
Communicating Process Architectures 2005 275
Jan Broenink, Herman Roebbers, Johan Sunter, Peter Welch, and David Wood (Eds.)
IOS Press, 2005

High Level Modeling of Channel-Based
Asynchronous Circuits Using Verilog

Arash Saifhashemi a,1 and Peter A. Beerel b

a
 PhD Candidate, University of Southern California, EE Department, Systems Division

b
 Associate Professor, University of Southern California, EE Department, Systems Division

Abstract. In this paper we describe a method for modeling channel-based
asynchronous circuits using Verilog HDL. We suggest a method to model CSP-like
channels in Verilog HDL. This method also describes nonlinear pipelines and high-
level channel timing properties, such as forward and backward latencies, minimum
cycle time, and slack. Using Verilog enables us to describe the circuit at many levels of
abstraction and to use the commercially available CAD tools.

Keywords. CSP, Verilog, Asynchronous Circuits, Nonlinear Pipelines

Introduction

A digital circuit is an implementation of a concurrent algorithm [2]. Digital circuits consist of
a set of modules connected via ports for exchanging data. A port is an electrical net whose
logical value is read and/or updated. A complex module may consist of a collection of simpler
modules working in parallel, whose ports are connected by wires. At a higher level of
abstraction, however, complex modules can often be modeled as a process, which
communicate with other complex modules through communication channels [1] that are
implemented with a set of ports and wires and a handshaking protocol for communication.

This paper focuses on the modeling and simulation of a large class of asynchronous
circuits which use CSP (Communicating Sequential Processes [1,2]) channels for
communication. In particular, any digital circuit that does not use a central clock for
synchronization is called asynchronous. In channel-based asynchronous circuits, both
synchronization and data communication among modules are implemented via channel
communication. In fact, communication actions on channels are synchronous, i.e. the read
action in a receiving module is synchronized with the write action of the sending module. This
synchronization removes the need of a global clock and is the foundation of a number of
demonstrated benefits in low-power and high-performance [9,10]. Unfortunately,
asynchronous circuits will not gain a large foothold in industry until asynchronous design is
fully supported by a commercial-quality CAD flow. In this paper, we present a method to
enhance Verilog with CSP constructs in order to use commercially available CAD tools for
developing channel-based asynchronous circuits.

To model the high-level behavior of channel-based asynchronous designs, designers
typically use some form of CSP language that has two essential features: channel-based
communication and fined grained concurrency. The former makes data exchange between

1 Corresponding Author: Arash Saifhashemi, Department of Electrical Engineering – Systems, EEB 218,

Hughes Aircraft Electrical Engineering Building, 3740 McClintock Ave, Los Angeles, CA, 90089, USA; E-mail:
saifhash@usc.edu

276 A. Saifhashemi and P. A. Beerel / Modeling of Asynchronous Circuits Using Verilog

module models abstract actions. The latter allows one to define nested sequential and
concurrent threads in a model. Thus, a practical Hardware Description Language (HDL) for
high-level asynchronous design should implement the above two constructs. Furthermore,
similar to many standard HDLs, the following features are highly desired:

• Support for various levels of abstraction: There should be constructs that describe
the module at both high and low levels (e.g., transistor-level) of abstraction. This
feature enables modeling designs at mixed-levels of abstraction, which provides
incremental verification, as units are decomposed into lower-levels and enables
arrayed units (e.g., memory banks) to be modeled at high-levels of abstraction to
decrease simulation run-time. Also, this enables mitered co-simulation of two-
levels of abstraction, in which the lower-level implementation can be verified
against the higher-level, golden specification.

• Support for synchronous circuits: A VLSI chip might consist of both synchronous
and asynchronous circuits [13]. The design flow is considerably less complex if a
single language can describe both, so that the entire design can be simulated using
a single tool. Consequently, modeling clocked units should be straightforward.

• Support for timing: Modeling timing and delays is important at both high and low-
levels of the design. Early performance verification and analysis of the high-level
architecture using estimated delays is critical to avoid costly re-design later in the
design cycle. Later, it is essential to verify the performance of the more detailed
model of the implementation using accurate back-annotated delays.

• Using available supporting CAD tools: In addition to the availability of powerful
simulation engines, hooks to debugging platforms (e.g., GUI-based waveform
viewers), synthesis tools, and timing-analyzers should also be available. There are
many powerful CAD tools available in these areas, but in most cases they only
support standard hardware design languages such as VHDL and Verilog.

• A standard syntax: The circuit description should be easily exchangeable among a
comprehensive set of CAD tools. Using a non-standard syntax causes simulation of
the circuit to become tool dependant.

Several languages have been used for designing asynchronous circuits in the literature.
They can be divided in the following categories:

1. A new language. A new language with syntax similar to CSP is created, for which
a simulator is developed. Two examples of this method are LARD and Tangram
[3,14]. Simulation of the language is dependant on the academic tool and tool
support/maintenance is often quite limited. Also, the new language usually does
not support modeling the circuit at the lower levels of abstraction such as at the
transistor and logic levels.

2. Using software programming languages like C++ and Java. For example, Java has
been enhanced with a new library, JCSP [4,12], in order to support CSP constructs
in Java. This approach does not support timing and mixed level simulation.
Furthermore, integration with commercially-available CAD tools is challenging.

3. Using standard hardware design languages such as Verilog and VHDL. Because of
the popularity of VHDL and Verilog among hardware designers, and also the wide
availability of commercial CAD tool support, several approaches have been made
to enhance these languages to model channel-based asynchronous circuits.
Previous works by Frankild, et al. [5], Renaudin, et al. [6], and Myers [7] employ
VHDL to design asynchronous circuits. In VHDL, however, implementing fine
grained concurrency is cumbersome, because modeling the synchronization

A. Saifhashemi and P. A. Beerel / Modeling of Asynchronous Circuits Using Verilog 277

between VHDL processes requires extra signals. Moreover, in some cases [6], the
native design language must be translated into VHDL. This makes the debugging
phase more cumbersome, because the code that is debugged in the debugger is
different from the original code. Signals may have been added, and port names
may have been changed, forcing the designer to know the details of the conversion.
T. Bjerregaard, et al. [18] propose using SystemC to model asynchronous circuits
and have created a library to support CSP channels. Similar to VHDL,
implementing fine-grained concurrency in SystemC is cumbersome. Also,
modeling timing is not addressed in their approach. In [8], Verilog together with its
PLI (Programming Language Interface) has been proposed. Using Verilog,
modeling the fine-grain concurrency is easily available by using the built-in
fork/join constructs of Verilog. The PLI has been used for interfacing Verilog and
pre-compiled C-routines at the simulation time. Using the PLI, however, has two
disadvantages: first, the PLI interface significantly slows down the simulation
speed, and secondly, the C code must be recompiled for all system environments,
making compatibility across different system environments a challenge. Lastly, in
the Verilog-PLI approach, handshaking variables are shared among all channels of
a module. Unfortunately, this scheme breaks down for systems such as non-linear
pipelined circuits in which multiple channels of a module are simultaneously
active.

This paper addresses the problems of the Verilog-PLI method [8] and makes CSP
constructs available in Verilog, without the above limitations. Besides the basic channel
implementation, we propose to model performance of asynchronous pipelines by modeling the
forward/backward latency and minimum cycle time of channels as timing parameters to our
high-level abstract model. It is worthwhile mentioning that using Verilog also enables one to
migrate to SystemVerilog [19], which commercial CAD tools are beginning to support. Since
SystemVerilog is a superset of Verilog, our method will be directly applicable to future CAD
tools that support SystemVerilog.

The remainder of this paper is organized as follows. In Section 1, relevant background on
CSP and non-linear pipelines is presented. Section 2 explains the details of implementing
SEND/RECEIVE macros in Verilog. Section 3 describes the modeling of asynchronous
pipelines using these macros. Section 4 describes further improvements to the method such as
monitoring the channels’ status, implementing channels that reshuffle the handshaking
protocol, and supporting mixed mode simulation. Section 5 presents a summary and
conclusions.

1. Background

In this section we briefly describe relevant background on CSP communication actions and
asynchronous nonlinear pipelines [9].

1.1 Communicating Sequential Processes

Circuits are described using concurrent processes. A process is a sequence of atomic or
composite actions. In CSP, a process P that is composed of atomic actions s1, s2, …, sn,
repeated forever, is shown as follows:

P = *[s1 ; s2 ; … ; Sn]

Usually, processes do not share variables, but they communicate via ports which are
connected by channels. Each port is either an input or an output port. A communication action

278 A. Saifhashemi and P. A. Beerel / Modeling of Asynchronous Circuits Using Verilog

consists of either sending a variable to a port or receiving a variable from a port. Suppose we
have a process S that has an output port out and a process R that has an input port in, and
suppose S.out is connected to R.in via channel C. The send action is defined to be an event in
S that outputs a variable to the out port and suspends S until R executes a receive action.
Likewise, a receive action in R is defined to be an event that suspends R until a new value is
put on channel C. At this point, R resumes and reads the value. The completion of send in S is
said to coincide with the completion of receive in R. In CSP notation, sending the value of the
variable v on the port out is denoted as follows:

(out!v)

Receiving the value v from the port in is denoted as:
(in?v)

Another construct, called a probe, has also been defined in which a process p1 can
determine if another process p2 is suspended on the shared channel C for a communication
action to happen in p1 [2]. Using the probe, a process can avoid deadlock by not waiting on
receiving from a channel on which no other process has a pending write. Probe also enables
the modeling of arbitration [2].

For two processes P and Q, the notion P||Q is used to denote that processes P and Q are
running concurrently. On the other hand, the notion P;Q denotes that Q is executed after P.
We can also use a combination of these operators, for example, in the following:

*[(p1 || (p2;p3) || p4) ; p5]

process p1 will be executed in parallel with p4. At the same time p2;p3 will be executed.
Finally, once all p1, p2, p3, and p4 finish, p5 will be executed. This nested serial/concurrent
processes at deeper levels enable modeling fine grained concurrency.

1.2 Asynchronous pipelines

A channel in an asynchronous circuit is physically implemented by a bundle of wires between
a sender and a receiver and a handshaking protocol to implement send and receive actions and
the synchronization. Various protocols and pipeline stage designs have been developed that
trade-off robustness, area, power, and performance. Channels are point-to-point from an
output port of one process to an input port of another process. Linear pipelines consist of a set
of neighboring stages with one input and one output port. We can describe a stage of a simple
linear pipeline that receives value x from its left port and sends f(x) on its right port as follows:

Buffer = *[in?x ; y=f(x) ; out!y]

For this stage we define the following performance metrics [9] that are defined with the
assumption that data is always ready at the in port, and a receiver is ready to receive data from
the out port.

1. Forward latency: The minimum time between the consecutive receive at the in port
and send at the out port

2. Backward latency: The minimum time between the consecutive send at the out port
and the receive at the in port

3. Minimum Cycle time: The minimum time between two consecutive receive actions
(or between two consecutive send actions). In the above example, the minimum
cycle time is equal to the minimum value of the sum of execution times of receive,
f(x) calculation, and send

A pipeline is said to be non-linear if a pipeline stage has multiple input and/or output
channels. A pipeline stage is said to be a fork if it can send to multiple stages. A pipeline stage

A. Saifhashemi and P. A. Beerel / Modeling of Asynchronous Circuits Using Verilog 279

is said to be a join if it has input channels from multiple predecessor stages. Furthermore,
complex non-linear pipelines support conditional communication on all channels, i.e.,
depending on the value read from a certain control input channel, the module either reads
from or writes to different channels.

Asynchronous circuits are often implemented using fine grained non-linear pipelines to
increase parallelism. In this paper, we show how to model the performance properties of such
a pipeline at a high level of abstraction. In particular, in high-level performance models, it is
necessary to estimate the amount of internal pipelining within a process. This pipelining is
characterized as slack and is associated with ports of pipeline stages as follows:

1. Input port slack: The maximum number of receive actions that can be performed at
the input port, without performing any send action at the output port(s) of the
pipeline stage.

2. Output port slack: The maximum number of send actions that can be performed at
the output port, without performing any receive action at the input port(s) of the
pipeline stage.

We adopt the modeling philosophy that the performance of the pipeline stage can be
adequately modeled by specifying the forward, backward, and the minimum cycle time of the
associated slack at the input and output ports. In Section 3, we will describe how to capture
and model the slack in our Verilog models.

2. Communication Actions in Verilog

Our approach to modeling communication actions in Verilog is to create two macros SEND
and RECEIVE that model a hidden concrete implementation of the handshaking protocol [2]
for synchronization. The challenge we faced is associated with the limited syntax and
semantics of Verilog macros: Verilog macros only supports textual substitution with
parameters, but do not support creating new variables via parameter concatenation as is
available in software languages like C.

Among different protocols, the bundled data handshaking protocol [10] has the lowest
simulation overhead: for a bundle of signals, we must have an extra output signal called req in
the sender and an extra input called ack in the receiver. When the sender wants to send data, it
asserts the value of this extra bit, req, to assert that the new data is valid. Then, it waits for the
receiver to receive the data. Once the data is received, the receiver informs the sender by
asserting the ack signal. Finally, both req and ack will be reset to zero. The behavior of this
protocol in Communicating Hardware Processes (CHP) notation [2], a hardware variant of
CSP, is as follows:
Sender:
*[req=1 || d7…d0=produced data;[ack];req=0;[~ack]]

Receiver:
*[[req] ; buffer= d7…d0 ; ack=1 ; [~req] ; ack=0]

Here, [x] means wait until the value of sox becomes true.

Figure 1. Bundled data Protocol

280 A. Saifhashemi and P. A. Beerel / Modeling of Asynchronous Circuits Using Verilog

Our goal is to use Verilog macros to hide the handshaking details and make the actions
abstract. First, we hide the extra handshaking signals, i.e., req, ack. This can be achieved by
having two extra bits on each port: bit 0 is used for the req signal, and bit 1 is used for the ack
signal. A naive Verilog implementation of the bundled data protocol, using those bits is shown
in Figure 2. Suppose that the out port of the Sender module is connected to the in port of the
Receiver module.

module Sender(out);
 output [7+2:0]out;
 reg [7:0]d;
 always
 begin
 //Produce d
 out[9:2]=d;
 out[0]=1;
 wait(out[1]==1);
 out[0]=0;
 wait (out[1]==0);
 end
endmodule

module Receiver(in);
 input [7+2:0] in;
 reg [7:0] d;
 always
 begin
 wait (in[0]==1);
 d=in[9:2];
 in[1]=1'b1;
 wait (in[0]==0);
 in[1]=0; //error
 //Consume d
 end
endmodule

 Figure 2. Verilog Implementation of Sender and Receiver modules (A naive version)

The above code, however, does not work, because in the receiver module we are writing
to an input port which is illegal in Verilog. Changing the port type to inout does not solve the
problem, because writing to an inout port is also illegal in the sequential blocks of Verilog,
i.e., the always block. Our solution is to use the force keyword that allows us to change the
value of any net type, and in particular the reg type, which is a variable type in Verilog that is
used in sequential blocks.

Our goal is to hide the handshaking protocol using macros such as `SEND(port, value)
and `RECEIVE(port, value). In the above code, one issue is that the width of in and out ports
must be available to the macros, so that the macros can assign the eight significant bits of in to
d (d=in[9:2]). Rather than passing this width as an extra parameter to the macros, we used a
dummy signal as shown in Figure 3:

Figure 3. Correct Version of Sender and Receiver

The dummy signal is two bits, thus the variable d is always assigned to the actual data
bits of in, i.e., bit 2 and higher. Therefore, the first two bits - the handshaking variables - are
thrown away. Notice that the dummy signal is written, but never read. We make the above
code more efficient by moving the resetting phase of the handshaking protocol to the

module Sender(out);
 output [2+7:0] out;
 reg [7:0]d;
 always
 begin
 //Produce d
 force out={d,out[1],1]};
 wait(out[1]==1);
 force out[0]=0;
 wait (out[1]==0);

 end
endmodule

module Receiver(in);
 input [2+7:0] in;
 reg [7:0]d;
 reg[1:0] dummy;
 always
 begin

 wait (in[0]==1);
 {d,dummy}=in;
 force in[1]=1;
 wait (in[0]==0);
 force in[1]=0;

 //Consume d
 end
endmodule

A. Saifhashemi and P. A. Beerel / Modeling of Asynchronous Circuits Using Verilog 281

beginning of the communicating action, thereby, removing one wait statement. In this way,
the Sender both resets the ack signal of the Receiver (bit 1) and sets its own req signal (bit 0).
Similarly, the Receiver reads data, and then both resets the req signal of the Sender and sets its
own ack signal.

Figure 4. Optimized Version of Sender and Receiver

The final definitions of the two macros for SEND and RECEIVE are as follows:

`define SEND(_port_,_value_) begin\
 force _port_={_value_,2'b01};\
 wait (_port_[1]==1'b1);\
 end

`define RECEIVE(_port_,_value_) begin\
 wait (_port_[0]==1'b1);\
 {_value_,dummy}=_port_;\
 force _port_[1:0]=2'b10;\
 end

We also need to hide the dummy signal definition and input/output port definitions:
`define USES_CHANNEL reg [1:0] dummy;
`define OUTPORT(port,width) output[width+1:0] port;
`define INPORT(port,width) input[width+1:0] port;
`define CHANNEL(c,width) wire[width+1:0] c;

The designer should use the ‘USES_CHANNEL macro in modules that incorporate the
communication protocol. The INPORT/OUTPORT and CHANNEL macros add two more bits
to each port for handshaking.

The final versions of Sender and Receiver together with a top module that instantiates
them are shown in Figure 5.

module Sender(out);
 `OUTPORT(out,8);
 `USES_CHANNEL
 reg [7:0]d;
 always
 begin
 //Produce d
 `SEND(out,d)
 end
endmodule

module Receiver(in);
 `INPORT(in,8);
 `USES_CHANNEL
 reg [7:0]d;
 always
 begin
 `RECEIVE(in,d)
 //Consume d
 end
endmodule

module top;

 `CHANNEL (ch,8)
 Sender p(ch);
 Receiver c(ch);

endmodule

module Sender(out);
 output [2+7:0] out;
 reg [7:0]d;
 always
 begin
 //Produce d

 force out={d,2'b01]};
 wait(out[1]==1);

end

endmodule

module Receiver(in);
 input [2+7:0] in;
 reg [7:0]d;
 reg[1:0] dummy;
 always
 begin

 wait (in[0]==1);
 {d,dummy}=in;
 force in[1:0]=2'b10;

 //Consume d
 end
endmodule

282 A. Saifhashemi and P. A. Beerel / Modeling of Asynchronous Circuits Using Verilog

Figure 5. Final Version of Sender/Receiver

As shown in Figure 5, the SEND/RECEIVE macros are used in the same level of
abstraction as they are used in CSP.

3. Modeling Performance

In this section we show how we can incorporate the pipeline performance properties such as
forward/backward latency, minimum cycle time, and slack in our model.

3.1 Timing

The buffer described in Section 1.2 can be described in Verilog as shown in Figure 6. FL and
BL are the forward and backward latencies as defined in Section 1.2. The slack of this buffer
is 1 on both ports.

Figure 6. Modeling a Simple Buffer

Now, consider the description of a simple two-input function, func with the following
description in CHP notation:

func: *[A?a||B?b ; c=func(a,b) ; C!c]

Also, consider a pipelined implementation of the above function that has slack 3 on A, 2
on B, and 2 on C. We can model the behavior of the pipeline using the circuit shown in Figure
7.

Figure 7. A pipelined two-input function with slacks 3 and 2 on inputs and 2 on the output

module buf (left, right);
 parameter width = 8;
 parameter FL = 5;
 parameter BL = 10;
 `USES_CHANNEL
 `INPORT(left,width)
 `OUTPORT(right,width)
 reg [width-1:0] buffer;
 begin
 `RECEIVE(left, buffer)
 #FL;
 `SEND(right, buffer)
 #BL;
 end
endmodule

A. Saifhashemi and P. A. Beerel / Modeling of Asynchronous Circuits Using Verilog 283

The pipeline can have different forward/backward latencies on each port. For high-level
modeling, it is desirable to make these parameters (forward/backward latency, and slack)
abstract, and avoid the requirement of explicitly instantiating extra buffers on each port. We
propose to enhance the INPORT/OUTPORT macros so that they include all these parameters,
i.e., all slack buffers are instantiated through INPORT/OUTPORT macros in module f
automatically. Suppose we have the following information about the ports given in Table 1:

Table 1. Information about ports of the pipeline

Port Width Slack Forward Latency Backward Latency

A 8 3 5 10

B 8 2 10 5

C 8 2 15 15

We can define a new macro, INPUT, as follows:

`INPUT(slackModName,portName,portAlias,width,slack,BL,FL)
In a similar way, the OUTPUT macro can be defined for output ports. The INPUT macro

instantiates a module called slackModule and identifies the value of forward/backward
latency and slack through parameter passing. It also connects slackModule to the func
module. Figure 7 shows how we use this macro. The details of the INPUT and OUTPUT
macros are given in Figure 8.

Figure 7. A Pipelined Implementation Of func

 Figure 8. INPUT/OUTPUT Macros for a Pipeline. Figure 9. Description of slackModule

module adder (A, B, C);
 `USES_CHANNEL
 reg [width-1:0] abuf, bbuf, cbuf;
`INPUT(ASlack,A,aPort,8,3,5,10)
`INPUT(BSlack,B,bPort,8,2,10,5)
`OUTPUT(CSlack,C,cPort,8,3,15,15)
 always
 begin
 fork
 `RECEIVE(aPort, abuf)
 `RECEIVE(bPort, bbuf)
 join
 cbuf = func(abuf,bbuf);
 `SEND(cPort, cbuf)
 end
endmodule

`define INPUT(slackName,portName,portAlias,\
width,slack,BL,FL)\
input[width+1:0] prtName;\
wire [width+1:0] prtAlias;\
SlackModule #(width,slack,BL,FL)\
slackName(prtName,prtAlias);

`define OUTPUT(slackName,prtName,prtAlias,\

width,slack,BL,FL)\
output[width+1:0] prtName;\
wire [width+1:0] prtAlias;\
SlackModule #(width,slack,BL,FL)\
slackName(prtAlias,prtName);

module slackModule (left, right);
 parameter width = 8;
 parameter SLACK = 5;
 parameter FL = 0;
 parameter BL = 0;
 `USES_CHANNEL
 `INPORT(left,width)
 `OUTPORT(right,width)
 wire [width+1:0] im [SLACK-1:0];
 genvar i;
 generate for (i=0; i<SLACK; i=i+1)
 begin:stage

if (i==0)
buffer #(width,FL, BL) buff(left, im[0]);

 else if (i==SLACK-1)
 buffer #(width,FL,BL)buff(im[i-1],right);
 else
 buffer #(width,FL,BL)buff(im[i-1],im[i]);
 endgenerate
endmodule

284 A. Saifhashemi and P. A. Beerel / Modeling of Asynchronous Circuits Using Verilog

slackModule contains a chain of connected buffers as defined in Figure 6. In this
module, the values of parameters specify how many buffers should be instantiated and what
their latencies are. Although one can consider more efficient ways to implement this module
to make the simulation faster, for simplicity here we use the generate loop construct of
Verilog 2001 [15] in Figure 9.

4. Further Improvements

In this section, we first show how to monitor the status of channels and ports in a GUI
debugging tool. Next, we explain how to model non-pipelined circuits that have a reshuffled
handshaking protocol. Then, we explain how further improvements can be obtained using a
converter program. Finally, we consider some extensions.

4.1 Debugging

As described before, since the SEND and RECEIVE actions are blocking, a circuit might
deadlock when some module executes a RECEIVE action on a port for which no other module
will execute a SEND action. Thus, for any language that implements the CSP communication
actions, it is essential to make the debugging of channels straight-forward. One important
issue is that the designer should see the status of each port and channel while simulating the
circuit. This can be achieved by monitoring the handshaking signals, i.e., the extra two bits on
each port. This will not work, however, for input ports since the RECEIVE action is passive,
i.e., it does not change the value of the handshaking signals until it actually receives a value.
To overcome this limitation, we used one more extra bit in the ports (i.e., a total of 3 extra bits
per port). So, whenever the RECEIVE executes, it sets the third bit, and when it finishes, it
resets the third bit. An example of monitoring the status of channels using GUI is shown in
Figure 10, where we used mnemonic definitions sensitive to the last three bits of the channels.
Another usage of this extra bit is that the designer can use it for implementing probe, which
was defined in Section 1.1. Other researchers at Fulcrum Microsystems have independently
identified a similar strategy.

Figure 10. Debugging In GUI

4.2 Reshuffling the Handshaking Protocols

In the bundled data protocol that we described in Section 2, output ports are active (i.e. they
initiate the communication), and input ports are passive [10]. It is possible to consider other
handshaking protocols and/or to reshuffle the handshaking protocol of input and output ports.
One example is a protocol that shuffles the handshaking of receive at the input and send at the
output. In fact the CALL process [2], which essentially implements a slack-0 communication
and is common in non-pipelined systems [14], can be implemented by the reshuffling of the

A. Saifhashemi and P. A. Beerel / Modeling of Asynchronous Circuits Using Verilog 285

handshaking protocol. This module can be described as follows:

CALL:
*[[l_req]; buffer= dn…d0; r_req=1 || dn…d0=buffer; [r_ack]; r_req=0; [~r_ack]; l_ack=1;
[~l_req]; ack=0]

The above buffer splits the handshaking of the left port in two parts, shown in bold face,
and sends the value to the right port in the middle of these parts. Figure 11 shows the
equivalent code in Verilog.

It is straight-forward to split our RECEIVE macro and create the new macros
RECEIVE_PART1 and RECEIVE_PART2 and use it as in Figure 11. After reading data from
the left port, the module connected to the left port will remain suspended, until the send on the
right port is done.

Figure 11. Implementation of a Call Process

4.3 Improving the performance via conversion

As described in previous sections, there is overhead associated with these macros. Simulation
speed can be further improved by converting these macros to the bundled data protocol in
which the extra handshaking signals are explicitly declared as regs and manipulated without
the use of force with an external converter program. The resulting Verilog code will be more
cumbersome to debug, so we recommend using this converter on a unit-by-unit basis after
each unit’s correctness has been verified and only where the simulation speed is of great
importance.

4.4 Extensions

Some of the extensions to the CSP channels that have been implemented in other methods can
be considered here as well. For example, although not commonly used for asynchronous
circuit designs, by using the PLI, communication actions can be extended to use TCP/IP ports
and communicate through an entire network of computers, possibly for distributing the
simulation load on a compute farm.

For mixed mode simulation, it is straightforward to use our method in a module that can
communicate both at high and low levels of abstraction. For example, in figure 12, the
mixed_buf module communicates at a high level on the left, but at a low level on the right, and
the module uses explicit handshaking on its right side. Therefore, it can interface a circuit
described at high-level to a circuit described at low-level, such as transistor level.

module CALL (left, right);
 parameter width = 8;
 parameter FL = 5;
 parameter BL = 10;

 `USES_CHANNEL
 `INPORT(left,width)
 `OUTPORT(right,width)
 reg [width-1:0] buffer;
 begin
 `RECEIVE_PART1(left, buffer)
 `SEND(right, buffer)
 `RECEIVE_PART2(left, buffer)
 end
endmodule

286 A. Saifhashemi and P. A. Beerel / Modeling of Asynchronous Circuits Using Verilog

Figure 12. Modeling a Simple Buffer for Mixed Mode Simulation to Interface Modules Describe at Both High and Low Levels of

Abstraction

5. Conclusions

This paper demonstrates that standard Verilog HDL can be used to model channel-based
asynchronous circuits at a high level of abstraction, continuing to bridge the gap between the
pervasiveness of commercially-standard tools with the advantages of asynchronous
implementations. In particular, we described how to model CSP communication primitives
using Verilog macros and its application to modeling asynchronous nonlinear pipelines and
their typical performance characteristics, such as forward/backward latencies and slack. We
then showed how to monitor the status of channels during debugging and also we provided an
implementation of handshaking protocols for non-pipelined designs. Finally, we showed how
to perform mixed mode simulations and to interface a module described at the high level to a
module described at the low level. Compared to the state-of-the-art, this work is the first to
support abstract non-linear pipelines in Verilog.

6. References

[1] C.A.R. Hoare., “Communicating Sequential Processes”, Prentice Hall International, 1985
[2] A. J. Martin, “Synthesis of Asynchronous VLSI Circuits”, Caltech-CS-TR-93-28, California Institute of

Technology
[3] P. Endecott and S. Furber, “Modelling and Simulation of Asynchronous Systems using the LARD”,

http://www.cs.man.ac.uk/amulet/projects/lard/
[4] D. Nellans, V. Krishna Kadaru, and E. Brunvand, “ASIM - An Asynchronous Architectural Level

Simulator”, GLSVLSI’04
[5] S. Frankild and J. Sparso, “Channel Abstraction and Statement Level Concurrency in VHDL++”, Danish

Maritime Institute & Technical University of Denmark
[6] M. Renaudin, P. Vivet, F. Robin, “A Design Framework for Asynchronous/Synchronous Circuits Based on

CHP to HDL Translation”, Async99
[7] C. J. Myers, “Asynchronous Circuit Design”, John Wiley and Sons, July 2001.
[8] A. Saifhashemi and H. Pedram, “Verilog HDL, powered by PLI: a suitable framework for describing and

modeling asynchronous circuits at all levels of abstraction”, DAC 40th
[9] A. M. Lines, “Pipelined Asynchronous Circuits”, M.S. Thesis, Caltech, 1995.
[10] S. Hauck, “Asynchronous Design Methodologies: An Overview”, Proceedings of the IEEE, Vol. 83, No. 1,

pp. 69-3, January, 1995.
[11] K. van Berkel, R. Burgess, J. Kessels, M. Roncken, F. Schalij, and A. Peeters, “Asynchronous circuits for

module mixed_buf (left, right_data right_req, right_ack,);
 parameter width = 8;
 `USES_CHANNEL
 `INPORT(left,width)
 output [width-1:0] right_data;
 output right_req;
 input right_ack;
 reg [width-1:0] buffer;
 begin
 //Left side’s high-level communication
 `RECEIVE(left, buffer) //Receive from left
 //Right side’s explicit handshaking
 Right_data=buffer;
 right_req = 1;
 wait(right_ack==1);
 right_req = 0;
 wait(right_ack==0);
 end
endmodule

A. Saifhashemi and P. A. Beerel / Modeling of Asynchronous Circuits Using Verilog 287

low power: A DCC error corrector,” In IEEE Design & Test of Computers, 11(2):22-32, summer 1994.
[12] P. D. Austin and P. H. Welch, “Java Communicating Sequential Process – JCSP”,

http://www.cs.ukc.ac.uk/projects/ofa/jcsp/
[13] P. A. Beerel, J. Cortadella, and A Kondratyev, “Bridging the Gap between Asynchronous Design and

Designers”, VLSID’04
[14] K. van Berkel, J. Kessels, M. Roncken, R. Saeijs, and F. Schali, “The VLSI-programming language

Tangram and its translation into handshake circuits”, EDAC’91
[15] IEEE Std. 1364-2001, IEEE Standard for Verilog Hardware Description Language, 2001
[16] Mentor Graphics, http://www.model.com/
[17] Cadence Design Systems, http://www.cadence.com/
[18] T. Bjerregaard, S. Mahadevan, and J. Sparsø, “A Channel Library for Asynchronous Circuit Design

Supporting Mixed-Mode Modeling”, PATMOS04
[19] http://www.systemverilog.org

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1000
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1000
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1000
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [3200 3200]
 /PageSize [612.000 792.000]
>> setpagedevice

