proj(WC)(t) . The

latter result directly implies tha@roj(WC)(B€) = Proj(WC)(B°)
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Corollary 5.3 [Safe abstractions and stutter equivalence] Let
C = [MC, AC, V€ GC, FACO be a circuit, WC O VC be a set of external circuit
variables, and FTS® = [FAC, APC,LC0O be a finite transition system with
LC(q) = Proj(WC)(q). If partial order reduction for stuttering equivalence (Section

5.1.2) is used to construct a sub-automa  FAF BAl is also projectable

onto WC | thené\‘fvc is a safe abstractiongst oVf m .

Proof The above corollary is a direct implication of Proposition 5.2 and Corollary 2.4.
It implies that partial order reduction for stuttering equivalence has indeed the
potential of finding safe abstractions. For this purpose, we need to devise an strategy

for selection of ample sets that satisfy Conditions 5.9 of Section 5.1.2.

Before we present our strategy for selection of ample sets, we present our general
procedure to construct a sub-automaton of a circuit automaton using any ample set

strategy.

Procedure 5.1 [Construction of circuit sub-automaton by partial order reduction]

Let C = [MC, AC, VC GC, FACO be any circuit, WC OVC be a set of external
circuit variables, andFTS® = [FAC, APC, LC0 be a finite transition system with
LS(q) = Proj(WC)(q). Given any strategy for selection of ample sets for stuttering
equivalent  partial order reduction, a corresponding sub-automaton

FAC = [AC, VC QC AC TRC, i€, q§hof FAC = [AC, VC, QC,AC, TRC, uC, qSO

is constructed using the following steps:

(i) let Q° = q§, andTR® = O ;
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Construct_subautomaton( a3 d
Q®=Q%0q;
AS(d) = AS(a);
TR® = TR°0(q, & d);

} HC(a, a) = S;

Fig. 5.4Constructing partial order sub—automatom.C
States and transitions are added to sub-autonfaf®i  FAks is being partially explored.

(i) for any state transitiorfqg, a, d) 0 TRC that is explored from a stgte E)C , (i.e.,
(d, 3 d) 0 Ample(q)) et Q®=Q°Oq,  A%d) =A%),
TR® = TR°0(q, & ), and{i(q, @) = S =

We need to emphasize that usuallynple(q) is computed on the fly as a function

of the partially constructed sub-automafea®

The above procedure is independent of any ample set strategy, or any search strat-
egy for that matter (DFS or BFS); it simply specifies how to construct the sub-automa-
ton as the state space of the circuit automaton is partially explored. Algorithm
Construct_subautomaton of Figure 5.4, implements step (ii) of the above pro-

cedure.

In the following subsections, we first derive a set of criteria for external variables,
based on conditions for ample sets in partial order reduction for stuttering equivalence
(Conditions 5.9 of Section 5.1.2). These conditions, in turn, have a number of implica-
tions about the independence of circuit variables and persistency of sets of them.

Finally, assuming that external variables satisfy our specified conditions, we present
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our first strategy for selective search that satisfy the ample set conditions for stutter

equivalence (Conditions 5.9 of Section 5.1.2).

5.2.2 Conditions on the Set of External Variables

In this section, we first introduce some new propositions and definitions. Then, based
on the conditions for ample sets (Conditions 5.9 of Section 5.1.2), we derive a set of
conditions for the set of external variables. The implications of these conditions are

studied in the next subsection.

Proposition 5.4 [Visibility of external variables] Let C = M€, A€, VC, GC, FAC

be a circuit, WCOVC be a set of external circuit variables, and
FTSC = [(FAC, APC, L0 be a  finite  transition  system  with
LS(q) = Proj(WC)(q). Then all variables inWC are visible. Moreover, any

variable inVC —WC that is not simultaneous with any variablg\ia is invisible.

The above proposition directly follows from the definitions of visibility and simul-
taneity. It implies that to satisfy our ample set conditions (Conditions 5.9 of Section

5.1.2), if a statg is not fully expanded, then we must Wavgle(q) n WC = O

As seen in Example 5.5, W€ is such that no pair of variablgs WC and
w 0 VC€ —WC are simultaneous, then any varailbe] V€ —WC would be an invisi-
ble variable, and thus can be includedAmple(q) of any state  that is not fully
expanded. If in additionWC contains any variable that is dependent on any other

variable, then any variables J V€ —-WC  would be independent of all other circuit
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variables. Under these latter conditions, consider any sgate , and any variable
v VC —WEC that is enabled at statg ; thév} is always a persistent set. The rea-
son is that there is no sequence of state transitions ffom that, without changing ,
can lead to a state at which a variae  that dependg on can become enabled. The

reason: no variabley  that dependswn  exists.

Based on the above observations, we have devised a set of conditions on the set of

external variables that would then lead to a trivial strategy for selection of ample sets.

Definition 5.10 [Closure under failure-free dependence]

Let C = [MC, AC, VC, GC, FACO be a circuit, W€ O VC  be its set of external vari-
ables, and FTS® = [FAC, APC,LC0 be a finite transition system with
LS(q) = Proj(WC)(q). Assume thatWC includes the subset of circuit variables
V§ O VE that areprime dependenthat is, for all signalsy 0 VC | if there exists any
variablew suchthat an#v are dependent under the prime dependency conditions,
then we must have, w WC . Assume thalC  is atdmsedunder the simultaneity
dependency condition in the following sense: for all variabtés WC , any variable
w O V€ that can ever change simultaneously with  must also be includ&tiGn

(i.e., wO WC). Then, we call such a set of external sigradsed under failure-free

dependences

Theorem 5.5 [Persistency and invisibility by closure under failure-free
dependence]Let C = [MC, AC, V€ GC, FACO be a circuit, W€ O VC be a set of

external variables that is closed under failure-free dependence, and
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FTSC = [(FAC, APC, L0 be a  finite  transition  system  with
LS(q) = Proj(WC)(q). Then for any stateq and any enabled internal signal
v (Enabledq) n AC)-WC, a persistent and invisible set afqg is

P(q) = {v} O{w|w0O Enabledq), w can simultaneously change with . =

Proof (Sketch) First, we show thaP(q) is invisible. If there exists a variable

w [0 P(q) that is visible, then it must be capable of simultaneously changing with a
variable u 0 WC . But then, sinc&V/C is closed under failure-free dependence, we
must havew 0 WE |, and by the same token, we must ha&WCc which is a
contradiction. As a result, we must hakéq) 0 VC - WC Is an invisible set. Next, we
show thatP(q) is persistent. If it is not, then there must exist a varialle?(q) that

is dependent on a variable [ P(q) ,aod can become enabled through a sequence
of transitions not involvingP(q) . But, sinc&/C is assumed to be closed under
failure-free dependence, no such pairs of variahles, vand can ever be dependent, or

otherwiseu, wJ WE which is a contradiction. ThB$Qq) is persiswent.

Note that by closure under failure-free dependence, a set of external variables
might include independent variables as well. Also, under those conditions, the set of
internal variables/C —WC can include pairs of simultaneous variables, if they are not
dependent or simultaneous to any external variables. Another interesting results of this
condition is that if any 1/O signal of any module is made external, then all internal vari-
ables of the module that are simultaneous with it must also be made external, together

with any other 1/O of the module that is, recursively, simultaneous with them.
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In the following subsection, we will present our procedure for construction of stut-
tering equivalent circuit sub-automaton (for a failure-free circuit) and the correspond-

ing strategy for selection of ample sets.

5.2.3 A First Partial Order Reduction

We are now ready to introduce our first algorithm for partial order exploration of the
state space of a failure-free partitioned circuit; a selective search that satisfies the

ample set conditions for stuttering equivalent partial order reduction.

Algorithm 5.2 [DFs_1, a first algorithm for partial order reduction]

Let C = MC, AC, V€ GC, FACO be a failure-free circuitW® O VC be a set of
external circuit variables that is closed under failure-free dependence,
EC = ACn WC, and FTS® = [FAC, APC, LCO be a finite transition system with
LC(q) = Proj(WC)(q). Algorithm DFs_1 of Figure 5.5 is a DFS algorithm that con-
structs a sub-automatdAC = [AC, VC, (NQC,):C, TRS, ne g0  BAC  thatis stut-
tering equivalent withFAC ; i.e., its ample set strategy satisfies Conditions 5.9 of

Section 5.1.2=

Partial order reduction starts by calling procedBagtial_Order of Figure 5.6,

that would calbrs_1 for (each of) the initial state(s) of the circuit.

Before we prove that AlgorithnbFS_1 indeed constructs a stuttering equivalent

sub-automaton of the circuit automaton of a failure-free circuit, we explain how the
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DFS_1( i){ /* DFS on circuit block ~ */ [

Pop( )
if qOQ%r Enabledq) = [hen
return

[* try to explore a single internal transition of block i
to a state that is not on the search stack */

for each v (Enabledq)—-WC)n VE, il

/* s an enabled internal signal of block  */ i

if (qVv,d)0TRCand q OStackhen {

Construct_subautomaton( a. v, d
Push( 0f);
DFS_1( i);
return
}
} -
/* if all internal transitions of block  lead to states on |
the search stack, move on to the next block andtry i+1

to explore an internal transition of that block */
if i#rEthen  {/*notthe last block */

Push( Q;
DFS_1(i+ 1)
return

}

[* if this was the last block, then fully expand state ~ */ q
else {

>l
/* explore all transitions from state ~ */ g
for each v Enabledq)

/* \Ms any enabled signal */

for each (g,V, ) O TR

Construct_subautomaton( a.v. d
/* continue the DFS search from each

un-explored state *
if g 0QCthen {

Push( 0f);

DFS_1( 1):

Fig. 5.5Algorithm DFS_ 1.
An algorithm for generation of a stutter equivalent reduced state space of an SI circuit.
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1 Part i aI_Ord~er(){

2 Q°=TR =0,

3 for each initial state { do
4 Push( qy;

5 DFS_1( 1);

6

7}

Fig. 5.6Partial order reduction using AlgorithBiS_1.

algorithm works. The circuit blocks are numbered from t§ . Each recursive call of
the algorithm receives as an argument the number of a circuit block which is to be
searched for an ample (internal) transition. The search stack is initialized with an ini-
tial state, anadFs_1is called with the first circuit block. ThemFs_1 repeatedly does

the following: assuming that the current state  (popped from the stack) is not previ-
ously explored, if there exists any transitiéq, v, d) 0 TRC by an internal signal of
current blocki such that statg  is not on the search stack, that transition is explored
and the search is continued from stgte  and within circuit biock ; otherwise, unless
this is the last block, the search is continued from state  and within the next circuit
block i + 1 ; if on the other hand, this is the last circuit block, treen  is fully explored
and the search is continued from each of the reached states and from within circuit
block 1. As any DFS search, previously explored states that are already in the reduced
state space, or states not having any outgoing transitions, are not further processed
once they are popped from the stack. For reduced state spaces of possibly smaller
sizes, one can enforce exploration of internal transitions to previously explored states,

assuming that they are not on the search stack.
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A more intuitive analysis of the behavior of Algorithbrs_1 is as follows. The
goal of the algorithm is to direct the circuit inta@n-transienstate where the internal
variables of the circuit are either stabilized or involved in a non-transient oscillation.
To do this, the algorithm successively directs each circuit bM@gi ilboa non-
transient state where the internal variables of the block are either stabilized or involved
in a non-transient oscillation. In directing a circuit blobkS ;  from a sigfe  to its
non-transient state, at any intermediate state  if there exists any (arbitrary) internal
transition to any state that is not on the DFS stack (and hence does not close a
cycle) then our partial order explores only that transition by let#gple(q) tobe a
singleton set containing the corresponding variable. Thus, the goal is to explore, from
g, a single interleaving of internal signal transitions leading to a state at which all
internal signals of the block are stabilized (or more generally, have made all of their
transitions); however, in the presence of internal oscillations, an arbitrary internal sig-
nal transition might lead to a state on the DFS path, and close a cycle (oscillation). In
such a case, a valid partial order should avoid a case in which a variable that is enabled
everywhere along a cycle is never included in any ample set. This is required for the
satisfaction of conditiol©3 of Section 5.1.2 for ample sets. That is why, in stabilizing
the internal signals of a circuit block, AlgorithbFS_1 tries to avoid closing cycles
as much as possible. Eventually, a state is reached at which either no internal signal
of circuit block ME ; is enabled, or all transitions of such signals lead to states that are
on the DFS stack. It is easy to see that any such state  would be a local non-transient

state of bIockMgi . At this point, AlgorithnDFS_1 starts directing circuit block



142
ME ;. toits local non-transient states, starting from sige! = q . Once all cir-
cuit blocks are successively directed to their local non-transient states, and (as can be
proven) the whole circuit is in a global non-transient state, all enabled transitions from
such a state are explored, and the DFS search is continued from each state that can

be reached by such transitions, such that was not previously explored.

Proof [Algorithm 5.2, DFS_1, generates a stuttering equivalent sub-automaton

of a failure-free circuit]

(Sketch) We need to show that the selectively explored sets of transitions in algorithm

DFS_1 satisfy the ample set conditions of Section 5.1.2.

C1:. We note that from each statg  that is visitedd®s_1, either a single internal
transition (lines 7-15) or all enabled transitions are explored (lines 28-39). However,
since the set of external variables is closed under failure-free dependence, both of the
above situations characterize a persistent set, and thus persistency cabditaran

ample set is satisfied.

C2: Since external transitions are explored only from states that are fully explored,

visibility conditionC2 is also satisfied by the selective searchrs_1.

C3: We note that unless a state is fully exploreg¢s_1 does not explore any of its
enabled transitions to states that are on the search stack. On the otheb#mngdas

an ordinary DFS algorithm (that does not re-explore states), can close a cycle in the
searched spaaenly by exploring transitions to states on the search stack [24]. As a

result,all cycles in the reduced state space that is exploredHsy 1 have a state that
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is fully explored. Since any TMSCC consists of states with cycle(s) between any pair
of them, if all cycles of the reduced state space have a state that is fully explored, then
all TMSCCs of the reduced state space (if there exists any) will also have a state that is
fully explored. Thus, the selective searchmfs_1 also satisfies conditio©3 for

ample sets.

Since all the three conditions are meES_1 indeed generates a stuttering equiva-
lent reduced state space for a failure-free circuit (i.e., if the internal variables are

indeed failure-free independent of all other variabhkes).

Algorithm DFS_1 simply generates a reduced state space that is stuttering equiva-
lent to the full state space of a failure-free circuit. To find a safe abstraction of the
behavior of a circuit, whether it is failure-free or not, the sub-automaton that is con-
structed by AlgorithmDFS_1 (automaton of the partially explored state space) has to
be projected onto the set of external variables. We will end this section without pre-
senting any algorithm for projection of the sub-automaton constructexgyl. The
reason is that such an algorithm would not be a simple one, and since in practice we
will not useDFS_1to find safe abstractions, our efforts for devising or presenting such
an algorithm would be wasted. In the following section, we present an enhanced algo-
rithm for partial order reduction that is a close representative of what we use in prac-
tice. The enhanced algorithm has automatically provided a way for simple on-the-fly
projection of the constructed sub-automaton that would be discussed in the next sec-

tion.
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5.3 An Enhanced Partial Order Reduction

In this section, we present an enhanced algorithm for stuttering equivalent partial order
reduction (for a failure-free circuit) that has an embedded procedure to check the pro-
jectability of the partial order sub-automaton and compute its projection, on-the-fly.
The new algorithm is thus capable of directly finding a safe abstraction. This enhanced
algorithm, instead of the authentic DFS used in algorithis_1, uses what we call
parallel DFS. Parallel DFS can be regarded as a special kind of breadth first search
(BFS), which can in turn be implemented using symbolic techniques and BDDs. In
this section, we first present the new algorithm, and then prove its correctness in find-
ing a safe abstraction in the following way. We prove that the reduced state space (sub-
automaton) generated by the algorithm is stuttering equivalent to the full state space, if
the circuit is failure-free. This is proven by showing that ample set conditions are satis-
fied by the algorithm'’s selective search. We also prove that if the circuit is failure-free,
then the embedded procedure for on-the-fly projection finds an automaton projection
of the constructed sub-automatifinit is projectable, and otherwise it aborts the algo-
rithm. In the same regard, we also prove that if the circuit is not failure-free and the on-
the-fly projection procedure does not abort, then for all the traces of its generated
automaton, there exist a stuttering equivalent trace in the reduced state space. These
properties are proven based on properties of failure-free independence. Together, these
results would imply the correctness of the overall approach in finding a safe abstrac-

tion.
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Safe_abstraction()
for each initial state { do

1

2

3 Push( g, Og;
4 DFS_2( dg, 1);
5

6

Fig. 5.7Finding a safe abstraction using Algoritfid&S_2.

In Section 5.3.3, a further optimized version of the new algorithm is presented that

can further speed up and reduce the size of the explored state space.

5.3.1 A Complete Solution to Finding a Safe Abstraction

In this section we present a new partial order algorithm incorporating independent

DFS searches that can be performed in parallel.

Algorithm 5.3 [DFS_2, an enhanced algorithm for finding safe abstractions]

Let C = [MC, AC, VC, GC, FACO be a failure-free circuitWC OVC be a set of
external circuit variables that is closed under failure-free dependence,
EC = ACn WC, and FTS® = [FAC, APC, L¢O be a finite transition system with
LC(q) = Proj(WC)(q). Algorithm DFs_2 (Figure 5.8) is garallel DFS algorithm

that constructs a sub-automatbAC® = [AC, VS, QC, AC, TR, ne gS0  FAC  that
is stuttering equivalent witfFAC ; i.e., its ample set strategy satisfies Conditions 5.9 of
Section 5.1.2. Moreover, its embedded procedtisastruct_projection (Figure

5.10) finds an automaton projection of the constructed sub-autorifatbis project-
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1 DFS_2( p, i) /* DFS on the stack of state  and circuipblock  */ i
2 Pop( Q, pp /*pop astate  from thg stack of state  */ p
3 if Enabledq) = Othen

4 return

5 /* try to explore a single internal transition of block [
6 to a state that is not on the stack of ~ */ p

7 for each v (Enabledq)—-WC)n V(E:, {

8 [* s an enabled internal signal of block  */ i

9 it (g,V, ) 0TRCand q O Stack(p)then {

10 Construct_subautomaton( a.)v, q

11 Push( d, p;

12 DFS_2( p, I);

13 return

14 }

15 }

16 /* if all internal transitions of block  lead to states on |

17 the search stack of , mov@ on to the next block and i+1
18 try to explore an internal transition of that block */

19 if i#rEthen {/*notthe last block */

20 Push( q, p;

21 DFS 2(p,i+1);

22 return

23 }

24 /* the end of the DFS path from state  is reached p

25 else {

26 Construct_projection( ); g

27 Explore_internal_trans( ), P, Q

28 for each v Enabledq) n WS+ explore external trans */
29 /* Ms an enabled external signal */

30 for each (q,V, d) 0 TR

31 Construct_subautomaton( a,v, q

32 /* initiate a new DFS search from each

33 un-explored state  */

34 if o OQ%hen {

35 Push( d', Q);

36 DFS_2((, 1);

37 }

38 }

39 }

40

41 }

Fig. 5.8Algorithm DFS_2.
An enhanced algorithm for generation of a stutter equivalent reduced state space of an Sl circuit. It
fully expands the terminal states of each independent DFS search.
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Construct_projection (¥ q
Temp= [I;
for each (g,v, d)0TRSt  v0OEnabledq) n WC
Temp = Temp O Proj(W¢)(q, v, d);
it Proj(WC)(q) 0 QGthen

if Temp#{(r,a,s)O T~R\9|r = Proj(W¢)(q)} then

exit (“Not a safe abstraction”);
else
return
else {

QF = QY O Proj(we)(q);
TR\C/: = TR\C/: O Temp;

}
}

Fig. 5.100n-the-fly projection and projectability check of the sub-automaton.

able, and otherwise it aborts the algorithm. Finally, if procedure
Construct_projection does not abort the algorithm, then the behavior of its output
automaton is always a safe abstraction of the circuit behavior, even when the circuit is

not failure-freen

To find a safe abstraction, proced8&fe_abstraction of Figure 5.7 is called,
which would callbrs_2 for (each of) the initial state(s) of the circuit. For on-the-fly
projection and projectability check of the constructed sub-automatsh,2 calls pro-

cedureConstruct_projection of Figure 5.10.

Before we prove the above mentioned properties of Algorithra_2, we explain
how the algorithm works. Algorithrors_2, instead of a single stack, utilizes multiple
DFS stacks that are initiated either from the initial state(s) or from states that are

entered after an external variable transition. These stacks are identified by the (label of
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17

18
19

20
21
22
23
24
25
26 }
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Explore_internal_trans( y{p.q

for each v Enabledq)—WC and (g,Vv, q) OTRC {

Construct_subautomaton( aq,v d

[xif M Es the circuit block that drives signal \Y
then explore the same sequence of signal transitions
that was previously explored in block along M g i
the DFS path of the stack of ~ */ p

}

VO HE jthen  {
if sOStackp) st Proj(HE )(s) = Proj(HE )(q) then {

repeat {
I* Sisontopof onth&stack of  */ p
s = Top(s, p);

it (s w ¢ OTRand WO HE then {
it (g,w, g)0TRGen {

Construct_subautomaton( q,w g’

qI — qll;
S = S;
}
else
/* at this point we should have * g =q
break ; /* quit the repeat loop */
} until 0O

}

Fig. 5.9Algorithm Explore_internal_trans
An algorithm for exploration of internal transitions from the terminal states of independent DFS
paths of AlgorithnDFS_2.

the) state from which they were initiated. The recursive functimsg_2 has thus two

parameters: the first parameter is the stack identifier, and the second one is the number

of the circuit block from which the DFS search has to be continued (similar to the case

of Algorithm DFS_1). Each DFS stack is associated with an independent DFS search

of the circuit state space that is started from itgal state of the stack (the state at

which the stack was initiated and which identifies the stack), and ends at a state from
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which all enabled transitions are explored, calledtdreninal stateof that DFS. Each
independent DFS search goes through allrtie circuit blocks in order, and explores
in each block anaximalcycle-free sequence of internal signal transitions of the block,
by never exploring a transition to a state that is on its own stack. Eventually, each inde-
pendent DFS search reacheteaminalstate in the last circuit block from which either
no internal transition is possible, or the transition of any internal signal would close a
cycle of signal transitions in thiecal state of the circuit block that drives that signal.
At the terminal state of each DFS path, procedexgore_internal_trans of Fig-
ure 5.9 explores all enabled internal transitions, and from each of the reached states it
finds a sequence of internal transitions back to the same terminal state. All enabled
external transitions of the terminal state are also explored and a new DFS search is ini-
tiated from each new state that is reached. Thus each DFS search explores a cycle-free
sequence (path) of states from the initial state of its stack to a terminal state at which

all enabled transitions are explored.

The DFS searches of AlgorithmrFs_2 are independent in the sense that they are
free to re-explore states that were previously explored (added to the reduced state
space) by preceding DFS searches. This is different from the authentic DFS search of
Algorithm DFS_1 which avoids re-exploring states that are already in the reduced state
space (compare lines 3 of the two algorithms). This redundan©Fsf2 is only to
force each independent DFS pathdompleteexploration of a maximal cycle-free
sequence of internal transitions before it is terminated, even if parts of this path

(sequence) overlap with paths that were explored previously. The same thing is also
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true about the selective search of procedixg@ore_internal_trans cl.e., itis free

to re-explore states of the reduced state space.

Comparing the two algorithn3FS_1andDFS_2, line by line, one can observe that
they are quite similar, with the following differences (@§s_2 uses local stacks that
are initiated at the initial state(s) of the circuit or after each external signal transition to
a new state, whil®Fs_1uses a global stack that is initiated just once 0ip$_2 might
re-explore states, whileFs_1 avoids that (compare lines 3 of the two algorithms), (c)
after exploring maximal sequences of internal transitions (i.e., at the terminal states of
independent DFS paths)Fs_2 uses a directed independent DFS search to explore
internal transitions (compare lines 27 and 28 of the two algorithms), in the sense that
the explored paths are led back to the terminal state, anoF&I)2 also carries a pro-

cedure for on-the-fly projection of the reduced state space (line 26).

One major consequence of the first three above mentioned differences between
algorithmsDFS_2 andDFsS_1, in terms of the structure of the reduced state spaces that
they create, is the possibility of existence of extra cycles in the state space generated
by DFS_2that are not fully expanded at the state that closes the cycle. These cycles can
be the result of exploring an internal transition to a previously explored state that is not
on the current local stack of Algorithmrs_2, but is on the global path from the lastly
explored initial state of the circuit to the initial state of the current stack. Such cycles
reside on the single stack of AlgorithoFs_1, without the closing state being fully
explored, although the cycle does have a fully expanded state. An example of this case

is illustrated in Figure 5.11 where the DFS path from stgt® g, does not close any
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Fig. 5.11Algorithm DFS_2 can create additional cycles.
The reduced state space generated®B 2 can have cycles that are not possible by
Algorithm DFS_1.

cycle on itself; however, it closes a cycle on the global stack that starts from initial
stateq, and passes through, q,, s, a,, €tc. The cycle is closed at stagewhich is an
ancestor of state,, the initial state of the local stack. Although the state at which the
cycle is closed d,) is not fully expanded, the cycle does have a state that is fully
expanded, i.eg;. Algorithm DFS_2 can also create cycles of internal transitions that
are not on a global DFS path, but are created by independently explored paths (DFS
paths or paths of internal transitions exploredsaplore_internal_trans ) that hap-

pen to cross each other more than once, in certain ways. Such cycles might have no
state that is fully expanded. Two example of this case are illustrated in Figure 5.11.
The cycle containing stateg, andq,, is created by two independent DFS paths start-

ing from states,, andgqg, respectively. The cycle containing statendgq is created by
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a DFS path starting from stadg crossing a cycle of internal transitions from stete

to itself. In both of these examples, no state on the cycles is fully expanded.

In the rest of this section, we will prove that AlgorithbFs_2 indeed generates
stuttering equivalent reduced state spaces for failure-free circuit by showing that it sat-
isfies all the ample set conditions of Section 5.1.2. We will show that none of the addi-
tional cycles that can be introduced in the reduced state space generated by Algorithm
DFS_2are TMSCCs, and thus the fact that they might not have a fully expanded state is
harmless. Moreover, we show that the persistency condition for the selected set of
transitions from each state explored by Algoritbis_2is satisfied. We also prove the
ability of the embedded procedugenstruct_projection in finding a safe abstrac-

tion, if one exists.

5.3.2 Proof of Correctness

To prove the correctness of Algorithbrs_2 for generation of a stuttering equivalent
partial order sub-automaton of circuit automaton, we need to show that it satisfies the

three ample set conditions of Section 5.1.2.

Procedureexplore_internal_trans that is illustrated in Figure 5.9 performs a

selected search that is different in style from the one within the body of the Algorithm.

Before we explain how proceduBsplore_internal_trans works, we make the
following observations about any path from the initial sgate  to the terminal gtate  of

a local DFS. At line 27 of AlgorithnDFs_2, where terminal statgg of the stack of
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statep is going to be fully expanded, the stack of state  contains a (cycle-free)

sequence of statek = qﬁoq%q%...qr}lq%qg...qﬁz ...... qrgf...qy  from stae  to
stateq , where we haven = r& q,,?o = ,amg = q . This sequence consists of
r& possibly empty subsequences of states q}]i—_}qilqiz...qﬂ1i 1<jisrg . Bach

is a sequence af; + 1  unique states (becduse , and ience |, are cycle-free paths of
states), and only internal signals of circuit bloktlﬁ i change alpng . Moreover, the
last statqui of any subsequernice  has the property that the transition of any internal
signal of blockME ; from stateeﬂ]i would lead to a statetof . Finally, since no inter-
nal signal of blockM g i changes along after stqj@ is explored, fargli <r &

we have Proj(HE ;)(q) = Proj(HE i)(q}]i) , and for any transitiofq, v, ) , if
vOHE ; thenthere exists a stagd] t  such tRabj(HE ;)(s) = Proj(HE ;)(q)

These properties of trade and its subtraices  are the result of the particular way that
Algorithm DFs_2 explores internal transitions of the circuit before reaching a terminal
state of the stack of stafe . Intuitively, along tradce , atany sﬁ\te and beyond (e.g.,
at terminal state) ), each circuit bloddS ;  is in a maxirtualal cycle of states, and

no matter what transitions happen outside of bIMEi , and as long as no external
transitions occur, any transition by an enabled internal signal of Uubglg will take

the circuit to a state that wassally visited before (in blochM & ; ), along

At this point we are ready to explain how proced@slore_internal_trans
works. For each internal transitidig, v, ) from aterminal sigate to a sfate , by an
internal signalv of a circuit blockMg ; WO HE ; )Explore_internal_trans

explores transition(q, v, d) followed by a sequence of transitions figgm  back to
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stateq . This is achieved by exploring the same sequencggoél transitions that

were previously explored to statc«q},i from a stage along subsequence
t = qgjqilqiz...qini, where S has the property that
Proj(HE ;)(s) = Proj(HE ;)(q). Existence of such a states and

Proj(Hg i)(q},i) = Proj(Hgi)(q) are guaranteed by properties of trace that we

had just discussed.

The above observation about the terminal states of DFS paths of Algapitisine

can be summarized in the following lemma.

Lemma 5.6 [Internal transitions from terminal states of DFS paths] Let

C = [MC, AC, V€, GC FACObe a failure-free circuitW® 0 VC be a set of external
circuit variables that is closed under failure-free dependeBfe= AC n WC , and
FTSC = [(FAC, APC, L0 be a  finite  transition  system  with
LS(q) = Proj(WC)(q). Let Algorithm bFs_2 be used for partial exploration of the
state space o€ . Atline 27 of AlgorithmFs_2, where stateg would be the terminal
state of the DFS path started from state , state has the following property: for any
stateq that is reachable from staje by the transition of an enabled internal signal
v Enabledq) -WC€ (i.e., (g, Vv, d) OTRC), there exists a sequence of internal

transitions from statg' back to stajem .

Each of the sequences of states that are explored by procedure

Explore_internal_trans from terminal statey , close a cycle at that state. However,
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all such cycles (even if associated with a TMSCC in the reduced state space) have a

common stateq , that is fully expanded.

Having explained the operation of proced@elore_internal_trans , We are
now ready to prove that the reduced state space explored by Algapfsne is stut-
tering equivalent with the full state space, if the circuit is failure free (i.e., the internal

signals are actually failure-free independent).

Theorem 5.7 [Algorithm 5.3, DFS_2, generates a stuttering equivalent sub-
automaton] Let C = [MC, A€, VC, GC, FACbe a failure-free circuitt® O VC be
a set of external circuit variables that is closed under failure-free dependence,
EC = ACn WC, and FTS® = [FAC, APC, LCO be a finite transition system with
LS(qg) = Proj(WC€)(q). Then Algorithm DFS_2 constructs a sub-automaton

FAC = [AC, VvC, QC,)N\C, TRS, uC, qSO of FAC that is stuttering equivalent with

FAC. u

Proof (Sketch) To prove the correctness of Algoritim®mS_2 in generating a reduced
state space that is stuttering equivalent with the full state space of the partitioned

circuit, we show that it satisfies all three conditions for selection of ample sets.

C1: This condition is satisfied by the selective search of Algoritt#s_2 for the fol-
lowing reasons. At each state  of the reduced state space that is generated by Algo-
rithm DFS_2, the set of enabled variables whose transitions are explored, denoted by

Ample(q) O Enabledq) has (only) one of the following forms:
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(a) Ample(q) = {v} , wherev O Enabled(q) —WC . This condition happens when
stateq is explored just once, or when it is explored multiple times (along different

paths), but each time the same internal transition from it is explored.

(b) Ample(g) O Enabled(q) —WC. This condition happens when statg is
explored multiple times (along different paths), but not the same internal transitions

are explored each time.

(c) Ample(g) = Enabled(q). This condition happens when statg is fully
expanded at the terminal state of at least one DFS path. Note that it is possible for a
state to be fully expanded by one DFS search, while other independent DFS searches,
Or Explore_internal_trans , might have explored only single transitions from that

State.

The setAmple(q) is thus a persistent set in each of the above situations. The rea-
son is that any non-empty subset of internal transitions is always a persistent set (since
WC is assumed to be closed under failure-free dependencefaatledq) is also

always a persistent set.

C2: This condition is satisfied by the selective search of Algoritt#s_2 because the
only place that any visible (i.e., external) transition is explored by that algorithm is

when a state is fully expanded.

C3: To prove that this condition is satisfied by Algorittvrs_2, we need to show that
any TMSCC in the reduced state space generated by that algorithm has a state that is

fully expanded. A TMSCC in the reduced state spEN(LﬁeC isa Slﬁﬁ)%ét QC such
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that (a) each statq [ dc can reach any other sn]a@(jc through a sequence of
states indc and (b) there existno transition from any state [ (jc to any state
q O dc. By condition (a) above, for each pair of statgsg U dc , there exists a
cycle of states Withir[jc that contains the two states. The above two conditions also
imply that if any stateq [ E)C belongs to a TMSCC, then any state that is reachable
from stateq also belongs to the same TMSCC. To prove condii®nt is sufficient
to prove foreverystateq of the reduced state space thaj if belongs to a TMSCC,
then that TMSCC has a state that is fully expanded (note that by definition of a
TMSCC, each state can belong to at mose TMSCC). It is thus sufficient to show
that fromeverystate of the reduced state space, there exists a path to a state that is
fully expanded. But this is exactly what is enforced by Algoritlmrs_2; i.e., any
independent DFS search is stretched to a state that is fully expanded, and the states that
are explored by proceduexplore_internal_trans also have paths to the originat-
ing state that is also fully expanded. Thus, Algoritbrs_2 indeed satisfies condition

C3. =

To prove that procedureonstruct_projection that is embedded iDFS_2 can

find a safe abstraction, we need to first present some lemmas.

Lemma 5.8 [The terminal state of any DFS path belongs to an internal TMSCC]
Let C = MC, AC, V€ GC, FACO be a failure-free circuitW® O VC be a set of
external circuit variables that is closed under failure-free dependence,

EC = ACn WC, and FTS® = [FAC, APC, L¢O be a finite transition system with
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Fig. 5.12lllustration of the inductive case of Lemma 5.8.

LC(q) = Proj(WC)(q). Also let AlgorithmbDFs_2 be used for partial exploration of

the state space d@ . Then the terminal stqate  of any DFS path, that is started from
any statep , belongs to an internal TMSCC BAC . That is--by definition of an
internal TMSCC--from any statq' that is reachable frgm through a sequence of
internal transitions, there exists a sequence of internal transitionsgrom  back to

and all such stateg  belong to the internal TMS&CC.

Proof (Sketch) We prove this lemma by first showing that for alk 1 , and all

sequences of internal transitions = qo;0,...d,,_1d, from any terminal stpte

there exists a sequence of internal transitions frgm  qto, . Since this is a
recursive property, it also implies that any stafe tQnl1<i<n , can reach its
preceding stateg, _, , through a sequence of internal transitions (notghatq ).

Thus, italso implies thatang; dn , andin particulgr , canregch through some

sequence of internal transitions.

We prove the above property using an induction on the length  of the sequence of

internal transitions from a terminal staje  to any other sjate
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Basis step: Ifg; is any state reached from terminal state by a sequence of internal
transitions of length one; i.e(g, v, ¢,) O TRC  andd Enabled(q) —W¢ , then by

Lemma 5.6 there exists a sequence of internal transitionsgffom  bgck to

Inductive hypothesis: le,, be any state that is reachable from terminakptate by any
sequence of internal transitions = qo;q,...q,_,0, of length , and assume that

there exists a sequence of internal transitions fygm q,,tq

Inductive step: for any statg,, ; thatis reachable fym by any sequence of internal
transitionst,, , ; = qo;d,...9,_19,d,+1 Of lengtm+1 , there exists a sequence of

internal transitions fronqj,, ; tq,

To prove this, for any statg,, described in the inductive hypothesis, and any state
0, that is reachable frong, by an internal transition (i@, v, g,,,) O TR® ,
v O Enabledq,) —W¢, andq,,, ; isreachable form by asequengce, of length

n+ 1), we show that there exists a sequence of internal transitiongjfom ¢, to

As illustrated in Figure 5.12, lef, = 9,0',,1.--0,_, be the presumed sequence
of internal transitions from q, to o,_; ,» (Qpu g, OTRC
uO Enabledq,) -WC¢, (g,_,, W, q,) OTR¢, and wO Enabledq,_,)—WC .
Next consider the following two possible cases:
(&) v makes a transition along trate . Then as illustrated by the commutative dia-

gram of Figure 5.13, and because of the presumed independence of all internal transi-

tions, there must exist a sequerlr;ﬁ from a4 whose first transition is by
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If signal V makes a transition along sequertae , then there exists a sequence of internal

transitions fromq,, , ; td,_; -

n+

signalv to stateg,, ; . Butthis means that the suffix of this sequence isdfam to

d,_1, and hence there exists a sequence figm, g, to

(b) v does not make a transition along trge  , and thisEnabled(q, _,) —W¢
and (q,,_;, v, of,) O TRC . By the inductive hypothesis, there must exist a cycle of
internal transitions, = q,_;0...q,_; frong,_, .Butthen, asillustrated by the
commutative diagram of Figure 5.14, and because of the presumed independence of all
internal transitions, there must exist a sequetice  foggm q,to whose first tran-
sition is by signal to state,, ; . Butthis again means that the suffix of sequgnce

is fromq,,, toq,_; , and hence there exists a sequenceffpy g, to

Legend
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/"~ _4 asub-sequence of trace t,
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=m LI R EE o quence of trace tq
An+1 q'n Knc—)l n-1

a signal transition on trace t
On-1

Fig. 5.14lllustration of case (b) in the proof of Lemma 5.8.
If signal V does not make a transition along sequet}?e , then there exists a sequence of
internal transitions fron@|,, . ; t0],_4
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Conditions (a) and (b) above indicate that there always exists a sequence of inter-

nal transitions from statg,,,; @, ,and as a resulta sequence back to

Lemma 5.9 [Convergence of sequences of internal transitions from a single state]

Let C = [MC, AC, VC, GC, FACO be a failure-free circuitWC OVC be a set of
external circuit variables that is closed under failure-free dependence,
EC = ACn WC, and FTS® = [FAC, APC, LCO be a finite transition system with
LC(q) = Proj(WC)(q). Also let AlgorithmDFs_2 be used for partial exploration of

the state space i . Lgb[l ~QC be any state (in particular, the initial state of any
independent DFS path), anq, g O QC be any pair of states (in particular, the
terminal states of any two independent DFS paths) suchghat gand are reachable
from p by sequences of internal transitions. Then, there must exist a gtat&Cc

that is reachable from both awd  through sequences of internal transitions.

Proof (Sketch) This lemma directly follows from Keller's result [43] about

independent signals and transitioms.

Lemma 5.10 [Terminal states reachable from a single state belong to the same
internal TMSCC] Let C = M€, A€, VC, GC FACO be a failure-free circuit,
WC O VC be a set of external circuit variables that is closed under failure-free
dependenceEC = ACn WC | anBTSC = [FAC, APC,LCO  be a finite transition
system withL¢(q) = Proj(WC)(q) . Also let AlgorithnDbFs_2 be used for partial
exploration of the state space 6f . Lpt] EQC be any state (in particular, the initial

state of any independent DFS path), apdy [J éc be the terminal states of any two
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independent DFS paths such tleat  agid  are reachable from by sequences of

internal transitions. Theq argl belong to the same internal TM®CC.

Proof (Sketch) By Lemma 5.9, there exists a staté] QC that is reachable from
bothg andg through sequences of internal transitions. By Lemma 5.8, terminal state
g must belong to an internal TMSC@Q O Q€ |, and similarly, terminal state  must
belong to an internal TMSCQY)' 0 Q€ . By the definition of an internal TMSCC, state
p' that is reachable from both armgl  must belong to botQof @hd . But since

the internal TMSCC to which a state belongs is unique, we musthave)' =

Lemma 5.11 [Internal transitions cannot disable external transitions] Let

C = [MC, A€, V€, GC, FACObe a failure-free circuitv® O VC be a set of external
circuit variables that is closed under failure-free dependeBée= AC n WC , and
FTS® = [FAC,APC,LC0  be a  finite  transiton  system  with
LC(q) = Proj(WC)(q). Then no internal transition can ever disable any external

variable s

Proof (Sketch) Assume that there exists an internal transition by a signal
v VC —WEC that can disable an external varialwe] W€ . Then, either wand are
legally dependent, which would contradict the closure uf under failure-free
dependence, or the internal transition is a failure, which would contradict the failure-

freedom of the circuitm
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Lemma 5.12 [Uniqueness of the set of enabled external variables in an internal
TMSCC] Let C = [MC, AC, VC, GC, FAC be a failure-free circuitwW® O VC be a
set of external circuit variables that is closed under failure-free dependence,
EC = ACn WC, and FTS® = [FAC, APC, L¢O be a finite transition system with
LC(q) = Proj(WC)(q).LetQ 0 QC be aninternal TMSCC. Thenforal Q |, the

set of enabled external variabl&nabled(q) n WC s unigue.

Proof (Sketch) Assume there exists a pair of stajeg 0 Q in the internal TMSCC,
such that Enabled(q) n WC # Enabledq) n W€ . Then there must exist an
external variables J WC that is enableddn  but is not enabledin . Sipce  is an
internal TMSCC, there must exist a sequence of internal transitions fom q to
Now, along any such sequence, external variable  must have become disabled,
without being fired. This suggests that external variable is not independent of all
internal signals, contradicting our assumption about closui&/®f under failure-free

dependencen

Theorem 5.13 prs_2 and finding a safe abstraction for a circuit] Let

C = [MC, AC, V€, GC, FACObe a failure-free circuitv® O VC be a set of external
circuit variables that is closed under failure-free dependeBée= AC n WC , and
FTS® = [FAC, APC,LCO0  be a finite  transiton  system  with
LS(q) = Proj(WC)(q). Let AlgorithmbDrs_2 be used for construction of a stuttering
equivalent sub-automatol='t~,0\C . Then, embedded procezhumegruct_projection

(Figure 5.10) construct&A%e iff FAC is projectable ontoNC , and otherwise it
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aborts the algorithm. Moreover, if procedwenstruct_projection does not abort
the algorithm, then the behavior of its output automaton is always a safe abstraction of

the circuit behavior, even when the circuit is not failure-feee.

The first part of the above theorem implies that for a failure-free circuiitF§ 2

constructs a sub-automatorFA® that is projectable onitgC , then
Construct_projection constructs nothing bUEAGc ané\‘,:\,c is a safe (exact)
abstraction ofB¢ ovelWC ; otherwis€pnstruct projection simply aborts. The

second part of the theorem implies that the algorithm’s output--if it does not abort--is

alwaysa safe abstraction.

Proof (Sketch) By Conditions 2.22 for projectability of an automat(FrNﬁ,\C is

projectable ontaVC iff the following conditions hold:

*Letq; O QC be any initial state of}c , Or any state to which there exists an
external transition(q'j, b, qj) OTR®  from some state'j 0 QC such that

q; 0 [qj]WC. LetQ; O (~QC be the set of all states such that] Q iff

(i) g is reachable frorrqj through a (possidy ) sequenc&\s -compati-
ble states irQ€ , and

(i) there exists(q, c, g,) U TNRC, O, U [qj] l.e., an external transition

we
from g, to a state that is n@¥C  -compatible with

Then let

Wi = { Proj(W®)(q. c, qm)|(qk1 C, ) U TR, gy U Q,w Om U [qj]Wc} be the

projection of all external state transitions from the stat€g, in
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e Letq O QC be any other initial state (ﬁgc , Or any other state to which there
exists an external transitio(q|, d, g;) O TR®  from some statel] QC such
thatq', O [q;],,c andq O[qjl,.c ;i-eq; andy ar&C -compatible. Define
Q andW, similartoQ; andV; above.

* Then we must have/; = W,

If the above conditions hold, then we hav®y = {Proj(V)(qj)} and

TR = {W;}, for all statesy; as described above.

Because of the specific way thaks_2 constructsFAC ,any statg; @ inthe
above conditions must be the initial state of some independent DFS path, and any state
d;.d),0rg, must be a terminal state that is fully expanded. As a rel§~LéNE is pro-

jectable ontdNC iff the following conditions hold:

* Let q; O (:\)c be the initial state of any independent DFS path of Algorithm
DFs_2 Let Q; U (~3C be the set oéll terminal (fully expanded) states that are
reachable frong j through sequences of internal transitions. Let
W, = {Proj(WC)(a, G, G)|(t. € &) O TR, 4, 0Q;, q, 0[]} be the
projection of all external state transitions from the terminal stat@§ in

*lLetq O QC be the initial state of any other independent DFS path of Algorithm
DFS_2, such thatq, [ [qj]WC ; i.e.,qj and, ar&/C -compatible. Defi@e
andW, similar toQ; andV; above.

* Then we must havé/; = W,
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Now, consider procedur@onstruct_projection of Figure 5.10. This procedure
is called once for each independent DFS. That i$11- if] (~QC is the initial state of a
DFS path, therconstruct_projection is called at terminal statg' j O QC of this
DFS path. For each such terminal staqq (and thus each initial sfate ),
Construct_projection computes a set
W = { Proj(We)(d}, ¢, 4| (d}, C, Gy O TRC, g, O [d}],yc} (note that since the

initial and terminal states of any DFS path aMC  -compatible, we have

[q'j]Wc = [qj]WC). Note that since q;0Q; , we haveW'J- OwW; . Next,
Construct_projection checks the validity ofW'; = W', for all previously pro-
cessed DFS paths whose terminal statgs, (and thus initial sfates VYCare -com-

patible with terminal state( (and thus initial statp ). If the above check fails, then
the algorithm is aborted. Otherwise, if no such terminal stgte ~ (and thus initial state
g,) was processed before, all states and transitionW'ip are addléNAﬁp . In
essence, procedumnstruct_projection analyses only a sub-behavi@C O BC

and tries to find an automat®\'c  such B = Proj(WC)(B'C)

Now, for failure-free circuits we always ha\WJ- = W, (by Lemma 5.12), and as
a resultProj(WC)(B'C) = Proj(WC)(BC) . Thus, if the circuit is failure-free, then
Construct_projection would correctly check the projectability G AC , and cor-
rectly computeFNA\(,:vc or abort (if;AC is not projectable), without ever computing
Q; - (Note that ifFAGC exists, then we hafeA' . = FASc ). Asaresult, if the cir-

cuit is failure-free, ther@onstruct_projection constructsFNAVCVc iff FAC is project-
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able ontoWC |, and otherwise it aborts, suggesting that it could not find a safe

abstraction.

For a circuit that is not failure-free, the result of Lemma 5.12 will not hold, and
W = W, would not generally be true. In such a case, either
Construct_projection finds an automaton FA'\%,C such that
B'§c = Proj(WC)(B), or it aborts. If it succeeds, then as a resultBf [ BC
B¢ 0 BC, and B'Gc = Proj(WC)(B©) , we hav8'§c O Proj(WC)(B®) ;i.eB'{c
is a safe abstraction & ové/C =m.

If Construct_projection aborts, it simply means that we couldn’t find a safe
abstraction. Note that when a circuit is failure-free, the projectabilitif,é? Is inde-
pendent of the DFS paths and, in particular, their terminal states. In contrast, when the
circuit is not failure-free, the projectability &FAC  can vary by how the DFS paths are
explored (the order in which internal signals fire along those paths). Thus, for a circuit
that is not failure-free, failure afonstruct_projection to find a safe abstraction--

even if one could have been found--is not considered a short-coming of the algorithm.

Observation 5.14 [Algorithm 5.3, DFS_2, and the UEE conditions for finding a
safe abstraction] Let C = [MC, AC,VC GC, FACO be any given circuit,
WC O VC be a set of external circuit variables that is closed under failure-free
dependenceEC = ACn WC | anBTSC = [FAC, APC, LSO  be a finite transition
system withL¢(q) = Proj(WC)(q) . Let AlgorithnDFS_2 be used for construction

of a stuttering equivalent sub-automatoﬁAC . Theonstruct_projection
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successfully finds a safe abstraction iff the set of external transitions from terminal
states of independent DFS paths that\afe -compatible is unique. In other words, it
finds a safe abstraction ifVC -compatible terminal states havetiique External

Excitationproperty, or UEEm

Proof [Algorithm 5.3,DFS_2, an enhanced algorithm for finding safe abstractions]

The proof of correctness @rs_2 in finding a safe abstraction immediately follows

from Theorems 5.7 and 5.18.

Before closing this subsection, we need to emphasize tlvasf2 fails to find a
safe abstraction, (the UEE conditions are not satisfied), ihén potintially not
observationally sufficient, and another set of external variables (that has to be closed

under failure-free dependence) has to be chosen for hierarchical verification.

Example 5.7Figure 5.15 shows a four-stage FIFO controller that is partitioned with
three different set of external signals. Figure 5.15.c is an example of a set of external
signals over which a safe abstraction cannot be found. Intuitively, the middle circuit
block in Figure 5.15.c can hold different number of tokens in the same external state.
On the other hand, the output behavior of that circuit block depends on the number of
tokens in it. As a result, the behavior of the corresponding set of external signals is not
projectable, and hence a safe abstraction over it does not exist. Figure 5.15.a shows an
example of a set of external signals over which a safe abstraction does exist; however,

the right sub-circuit created by the safe abstraction is exactly the same as the original
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Fig. 5.15Three different partitions of a four-stage FIFO controller.

flat circuit. As a result, the particular partition of Figure 5.15.a does not create any real
hierarchy in the circuit. Finally, Figure 5.15.b shows an example of a set of external
signals that not only a safe abstraction over it does exist, but also it can successfully

induce hierarchy in verification of the circust.

5.3.3 Further Optimizations

In this subsection, we present a further optimized version of our enhanced algorithm
for finding safe abstractions. This version of the algorithm is catled_3, and is
depicted in Figure 5.16. It is called §afe_abstraction  , in the same way that
DFS_2 is called. And it is exactly likeDFs_2, except that it does not call
Explore_internal_trans ; l.e., it does not explore the transitions of enabled internal
signals from the terminal states of the DFS paths. As was shown in the previous sub-
section, in a failure-free circuit, the terminal state of any DFS path belongs to an inter-

nal TMSCC, and any sequence of internal transitions from the terminal state always
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1 DFS_3( p, i) /* DFS on the stack of state  and circuifblock  */ i
2 Pop( Q, p/*popastate  from thg stack of state  */ p
3 if Enabledg) = Othen

4 return

5 I* try to explore a single internal transition of block i
6 to a state that is not on the stack of  */ p

7 for each Vv 0O (Enabledq)—-W¢) n VE {

8 /* Ms an enabled internal signal of block  */ i

9 if (q,Vv,d)0TRCand ¢ OStackp)then {

10 Construct_subautomaton( a,)v, d

11 Push( d, p;

12 DFS_3( p, i);

13 return

14 }

15 }

16 /* if all internal transitions of block  lead to states on |

17 the search stack of , mov@ on to the next block and i+1
18 try to explore an internal transition of that block */

19 if i#rEthen {/*notthe last block */

20 Push( g, p;

21 DFS_3( p, i +1);

22 return

23 }

24 * the end of the DFS path from state  is reached fJ

25 else {

26 Construct_projection( ); q

27 /* explore the external transitions from state ~ */ q
28 for each v Enabledq) n W&

29 /¥ Ms an enabled external signal */

30 for each (g, Vv, d) 0 TR

31 Construct_subautomaton( a.)v, q

32 [* initiate a new DFS search from each

33 un-explored state ~ */ ('

34 it o OQ%hen {

35 Push( ¢, O);

36 DFS_3((, 1);

37 }

38 }

39 }

40

41 }

Fig. 5.16Algorithm DFS_3.
An optimized version of AlgorithrDFS_2, for finding a safe abstractions.
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leads to other states of the same internal TMSCC. On the other hand, all states of any
internal TMSCC were shown to have a unique set of enabled external variables. Thus,
exploring enabled internal transitions from the terminal states of DFS paths will not
create any new information about the behavior of the external variables. In fact, the
particular selective search of procedasglore_internal_trans that explores from

any terminal state a path of internal transitions back to the same terminal state, was
intentionally devised so to emphasize the redundancy of exploring internal transitions

from terminal states.

Algorithm 5.4 [DFS_3, a further optimized algorithm to find safe abstractions]

Let C = [MC, AC, VC, GC, FACO be a failure-free circuitWC OVC be a set of
external circuit variables that is closed under failure-free dependence,
EC = ACn WC, and FTS® = [FAC, APC, LCO be a finite transition system with
LS(q) = Proj(WC)(q). Algorithm DFs_3 (Figure 5.16) is an optimized version of
algorithm DFS_2 that constructs a sub-automaton
FAC = [AC, vC QC AC TRS, i€, qS0 of FAC that is stuttering equivalent with
FAC . Moreover, its embedded proced@enstruct_projection (Figure 5.10) finds

an automaton projection of the constructed sub-autonititirs projectable, and oth-
erwise it aborts the algorithm. Finally, if procedwenstruct_projection does not

abort the algorithm, then the behavior of its output automaton is always a safe abstrac-

tion of the circuit behavior, even when the circuit is not failure-wee.



172
Proof [Algorithm 5.4, DFS_3, a further optimized algorithm for finding safe

abstractions]

(Sketch) The correctness of AlgorithpFs_3 directly follows from the correctness of
Algorithm DFs_2, and the fact that in a failure-free circuit, any state that is reachable
from the terminal state of any DFS path belongs to the same internal TMSCC, and thus
has the same set of enabled external variables. As a result, exploration of enabled
internal transitions from the terminal states of DFS paths in Algorithfg_2 is a

redundant computation that can be remowed.

The above theorem states that for partial order reduction of a failure-free circuit,
the selected set of enabled variables whose transitions are explored at terminal states
of DFS paths need to include only the external variables, without violating the visibil-

ity condition (conditionC2) of ample sets.

Example 5.8Figure 5.17 depicts a FIFO controller of length eight partitioned in the
middle into two circuit blocks E = { a;,a,} ). A safe abstraction of the circuit
behavior ovelE s found using our partial order procedure. Since the sub-automaton
that is constructed by our procedure is very big, any of its sequences of internal signal
transitions, starting immediately after an external signal transition, is collapsed into
and depicted as a single state transition to the corresponding terminal state. The
constructed sub-automaton satisfies UEE, and thus the collapsed automaton is indeed a

safe abstractiom
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Fig. 5.17Finding a safe abstraction for the behavior of a FIFO controller.

Before we close this chapter, we would like to make two final notes about the
selection of external variables. As previously suggesi@diruct_projection may
fail to construct the automaton of a safe abstraction because of failure transitions that
go undiagnosed during construction of the partial order sub-automaton. This may
cause a seemingly unnecessary search for a safe abstractimilmsets of external
variables that might repeatedly fail because of the inherent failure of a circuit. To avoid
such a condition, we can check for failure transitions during construction of the partial
order sub-automaton. In this case, as soon as a failure is detected, the verification pro-
cedure can be quit. Although checking failures during partial order reduction incur
some additional cost, this approach will remove the need for unnecessary subsequent

search for safe abstractions.
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The second note is regarding an extension of this framework in which a partial
order sub-automaton that is not projectable (e.g., does not satisfy UEE) can still be
used to find safe abstractions assuming that appropriate state encoding is used to dis-
tinguish between externally-compatible terminal states of the sub-automaton that do
not have the same enabled external transitions. Such encoding schemes may introduce
new state variables into the system and require additional analysis of the relabelled
sub-automaton, adding to both space and time complexity of the algorithm. However,
this approach removes the inherent complexity of our current framework in trying dif-

ferent set of external variables to find a safe abstraction.
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Chapter 6

In Comparison

In this chapter, we first present an overall view of our framework for hierarchical veri-
fication of speed-independent circuits. In Section 6.2, we show how our framework is

in fact based on an assume-guarantee paradigm. In Section 6.3, we present a compari-
son of our framework with that of complex-gate verification and show how we have
succeeded in generalizing and extending that framework. Finally in Section 6.4, we
show how our efforts compare to other verification efforts in terms of the reduction

and/or abstraction techniques that are used.

6.1 The Flow of Our Approach lllustrated by an Example

In this section, we simply review the steps involved in one level of recursion of our
hierarchal verification approach; i.e., the steps taken starting from a circuit to the deri-
vation of its sub-circuits. Since these steps have already been discussed and each illus-
trated by an example, we illustrate the whole flow in a single example illustrated in

Figure 6.1. The Figure is assumed to be self explanatory.
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Fig. 6.10ne level of hierarchical verification for a FIFO controller.

6.2 Induced Hierarchical Verification, an Assume Guarantee

Paradigm

In this section, we briefly show how our hierarchical verification technique for Sl cir-

cuits can be viewed as an assume guarantee paradigm.

Our technique can be viewed as one which starts by assuming that a given circuit is
failure-free (or Sl), and then tries to guarantee that assumption by proving that the
induced sub-circuits are failure-free. With the assumption of failure-freedom for the
circuit, any safe abstraction (i.e., one that is generated by our partial order technique)
would exactlyresemble the behavior of the selected set of external variables. However,

if any induced sub-circuit is found to have a failure, it would be an indication that the
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initial assumption could not be guaranteed, and thus was not a true assumption. It is to
be reminded that a failure in a sub-circuit is either at an internal module or at the envi-
ronment module (i.e., a choke) of the corresponding circuit block; in the first case, the
failure would be a failure of the same module inside the original circuit as well, contra-
dicting our assumption of failure-freedom, and in the second case, the choke would
reveal that the safe abstraction was not exact, indirectly contradicting our assumption

that the circuit was failure-free.

6.3 Relation to Complex-Gate Verification

In this section, we briefly revisit a previous hierarchical verification technique--com-
plex-gate verification. We show how complex-gate verification is inherently based on
the same principles and observations about speed-independent circuits that were pre-
sented in the previous chapter. Moreover, we will show how our hierarchical verifica-

tion framework have succeeded in generalizing upon complex-gate verification.

Our hierarchical verification framework initially started out as an attempt to extend
and generalize complex-gate verification. Complex-gate verification is characterized
by two phases; &unctional verificationphase, followed by &#ehavioral verification
phase. In the functional verification phase, the circuit is collapsed and abstracted into a
network of complex-gates that is checked fonctional correctnesge.g., conform-
ance to specification) by full exploration of its state space. Once functional correctness

is established, the explored behavior of the complex-gate circuit is used to derive an
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abstract environment for each induced circuit block. In the behavioral verification
phase, failure-freedom of each circuit block in its abstract environment is checked. A
circuit is said to be failure-free if it is both functionally and behaviorally correct [64,

65].

The functional phase in complex-gate verification is the counterpart of deriving
safe abstractions in our framework. However, while we bebhavioral abstraction
(i.e., partial order reduction) to derive a safe abstraction of a circuit’s behavior, the
functional verification phase--as suggested by its name-fusetonal abstractiorio
find an abstract behavior of the complex-gate circuit. The functional verification phase
conceives of a circuit block that is collapsed into a complex-gate as a functional black
box, focusing on the functionality of the circuit block rather than its behavior. The
same complex-gate can also be conceived as a circuit block whose internal modules
have zero delays and whose outputs aréaaly signals; i.e., the outputs fire only after
all internal signals of the complex-gate have stabilized. It is this alternative view of a
complex-gate, focusing on the behavior of the corresponding circuit block rather than
its functionality, that has lead us to our partial order technique for behavioral abstrac-
tion. The above discussion also implies, although not immediately apparent, that in the
special case where the set of external circuit variables includes all complex-gate out-

puts, functional abstraction and our behavioral abstraction generate the same results.

The generality of our framework as compared to complex-gate verification arises
from the fact that an observationally sufficient set of external variables that partition a

circuit into circuit blocks does not need to include all outputs of memory elements,
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and/or cut all cycles in the circuit, while the set of external variables partitioning the
circuit into complex-gates does. As a result, since no memory element output is ever
internal to a complex-gate, the functional verification phase effectively assumes lazi-
ness forall such signals. In contrast, in our framework we may be ablide some

memory element outputs or cycles while deriving safe abstractions.

Since the functional abstraction is equivalent to some sort of partial order reduc-
tion with static choice of ample sets, it is easy to comprehend that the set of external
signals in complex-gate verification, similar to our framework, has to always satisfy
the closure under failure-free dependence conditions. The absehaehmemory
element outputs in complex-gate verification, however, has implications that have
facilitated the derivation of safe abstractions in that framework. In our framework, the
sub-automaton that is constructed by our partial order analysis has to satisfy a certain
condition before it can be used to derive a safe abstraction; i.e., it has to be projectable
onto the set of external variables. In complex-gate verification, the absehogdeh
memory element outputs or cycles in complex-gates makes their output excitations
depend only on their inputs/outputs. That is why complex-gates are treated as func-
tional blocks in the functional verification phase. Now, had we used our equivalent
partial order analysis instead, we would have noticed that regardless of the order of
transitions on the non-lazy (hidden) circuit variables, the final excitations of lazy vari-
ables would depend on the value of (all) lazy variables only, and that the hidden non-
lazy variables would never oscillate and would alwaysbilizeat unique values. In

other words, for a complex-gate circuit, our partial order analysis would always con-
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struct a sub-automaton that has no cycle of hidden state transitions and is always pro-
jectable onto the set of complex-gate input/outputs (because it satisfies UEE).
Moreover, since the projection of such a sub-automaton would always be a safe
abstraction, the set of complex-gate input/outputs waidysbe identified as obser-
vationally sufficient. It is this feature that has facilitated the derivation of safe abstrac-
tions in complex-gate verification by removing the need to check any additional

conditions (i.e., projectability).

It also becomes clear why complex-gate verification cannot support circuit blocks
with internal memory modules, or combinational cycles. Complex-gate verification is
closely concerned with thieinctionalaspect of a complex-gate rather thanbi&hav-
loral aspect; i.e., it is based on the fact that if the output excitation of a circuit block
can be expressed adumctionof its input/output signals only, then the behavior of the
corresponding complex-gate circuit is indeed a safe abstraction. Now, if a circuit block
has internal memory modules or cycles, its output excitation is generallyfantaon
of its input/output signals only--it also depends on the current state of the internal vari-
ables of the block. Now, if the output excitation of such a circuit block is approximated
by a function over only the input/output signals of the block, such that the function is
possibly an under-approximation or an over-approximation of the actual excitation of
the block within its environment, then there would be no trivial relationship between
the outcomes of functional/behavioral phases of complex-gate verification and the
actual failure-freedom of the original circuit. This is because the framework of com-

plex-gate verification assumes that #actfunctionality of the circuit blocks (com-
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plex-gates) in terms of their input/output signals is given, or easily computable. One
might argue that complete analyses of the behavior of circuit blocks withinabtial
environments can always be used to compute #actfunctionality, but that would
be contrary to the goal of induced hierarchical verification--verifying circuit blocks in
abstractenvironments that are derived from safe abstractions which are feitindut

complete behavioral analyses.

Our comparison of the two frameworks and their relationship can be summarized

as follows.

In our attempt to generalize upon complex-gate verification, we first identified two

inherent and implicit properties of complex-gates:

(a) complex-gates, as functional blocks, internaligbilizebefore having any output

transitions,

(b) complex-gates hauwenique internal stabilizationsand thus when internally stabi-
lized, they also havenique output excitationas functions of their (external) input/

output signals only.

Having identified the above properties, we next tried to exploit the same properties

into our own framework:

(a) we utilized and implemented the notionstbilizationinto our behavioral abstrac-
tion by having our partial order technique explore only those traces of a circuit on
which the internal variables of circuit blocks alwagtabilize (or reach a terminal

oscillatory state) before external I/O transitions occur,
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(b) we explicitly enforced the notion afnique output excitations internally-stable
(or terminal oscillatory) states by always checking the projectability of the sub-autom-
aton that is constructed by our partial order analysis. This has guaranteed the correct-
ness of our approach in the more general case that we have circuit blocks with internal

memory elements or cycles.

Our proposed behavioral abstraction has brought us the advantage of being able to
exercise hiding memory element outputs or cycles. However, this is achieved with the
additional cost of checking, among others, the projectability of the constructed sub-
automaton onto the set of external variables, a condition that is automatically satisfied

in complex-gate verification.

6.4 Comparison with other Reduction Techniques

Partial order, abstraction, and hierarchical verification techniques have been exten-
sively used in different tools to reduce the complexity of verification [14, 35, 37]. This
section discusses the relationship between the traditional usage of such techniques and

our proposed induced hierarchical verification approach.

In VIS [14], abstraction is referred to using non-determinism to abstract the behav-
ior of some circuit signals. Specifically, the signals are treated as primary inputs whose
behavior is totally unconstrained. This is probably too conservative for our application
because such non-determinism would introduce unreachable states which may exhibit

hazards, leading to false negatives. In contrast, we refer to an approximation of the
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behavior of a subset of circuit signals as an abstraction. Moreover, unlike that of VIS,

our abstraction never overestimates the behavior of the signals.

We have already discussed in detail the relation between our framework and patrtial
order reduction techniques [1, 62, 63, 32, 33, 81, 82]. The tricky part of our use of par-
tial order reduction techniques is that we do not knavgriori, whether a circuit is
failure-free or not; yet we make the impli@assumptiorthat it is failure-free and use
partial order reduction to find the behavior of the external variables. Consequently,
unlike the typical use of partial orders, our technique may actually under-approximate
the behavior of the external variables. A key feature of our technique is that if there is
any such under-approximation, it is always detected in the form of a failure in some

sub-circuit with the conclusion that the circuit is not failure-free.

The presumed independence of signals in a speed-independent (failure-free) cir-
cuit allows us to take advantage of different techniques to speed up the partial order
analysis. For example, a form of symbolic trajectory analysis can be used for internal
stabilization of the circuit (at fixed external states). This symbolic trajectory analysis
has two benefits. First, since the hidden signals are independent and the ordering of
input transitions for hidden circuit elements with no state variables is immaterial, for
such circuit elements we can use non-interleaving semantics in which enabled input
signals are allowed to fire simultaneously (e.g., [85]). This reduces the number of iter-
ations to stabilize the internal state of the circuit. Secondly, since the behavior of hid-

den variables is analyzed only locally when stabilizing the corresponding circuit



184
block, the hidden signals appear only locally and temporarily in BDD computations;

i.e., the hidden variables need not be global BDD variables.

We believe that our technique is similar to homomorphic reductions as used in
COSPAN [5, 35, 47]. In COSPAN, such homomorphisms simplify the language con-
tainment test between a model and a task by removing irrelevant aspects of the model.
We conjecture that our safe abstraction can be viewed as a result of a homomorphic
transformation which simplifies the model of the environment for each sub-circuit. In
our framework, the homomorphic system is automatically generated (using our partial
order technique) once a set of external signals is given, and the validity of the homo-
morphism is checked by checking a sufficient condition for observational sufficiency
(projectability of the constructed sub-automaton). Moreover, we believe that this
homomorphic reduction is both necessary and sufficient for verifying the non-reduced
problem, and consequently does not lead to any false negatives, as can potentially hap-

pen with homomorphic reductions in COSPAN.

Our approach is also similar to the more general assume-guarantee paradigm used
in reactive modulef?]. In that paradigm, a composition of reactive modules is verified
through verification of each module in an abstract environment followed by the verifi-
cation of the composition of abstract environments. We believe that our safe abstrac-
tion is to some degree analogous to an abstract environment with some differences.
The most obvious difference may be that our methodology does not need a separate

step of verifying the composition of abstract environments.
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In comparison with other work on verification of speed-independent circuits, we
should also note that Weih and Greenstreet developed a verification framework for
speed-independent circuits with similar characteristics as ours but for a somewhat dif-
ferent purpose [85]. Specifically, rather than verifying speed-independence of a circuit,
their goal is to verifylocal formulasfor circuits that have already been verified to be
hazard-free (i.e., semi-modular). In other words, in a preprocessing stage, they must
rely on traditional techniques to verify the speed-independence of the design. Never-
theless, their ideas are similar to ours in that to achieve their goal, they argue that only
one interleaving needs to be analyzed. Finally, Kishinegtlal’s work on analysis and
identification of a class of speed-independent circuits, called distributive circuits [45],
is based on derivation of an event specification of the circuit behavior in an STG-like
notation that also avoids the state space explosion problem. Their derivation of such an
specification is based on notions of dependency and concurrency similar to our frame-

work.
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Chapter 7

SPHINX

We have developed a CAD tool named SPHINX which implements our proposed

induced hierarchical verification framework for speed-independent circuits.

There are three types of input files to the program. One input file describes the
structure of the circuit as an interconnection of elementary, macro, or specification
modules, along with additional information about the initial value of circuit signals
and suggested ordering for BDD variables. The second type of input file is used for the
description of macro modules that are a collection of elementary circuit modules (e.g.,
gates). The third type of input file describes the specification modules as Petri-Net or
STG specifications. The user has to interactively specify external variables of the cir-
cuit (and those of sub-circuits at different levels of hierarchy), and variables that need
to be projected away to derive safe specifications for circuit blocks. The current ver-
sion of the tool does not perform any analysis to identify legal dependencies between
circuit variables, and the user is expected to choose the set of external variables in such
a way that they are closed under failure-free dependence. While adding a feature to

automatically identify legal dependencies is quite straight forward, such a feature
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seems to be not much of use, since in many speed-independent circuits, the only types
of legal dependencies are between the outputs of non-deterministic modules (output

choice) which can easily be identified by the user.

The tool automatically encodes the automaton representation of modules. For each
circuit and its specified set of external signals, the program finds a safe abstraction if
one exists, using symbolic partial order analysis, and automatically partitions the cir-
cuit into circuit blocks. Next, for each subsequent sub-circuit, the components of the
sub-circuit are assigned (overloaded by) new descriptions relative to the context of that
sub-circuit, and the sub-circuit is recursively analyzed. At the lowest level of the hier-
archy, symbolic reachability analysis is used to verify failure-freedom of the flat sub-
circuit. For comparison purposes, the tool can also perform symbolic reachability
analysis and verify hazard-freedom on the original flat circuit. The tool can also utilize
the extra level of abstraction of complex-gates. That is, for further speed up, the partial
order analysis can be alternatively performed on the complex-gate abstraction of the
partitioned circuit, where the combinational cones of logic within the circuit blocks are
collapsed into complex-gates. The program can generate a state diagram description of
any partially or fully explored state space that can be interpreted and viewed by

another program, PARG (by Tomas Rokicki).

Symbolic techniques (using the CUDD package of VIS [14]) are used to handle

sets of states and any operations on them, including the partial order exploration of the
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Fig. 7.1A FIFO controller of length = 8.

state space, any full reachability analysis of the state space of a sub-circuit, checking

the projectability of automata, and automata projections.

The executable files of SPHINX, together with descriptions of tool capabilities,
guidelines, sample circuits, and runtimes are accessible at http://jungfrau.usc.edu/

SPHINX/sphinx.html.

Table 1 shows some runtime results of the tool for two sets of examples, FIFO con-
troller (Figure 7.1) and DME-ring circuits of different lengths (Figures 7.2 and 7.3), on
a Sun SPARCstation 5 with 32 MBytes of memory. As a measure of the amount of
memory required, we use the maximum number of BDD nadesse before any
instance of garbage collection. The table shows that our hierarchical approach yields
significant runtime speed ups compared to flat verification, especially for the FIFO
controller which is an example of a circuit dominated by memory elements that can be
successfully hidden in our verification framework. In fact, the speed up grows expo-
nentially with the length of the FIFO. This can be explained by the fact that, in the
FIFO circuits, the depth of hierarchy logarithmically increases with the size of the cir-

cuit, while the maximum number of external gates always stays constant at four.
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Table 1: SPHINX Run-Time Results

Circuit Dgpth of Max # of CPU-Time Peak # of CPU-'I"ime BDD Size Projection
Hierarchy | External Gates (ms) BDD Nodes Ratio Ratio Depth
FIFO 4 0 6 120 1,005 1.0 1.0 -
FIFO 4 1 4 110 582 1.1 1.7 -
FIFO 8 0 10 1,010 4,964 1.0 1.0 -
FIFO 8 2 4 420 1,645 2.4 3.0 -
FIFO 16 0 18 64,510 585,740 1.0 1.0 -
FIFO 16 3 4 1,030 4,193 62.7 140 -
FIFO 32 0 34 1.5e+7 5.5e+5 1.0 1.0 -
FIFO 32 4 4 3,780 11,530 ~4000 ~47.0 -
FIFO 64 0 66 >180h >35Mbyte 1.0 1.0 -
FIFO 64 5 4 12,220 28,116 N/A N/A -
DME-ring 2 0 32 6,490 16,584 1.0 1.0 -
DME-ring 2 1 21 5,310 17,768 1.2 0.9 -
DME-ring 2 1 19 4,630 25,194 1.4 0.7 1
DME-ring 2 2 15 7,550 15,880 0.9 1.0 1
DME-ring 2 2 12 8,150 101,353 0.8 0.2 2
DME-ring 3 0 48 95,320 501,919 1.0 1.0 -
DME-ring 3 1 26 24,300 28,094 3.9 17.9 -
DME-ring 3 1 21 22,730 31,734 4.2 15.8 1
DME-ring 3 2 17 29,600 26,702 3.2 18.8 1
DME-ring 3 2 15 37,510 26,702 2.5 18.8 2
DME-ring 4 0 64 617,470 3,086,251 1.0 1.0 -
DME-ring 4 1 31 94,390 46,632 6.5 66.2 -
DME-ring 4 1 26 79,750 48,466 7.7 63.7 1
DME-ring 4 2 22 115,280 48,466 5.4 63.7 1
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On the other hand, for the DME-ring example where the non-deterministic outputs
of ME modules cannot be hidden, the depth of hierarchy remains constant while the
number of initial sub-circuits and their set of external signals grow linearly with the
size of the circuit. Limited projection of the safe abstraction has proven to be the best
option for the verification of the DME-ring example. This is due to the high cost of

checking projectability of the safe abstractions and computing their projections.
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Fig. 7.3A DME ring of length = 2.
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Chapter 8

Directions for Future Research

We presented a new approach for induced hierarchical verification of speed-indepen-
dent circuits that improves upon previous approaches on some circuits. The approach
generalizes previous efforts for the verification of speed-independent circuits [7, 8, 27,
53, 64, 65, 88] and is believed to have interesting relationships with current efforts in

the analysis of synchronous circuits that have combinational loops [49, 20, 71, 72].

Our CAD tool SPHINX is already available on the World-Wide-Web [91]. Our
experiments with the tool have focused on example circuits for which the tool would
promise advantage over available tools such as Versify [64, 65], because our technique
is a generalization of those techniques, and reduces to them for other circuits. How-
ever, there is still room to further improve, optimize, and even test the tool on more cir-
cuits. Some features of the program that can be improved are its interface, and error

trace generation.
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The following is a list of possible future directions for this research:

» a formal study of extension of the framework to the verification of asynchronous
circuits with relative timing assumptions and in particular self-timed circuits;
i.e., hierarchical verification and hierarchical extraction of relative-timing con-
straints/assumptions for such circuits, integration of the results of this research

with techniques for (flat) verification of relative-timed circuits [44], etc.

« a formal study of extensions of this work to the verification of delay-insensitive

circuits, quasi-delay insensitive circuits, and verification of liveness properties.

« exploring applications of the framework to the analysis of synchronous circuits

that have combinational loops.

« research on techniques/heuristics for automatic selection of observationally suffi-

cient sets of external signals.

In the following sections, we first present some of our preliminary ideas and direc-
tions for extending the scope of our current framework to the domain of relative timed
circuit verification. We then present a discussion on the issues involved in using multi-
ple safe abstractions for hierarchical verification, and will close this chapter with an

open conjecture on the correctness of a potential solution for this problem.

8.1 Hierarchical Verification of Relative-Timed Circuits

Speed-independent circuits (systems), as we know, are circuits which should work cor-

rectly regardless of--absolute or relative--component delays. Equivalently, a Sl circuit
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should work correctly for all possible ordering of events (e.g., signal transitions). In
verifying speed-independent circuits (i.entimed systemismodules and specifica-
tions are modeled as if they have unbounded delays. Moreover, time giantita-
tively modeled; rather, it is inherently modeled in the evolution of the system through

event occurrences.

In this section, we briefly discuss the problem of verifying another class of asyn-
chronous circuits; circuits which are not speed-indepengente yet their failures
are avoided by restricting the possible ordering of events through a setin§ con-

straints/assumptions

Timing constraints can be provided in the form of bounded delays for circuit mod-
ules and specifications. Verification of systems with such timing constraints (metric
timing) requires explicit representation of time. There are techniques and tools for the
verification of such systems which use eitdescreteor continuougime models. Con-
tinuous time models can provide accurate verification results. Discrete time models
(e.g., [18, 13]), on the other hand, are often not as accurate, and may have partial fail-
ure coverage [79, 80, 89, 90]. Discrete time models use timer variables to model the
passage of time, while dense time models use notions sushitasubeqregions) [3],
or convex geometric region®r zones) [28, 11, 38]. Both techniques suffer from the
additional cost associated with explicit modeling of time, which aggravates the already
serious problem of state explosion. Partial order techniques have been used to avoid
the explosion of timed states (or regions) [87, 70, 84]. [66, 67, 59, 9, 1Q}aslly

ordered set4POSETS) of events to reduce the number of regions per untimed states.



194
Timing constraints can also be provided in the fornnedtive timing assumptions/

constraints(RTA/RTC). Often, the environment behavior is assumed to be restricted
by relative timing assumptions (RTA), while the circuit behavior is constrained by rel-
ative timing constrains (RTC). An RTA/RTC imposes restrictions on the possible
orderings of some set of related events. As an example, an RTC may indicate that if a
signal transition will causally enable two other transitions, one of them always will
occur before the other one. Such constraints restrict the reachable state space of a
(closed) circuit, and if chosen correctly, can prevent a circuit from reaching its
(untimed) failure states. Then, a physical implementation of the circuit will operate
safely within its environment, if both the implementation and the environment meet

their relative timing constraints/assumptions.

Aggressive asynchronous circuit design using relative timing is becoming the state
of the art in asynchronous design. The RAPPID architecture is an example of such
efforts [69]. Design and verification of RT circuits has been addressed by [73, 74, 26,
60].

Verification of circuits with relative timing information does not require explicit
modeling of time. All is needed is to impose timing assumptions/constraints when
exploring the untimed state space of the circuit, pruning any part of the untimed state
space which can be entered only by violation of such constraints/assumptions. Thus
flat verification of circuits with relative timing information seems to be a trivial prob-

lem.
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Our hierarchical verification framework for Sl circuits can easily be generalized to
handle RT circuits. For this, we simply need to exercise RTA/RTCs during any partial
or full state space exploration of the circuit, whether it is for finding safe abstractions,
or for flat verification of a sub-circuit. As a result, safe abstractions of RT circuits
would contain only those interleaving of events on external signals which adhere to

RTA/RTCs.

A safe abstractions of an RT circuit may need to carry further information about
relative ordering of events. For example, consider a timing constraint which involves
three signalsa b , and , witla eventually enablitgy and in some particular
order. Moreover, assume that at some level of hierarahy, becomes a hidden signal of
one circuit block, and and become hidden signals of another circuit block. If RT
information is not passed appropriately across levels of hierarchy, correct verification
of the circuit block containindb and may not be possible. This is because informa-
tion regarding the correct ordering of eventston and might have been lost in the
safe abstraction, due to all signas b, , and being hidden signals. This example
shows the importance of preservation of RT constraints across levels of hierarchy and

also across circuit blocks of any level of hierarchy.

Any RTA or RTC constraint can be modeled as an additional sequential circuit
module whose inputs are the signals involved in the constraint. The state of such a
module accordingly evolves by events on its input signals. We call any such module
which represents a constraintanstraint moduleThe firings of any circuit signah

of an RT circuit is controlled by the set of all constraints which constrain signal
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Fig. 8.1Modeling an RT circuit as an Sl circuit with additional circuitry.
The additional circuitry are to enforce the RT constraints and assumptions.

This can be modeled by an additional (control) input signal at the module that drives
signala . This additional control input signal would allow the driving module to fire
signala only if all RTA/RTCs containing that event are satisfied. Such a control signal
can in turn be produced by some logic that monitors the states of all constraint mod-
ules which have signa in their input, and generates a ‘1’ output only if all the con-

straints are met. We call such a modué®atrol module (See Figure 8.1).

Modelling the effect of RTA/RTS by introducing constraint modules, new control
signals at ordinary circuit modules, and the logic driving such control signals, enables

us to use the same framework for hierarchical verification of RT circuits that we had
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Fig. 8.2A C-element.
(a) Specification, (b) Sum-of-Product implementation, (c) circuit automaton

proposed for verification of speed-independent circuits. In other words, an RT circuit
modeled as described above, can be verified for failure-freedom as an ordinary Si cir-
cuit. The advantage of modeling RT circuits as Sl circuits with additional circuitry is
that safe abstractions of such circuits will automatically contain and carry all required

RT information necessary for correct verification.

Example 8.1Figure 8.2 shows the specification of a C-element, together with a Sum-
of-Product implementation of it, and the circuit automaton of the implementation. As
suggested by the circuit automaton, this SoP implementation of a C-element is not

speed-independent, or failure-free. Note that to simplify the illustration, the failure
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transitions of the circuit are all directed to a failure state labeled wiffihe main
cause of failures in this implementation is the possibility for the inputs of the circuit to
change before the internal signals of it have stabilized. For example, consider the
scenario in which inputa and B both become ‘1’, causingi and then output
become ‘1’. Now, if before signab (u3) gets a chance to rise to ‘1’, input(s) falls to
‘0’, then u2 (u3) becomes disabled, causing a failure. This failure can cause autput

fall to ‘0’, while it is expected to remain at ‘1’.

The SoP implementation of C-element will be failure-free if two relative timing
constraints are satisfied by the environment of the C-element. These constraints limit
the response time of the environment to changes at the output of the C-element, such
that the circuit’s inputs are not changed before its internal signals are stabilized. These
two RTCs arec+ u2+ < c+ A- andc+ u3+ < c+ B-. They suggest that the sequence of tran-
sitions consisting of rising af followed by rising ofu2 (u3), has to happen before the

sequence of transitions consisting of rising dbllowed by falling ofa (B).

For this particular circuit, RTC conditioa+ u2+ < c+ A- (Similarly c+ u3+ < c+ B-)
can be modelled by a module with the automaton of Figure 8.3. The inputs of such a
module are signals andu2, and its output is signal. Failure transitions (by unex-
pected inputs) are omitted for the sake of clarity. This model is developed using
knowledge about sequences of signal transitions that are possible by the circuit. For
example, it is not possible for signalof this circuit to fall before both signalsandu2

fall. If such knowledge is not available, the RTC can be modelled with more general
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Fig. 8.3Modelling an RTC.
Modelling RTCC+ u2+ < C+ A- by an automaton using knowledge about the behavior of a
C-element.

and complicated Petri-Nets. Such general models may allow the signals involved in
the RTC to reset right after they have made the transitions specified in the RTC; how-
ever, after a reset, they may not allow the signals to make any further transitions before
all transitions specified in the RTC have occurred. Such general models may also allow
each signal to reset any time after it has made its transition, as late as right before its

next expected transition in the RTC.

The above modules cannot be directly composed with the ordinary modules of a
circuit to impose the corresponding RTC constraints. The reason is that the outputs of
these modules (e.g., signal are in fact driven by other modules (e.g., the environ-
ment), and by definition of a circuit, no two modules can drive the same signal. This
problem can be resolved by making all signals involved in an RTC constraint as input
signals of its constraint module, and include an output signal that simultaneously
becomes ‘1’ with the second transition of the RTC, and ‘0’ with the last transition of
the RTC. Such a module acts likearo-delaynodule whose output fires right after it

becomes enabled, with no delay. The automaton of such a constraint module for RTC
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(a) A zero-delay constraint module (b) A zero-delay control module with
with output A to control the falling output EA to control the falling
transitions of signal A transitions of signal A
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(d) The module automaton of the controlled inverter

Fig. 8.4Modeling the effect of multiple RTCs on an inverter.
RTC C+ u2+ < C+ A- and other RTCs that constrain transitions of sighahe output
of an inverter.

C+ u2+ < C+ A- IS depicted in Figure 8.4.a. The set of inputs of the new constraint mod-
ule is {c,u2,A}, and its output set is4.}. Signal A, can then be used to enable the fall-

ing transition of signa.

As an example, assume that there is an inverter in the circuit that drives signal
(Figure 8.4.c). Moreover, assume that there are multiple RTC constraint modules for
the falling transition ofa, and each of them have a zero-delay output,The control
module of the inverter gate can be modelled by a zero-delay speed-independent C-ele-

ment that collects the,; signals and generates a ‘1’ at its outps, immediately fol-
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lowing the instance that all,; signals become one (Figure 8.4.b). Note that the falling
of A will simultaneously reset all,; signals and signaa. The model of the inverter
gate that drives signal also needs to be modified, such that it supports an additional
input that is driven by signaa (Figure 8.4.c and 8.4.d). This controlled model of an
inverter will monitor its control inputA and have a falling transition at the output
only if EA is a ‘1’, otherwise, the output transition mstponedFigure 8.4.d). Note
that transition of afterea does not need to be a zero-delay transition. It is notable that
the model of the controlled inverter that is illustrated in Figure 8.4.d is a simplified
model, based on knowledge about the possible behaviors; e.g., it has taken advantage
of the knowledge thata can become ‘1’ only aftex rises. If such knowledge were not

captured in the model, its automaton would be more complioated.

The above example illustrates some of the issues that arise when using our frame-
work for hierarchical verification of RT circuits. The most important issue is that mod-
elling the effect of RTC/RTAs by additional circuitry requires the introduction of the
notion of zero-delay modules into the framework. Our present framework already sup-
ports the notion of internal state variables of modules that can simultaneously change
with the 1/O signals of their modules. Extending the framework to handle concurrent
transitions of 1/0 signals is believed to affect only the semantics of the behavior of a
circuit, and not the correctness of the framework. However, a proof of concept and fea-
sibility of this approach requires further research. Efficient implementation of the
effect of RTA/RTCs through additional circuitry and modified ordinary modules,

choosing OSV sets over the newly introduced variables, and correct handling of pro-
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jections of such variables seem to be other important issues that need to be further

investigated and researched.

We close this section by pointing to another problem which is closely related to
verification of RT circuits; i.e., automatic extraction of RTA/RTCs for such circuits.
Assuming that automatic extraction frameworks are available for flat RT circuits, it
might be possible to combine our proposed hierarchical verification framework with
such frameworks for hierarchical extraction of RTA/RTCs. Studying the involved

iIssues and problems is another interesting area for future research.

8.2 Hierarchical Verification using Multiple Safe Abstractions

In this subsection, we discuss a variation of our hierarchical verification framework
which seems to be an attractive alternative approach. This variation aims at verifying
the conformance of circuit blocks of a circuit to safe specifications that are not derived
from the same safe abstractions; i.e., it uses multiple safe abstractions for derivation of
sub-circuits. A particular problem with this approach is illustrated through an exam-
ple. Then we propose a slight modification in our framework whrgght legitimize

using multiple safe abstractions for hierarchical verification. However, the correctness
of the new approach, or the existence of any correct approach for hierarchical verifica-

tion using multiple safe abstractions remains an open problem.

In our framework, we partition a given circuit into a set of circuit blocks, find a

safe abstraction of the behavior of the external signals that partition the circuit, and
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Fig. 8.5An abstract view of a circuit with a covering set of super-blocks.

Each super-block is partitioned into a set of circuit blocks. Not all circuit blocks are verified
against the same safe abstraction. Only circuit blocks of the same super-block (having the
same color) are verified using the same safe abstractions. The super-blocks can overlap.

verify each circuit block against a safe specification that is obtained from the safe

abstraction. An alternative approach which may come to mind is to:

(i) select a set o€ircuit super-blockghat is acoveringset for the circuit modules, and

can possibly overlap. Each super-block is partitioned into a set of circuit blocks,

(ii) for each super-block, find a safe abstraction over a set of external circuit variables

that is a superset of the I/O variables of the circuit blocks in that super-block,

(i) verify each circuit block of a super-block against a safe specification that is

derived from the safe abstraction that is found for that super-block (See Figure 8.5).

This alternative approach is appealing since a safe abstraction that is used to verify
the circuit blocks of a super-block has potentially a smaller set of external signals com-
pared to a single safe abstraction that is used to verify all circuit blocks of a circuit.
Since the complexity of finding (each) safe abstractions is exponential in the number
of (the corresponding) external variables, the overall cost of finding multiple safe

abstractions can be less than that of finding a single safe abstraction for all the circuit
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d=1

@) (b)

Fig. 8.6Incorrect verification using multiple safe abstractions.

This circuit is not correctly verifiable if multiple safe abstractions are used to verify its
circuit blocks. (a) a problematic state of the circuit, (b) a transition leading to the
problematic state.

blocks. Note that by allowing the super-blocks to overlap in the proposed scenario, a
single module can appear in multiple circuit blocks (of multiple super-blocks), and be

verified multiple times.

The problem with the above approach arises from the very fact that not all circuit
blocks are verified against the same safe abstraction. It is not hard to imagine a case in
which the safe abstractions that are used to verify the circuit blocks of different super-
blocks are all under approximated abstractions such that the internal failures of their
corresponding circuit blocks do not get a chance to manifest themselves. In contrast,
when a single under approximated safe abstraction is used to verify all circuit blocks,
the sources of under approximation which are failure(s) in some of the circuit blocks

will all be found during the verification of those failing circuit blocks.

Figure 8.6.a illustrates an example of a circuit which is not always verifiable if
multiple safe abstractions are used to verify its circuit blocks. The indicated (initial)

state of the circuit[abcd] = 0111 ) is selected very carefully; all three sigmal® ,
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andc are simultaneously enabled in that state, but the firing of any one of them will
disable another one of them, causing a failure. For exanaple, can rise and disable ;
b can fall and disable ; and can fall and disalle . All of the following are true of

this circuit:

() 0111 1111 1011s a trace of the circuit which yields an under-approximated safe
abstractionll, 01 over the 1/O signals of the invertg €] ). The inverter is failure-

free in the environment specified by this safe abstraction;

(i) 0111, 0101 1101s atrace of the circuit which yields an under-approximated safe
abstraction011, 111 over the 1/O signals of the top C-elemégatbd] ). The top C-

element is failure-free in the environment specified by this safe abstraction;

(ii) 0111, 0011 000is a trace of the circuit which yields an under-approximated
safe abstractio®11, 001 over the 1/O signals of the bottom C-elemerdd] ). The

bottom C-element is failure-free in the environment specified by this safe abstraction.

Thus, using different safe abstractions to verify the circuit blocks (modules) of this

circuit may result a false positive verification result for the circuit.

On the other hand, and as an example of using a single safe abstraction to verify all
circuit blocks, if the two C-elements were verified using the safe abstraction used for
the inverter (i.e. 0111, 1111 1011), then a failure on the top C-element would have

been detected, which would correctly imply the failure of the circuit.

The example of Figure 8.6.a was able to illustrate the potential problem of using

multiple safe abstractions because it had multiple failures which could mask each
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other in different safe abstractions. This particular condition, although seemingly arti-
ficial, can occur in practice, as illustrated in Figure 8.6.b. In Figure 8.6.b, there exists a
race between the transitions of the two signéls &nd , suchithat falling first will
cause no subsequent failures, kdut  rising first will enable multiple simultaneous fail-
ures; i.e.,d rising will enable two more transitions (@an  aad ), with all of the
enabled transitions leading to failures. This situation is reminiscent of a violation of
fundamental mode constraints, since the input sighal is changing before the circuit

has stabilized.

Multiple simultaneous failures are not always enabled as described above; they can
become enabled as a result of a single failure as well. In such a case, it might be possi-
ble to locate the actual source of the failures (the single failure initiating the other fail-

ures) in the sub-circuit containing the failing module.

At this point, we present one possible solution to the problem of using multiple
safe abstractions for hierarchical verification. We have not been able to prove or dis-
prove the correctness of this solution yet, and thus it remains as an open problem for
future research. This possible solution is based on a slight modification of the defini-
tion and derivation of safe abstractions. Our original definitions suggest that a safe
abstraction of the behavior of a circuit is the projection of a sub-automaton of the cir-
cuit automaton that is assumed tofagure-free This implies that during the construc-
tion of the sub-automaton out of the circuit description, there is no need to pay
attention to failure transitions that might have been explored, since any such failures

can be detected later when verifying the circuit blocks using a single safe abstraction.
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Not checking for failures during derivation of safe abstractions is also motivated by the

fact that it reduces the cost of finding safe abstractions.

The suggested modification in the definition and derivation of safe abstractions is
as follows: during construction of each sub-automaton from which a safe abstraction is
derived, failure transitions ai@l checked for; if any failure transition is detected then
the circuit obviously has a failure, otherwise, the sub-automatdmlig failure-free.

The new solution would then identify a circuit as failure-free iff for any super-block of
the circuit the sub-automaton used to derive its safe abstraction is truly failuraridee

all sub-circuits of the super-block are failure-free.

The above modification in the derivation of safe abstractions guarantees that if a
failure transition that is located outside a super-block is explored in the safe abstrac-
tion of that super-block, the failure is not masked out during verification of the circuit
blocks of the super-block. However, it is still possible for all failures that are located
outside the super-block to be missed from the safe abstraction. Such a condition can
result an under-approximated safe abstraction which can in turn hide internal failures

of the super-block.

The only situation in which the suggested solution can fail to correctly verify a cir-
cuit is when the circuit has a failure, yet all sub-automata of safe abstractions and all
sub-circuits of the super-blocks are failure-free. This can happen only if during verifi-
cation of sub-circuits, failures originating from within the circuit blocks are never acti-
vated. But that capossiblyhappen only if all (failure-free) safe abstractions which are

used for verifying failing circuit blocks are under-approximations that can hide all the
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failures of those blocks. Note that if a safe abstraction is exact, the internal failures of
the circuit blocks of its super-block are always guaranteed to be found. A prove or dis-
prove of the suggested solution has to show whether or not the combination of the

above conditions is ever possible.

Even if the correctness of the suggested solution can be proven, the approach can
be more expensive than our original approach (using a single safe abstraction) since it

has to investigate all transitions of all sub-automata for possible failures.
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