
Abstract

This paper presents a back-end design flow for high 

performance asynchronous ASICs using single-track full-

buffer (STFB) standard cells and industry standard CAD 
tools to perform schematic capture, simulation, layout, 

placement and routing. This flow is demonstrated and 

evaluated on a 64-bit asynchronous prefix adder and its 
test circuitry. The STFB standard cells provide low 

latency and fast cycle-times at the expense of some timing 

assumptions. This paper demonstrates that, by controlling 
top-block sizes and/or wire length within the place & 

route flow, ultra-high-performance circuits can be 

automatically designed. In particular, in the TSMC 0.25 

µm process our post-layout STFB standard-cell 64-bit 
asynchronous prefix adder requires 0.96 mm2, offers a 

latency of 2.1 ns, has a throughput of 1.4 GHz, and 

operates at five process corners as well as a wide-range 
of temperatures and voltages. 

1. Introduction 

As CMOS manufacturing technology scales into deep 

and ultra-deep sub-micron design, problems with clock 

skew, clock distribution, on-chip variations, and on-chip 

communication in high-speed synchronous designs are 

becoming increasingly difficult to overcome [1], 

warranting the exploration of alternative design 

approaches. In particular, asynchronous design is 

emerging as an increasingly viable alternative. 

Among the numerous asynchronous design styles 

being developed [3], template-based fine-grain pipelines 

have demonstrated very high performance [5][6][7][8][9]. 

Template-based approaches also have the advantage of 

removing the need for generating, optimizing, and 

verifying specifications for complex distributed 

controllers, which is both difficult and error-prone [2], the 

automation of which is an area of significant research 

[17].   

Various templates tradeoff latency, cycle time, and 

robustness to timing. The most robust is the quasi-delay-

insensitive (QDI) templates proposed by Lines [5]. One of 

most aggressive is the ultra-high-speed GasP [7]. GasP 

offers high throughput but requires a bundled data design 

style that involves additional timing margins and 

assumptions that must be ensured and verified during 

physical design. In addition, the delay elements needed to 

address these timing assumptions often increase the 

forward latency of the blocks, which may significantly 

impact overall system performance. We recently proposed 

the single-track full-buffer (STFB) templates [10] which 

use 1-of-N data encoding to provide a practical tradeoff 

between performance and robustness. It uses two-

dimensional pipelining to achieve similar throughput to 

GasP with fewer timing assumptions and lower latency.  

In this paper, we propose a back-end design flow to 

support the automated design of STFB-based functional 

blocks and/or chips with standard commercial tools. In 

fact, to our knowledge, other back-end flows for template-

based fine-grain pipelines involve more labor-intensive 

semi-automated full-custom flows [18][19] or have 

adopted the use of existing low-performance standard cell 

libraries [20]. Moreover, our STFB library and the QDI 

library utilized in a high performance sequential decoder 

chip [21] are among the first standard-cell libraries for 

template-based designs that have been made available 

(through the MOSIS Educational Program) [22], allowing 

more widespread adoption of this technology.  

This paper demonstrates and evaluates this standard-

cell-based flow on a 64-bit asynchronous prefix adder and 

its test circuitry. In particular, in the TSMC 0.25 µm

process our STFB standard-cell 64-bit asynchronous 

prefix adder requires 0.96 mm2, offers a latency of 2.1 ns 

and has a throughput of 1.4 GHz. Moreover, post-layout 

simulations show that it operates safely at five process 

corners as well as a wide-range of temperatures and 

voltages.  

The remainder of this paper is organized as follows. 

Section 2 reviews asynchronous channels and STFB 

templates. Section 3 presents details of the transistor-level 

design of the STFB cells. Section 4 describes the 

asynchronous library and ASIC design flows. Section 5 

details the proposed test chip. Section 6 presents 

simulation results, Section 7 discusses area, cycle time, 
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and latency comparisons with QDI and synchronous 

counterparts, and Section 8 draws some conclusions. 

2. Background

This section reviews asynchronous channels and 

introduces the single-track full-buffer (STFB) template. 

2.1. Asynchronous Channels 

An asynchronous channel is a bundle of wires and a 

protocol to communicate data across the wires from one 

pipeline stage (the sender) to another one (the receiver). 

Figure 1 shows three different types of channels.  

The bundled-data channel has the advantage that the 

data is single-rail encoded (the same used in synchronous 

design) but is dependent on the timing assumption that the 

data is valid when the request signal is asserted. The 

request signal is typically driven through a delay line with 

a delay matched to the sender’s computation delay plus 

some margin.  

Alternatively, in a 1-of-N channel, the data (token) 

value is 1-of-N encoded where N wires are used to 

transmit N possible data values by asserting exactly one 

wire at a time. A blank or NULL is encoded by de-

asserting all wires. 1-of-2 (dual-rail) and 1-of-4 encodings 

are most common and both effectively use two wires per 

bit to encode the data.  

Figure 1. Asynchronous channels. 

In the 1-of-N channel, the receiver detects the 

presence of the token from the data itself and, once the 

data is no longer needed, it acknowledges the sender. In 

the typical four-phase protocol, the sender then removes 

the data by resetting all wires and waits for the 

acknowledgement to be de-asserted before sending 

another token. 

In the 1-of-N single-track channel, the receiver 

detects the presence of the token, as in the 1-of-N 

channel, but is also responsible for consuming it (by 

resetting all the wires). The sender detects that the token 

was consumed before sending another token. 

Related designs include that from Berkel et al. [4] 

who proposed single-track handshake circuits to control 

medium-grain bundled-data pipelines. Sutherland et al. 

[7] later developed faster single-track GasP circuits to 

control fine-grain bundled-data pipelines. Nyström [8] 

also proposed a dual-rail (1-of-2) single-track template 

based on self-resetting pulsed-logic circuits like GasP but 

which requires significantly more transistors and is 

significantly slower. STFB templates, introduced in [10], 

offer GasP-like performance with template-based 

flexibility, allowing the utilization of conventional CAD 

tools.  

2.2. STFB templates 

Figure 2 shows a typical STFB cell’s block diagram. 

When there is no token in the right channel (R) (the 

channel is empty), the Right environment Completion 

Detection block (RCD) asserts the “B” signal, enabling 

the processing of a next token. In this case, when the next 

token arrives at the left channel (L) it is processed 

lowering the state signal “S”, which creates an output 

token to the right channel (R) and causes the State 

Completion Detection block (SCD) to assert “A”, 

removing the token from the left channel through the 

Reset block. The presence of the output token on the right 

channel resets the “B” signal which activates the two 

PMOS transistors at the top of the N-stack, restoring “S”, 

and deactivates the NMOS transistor at the bottom of the 

N-stack, as shown in Figure 3, disabling the stage from 

firing while the output channel is busy. 

Figure 2. Typical STFB block diagram 

Figure 3 shows a simplified schematic of the STFB 

dual-rail template. The NOR gate in this figure is the 

RCD, the NAND gate is the SCD and the NMOS 

transistor stack defines the cell’s main function.  Note that 

the NMOS transistor stack is designed to be semi-weak-

conditioned in that it will not evaluate until all expected 

input tokens arrive [10]. 

The cycle time of the STFB template is 6 transitions 

and the forward latency is 2 transitions. This implies that 
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the peak pipeline throughput can be achieved with just 

three stages per token, which allow the implementation of 

high performance small rings. The full-buffer 

characteristic of STFB stage refers to the capacity of each 

stage to hold up to one token. 

Figure 3. Simplified dual-rail STFB template. 

3. STFB Standard-Cell Design 

This section describes the transistor-level 

optimization implemented to improve performance and 

reliability in a standard-cell environment. Due to the 

timing assumptions in the STFB template, the transistor 

level design of each cell and sub-cell was done manually 

and checked through extensive SPICE simulation as 

described below. 

3.1. Transistor sizing strategy  

An important characteristic of the STFB architecture 

is that all the channels are point-to-point channels. This 

means that there are no forked wires and the channel load 

is a function of the wire length and the next stage input 

capacitance. Consequently, since the fanout is always one, 

the variance on output load is even more dominated by 

the variation in the wire-lengths than is typical in 

synchronous designs. Therefore, our initial version of the 

library introduced here adopts a single-size strategy for 

each STFB function. The chosen size is reasonable to 

safely drive, with adequate performance, a buffer load 

through up to a 1 mm long wire with 0.4 µm width and 

0.5 µm spacing. This implies that we can place and route 

a block as big as 0.5x0.5 mm with essentially no special 

routing constraints. Larger blocks can also be 

implemented as long as the wires are constrained to be 

smaller than this limit. Longer wires would result in poor 

transition times that could compromise timing 

assumptions and thus functionality.  In the future, special 

CAD tools to automatically add STFB pipelined buffers 

within the P&R flow could also accommodate longer 

connections.

Although the TSMC 0.25 µm process allows 

somewhat smaller transistors, we choose, as our minimum 

NMOS transistor width 0.6 µm and minimum PMOS 

transistor 1.4 µm. Also, we assumed, as a basis for the 

STFB cells creation, that the strength of the main N-stack 

should be, at least, twice of the minimum size NMOS. 

This means that the width of each NMOS transistor in the 

N-stack should be k*1.2 µm, where k is the number of 

transistors in the path to drive the state to ground. For 

example: for a 2 transistors path, the width of each N-

stack transistor should be at least 2.4 µm. 

We use, for sizing, a known practical rule that one 

inverter can drive efficiently four to five times its own 

input load. By hand calculation we determined that, 

because the main N-stack has twice the strength of a 

minimum size inverter, it can safely drive a capacitance 

load equivalent to 20 µm of “gate width”, which is 

sufficient to drive the output transistor and the SCD as 

shown in Figure 3.  

3.2. Balanced response 

Symmetrized transistor stacks are utilized to perform 

the SCD and RCD functions inside the cell. Figure 4 

shows a 2-input NAND gate where the NMOS transistor 

stack of the conventional diagram is cut in the middle and 

symmetrized to allow the same time response for both 

inputs. This approach minimizes the data influence in the 

cell timing behavior.  

Figure 4. Sub-cell NAND2B_28_12: (a) symbol, (b) 
conventional diagram and (c) implemented balanced 

input diagram. 

3.3. Output sub-cell STFB_POUT 

 The output driver sub-cell STFB_POUT is utilized 

in all STFB cells. It includes the staticizer structure and 

three PMOS transistors utilized to restore the state input 

(“S”) high as illustrated in Figure 5. If the output channel 

is empty, the “B” signal is high, “R” is low, and “NR” is 

high. During this time, M7 alone fights leakage and holds 

“S” high. At the same time, M2 and M3 hold “R” low. 

When “S” is driven low, the output driver PMOS 

transistor M1 drives the output “R” high, which makes the 

minimum size inverter drive “NR” low, deactivating M3 

and activating M4 and M5. The RCD (not shown) will 

also make the “B” signal fall, activating M6. M4 will hold 
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the line high while M5 and M6 drive “S” back high, 

turning off M1.  

Notice that M6 is controlled by the “B” signal from 

the RCD and its main function is to avoid any misfire 

caused by charge-sharing in the N-stack when a token is 

still present at the output (i.e., while the output channel is 

busy). Also, M5, which is controlled by the staticizer 

inverter (“NR” signal), is responsible to quickly assert 

“S” after firing.  

Figure 5. Sub-cell STFB_POUT (a) block diagram and 
(b) schematic. 

This output stage topology offers a significant 

performance improvement allowing longer maximum 

wire length when compared with the initially proposed 

template [10]. It also improves robustness to charge 

sharing in the N-stack because this output sub-cell now 

has a lower switching threshold voltage. 

3.4. The RCD sizing 

The NOR gate in the STFB template (RCD) is also 

implemented as a symmetrized gate and it is responsible 

to drive the “B” signal low no later than the signal “NR” 

goes low in order to disable the N-stack and restore the 

signal “S”, as shown in Figure 6. This is an internal 

timing constraint that needs to be met to avoid the short-

circuit current that would be caused by attempting to 

restore “S” while the N-stack is still enabled. 

Figure 6. B and NR simultaneous activation. 

This timing assumption is satisfied by reducing the 

load connected to the RCD output (WM6 = 0.6 µm, which 

is good enough to fight N-stack charge sharing) and by 

transistor sizing as shown in Figure 7, where the NMOS 

transistors of the balanced RCD are 1.2 µm wide, while, 

for a regular minimum sized NOR gate, we would use 0.6 

µm. 

Figure 7. (a) conventional 2-input NOR, (b) balanced 
RCD and (c) staticizer inverter. 

3.5. Input channel reset transistors 

In the STFB template, the input token is consumed 

by driving the input channel wires low. It is done when 

the signal “A”, generated by the SCD block, activates a 

set of 5 µm wide NMOS transistors connected to each 

input wire. Also, to initially reset the entire circuitry, a 

global “/Reset” (active low reset) signal is used to force 

all channels low. Initially this signal was simply added as 

one input to the SCD block [10]. However, a 3-input 

NAND gate is much less efficient than a 2-input one. 

Figure 8.a shows the initially proposed 3-input SCD, 

where a 3-input NAND gate controls the reset transistors. 

Figure 8.b and c show the implemented reset structure, 

which uses 2-input NAND gates, allowing a smaller load 

on the states (“S0”, “S1”, “S2”) and offering a better 

performance of the SCD for dual-rail and 1-of-3 channels. 

Notice that the added transistors share the same drain 

connections, which results in a marginal increase in area 

and input capacitance for the STFB stage.  

Figure 8. SCD and reset (a) initially proposed and the 
implemented (b) 1-of-2 and (c) 1-of-3.  

3.6. Direct-path current analysis 

A perceived problem with STFB designs is the 

amount of direct-path current, also known as short-circuit 

current, caused by violations of the timing constraint 

associated with tri-stating a wire before the 
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preceding/succeeding stage drives it. This section 

analyzes this constraint in detail. 

Figure 9 shows a conventional CMOS driver where 

both the PMOS and the NMOS transistor gates are 

connected together implementing an inverter. This means 

that during the rise (tr) and fall (tf) time of the input 

voltage (Vin) both transistors will be briefly active, 

allowing a direct-path current from VDD to ground. Since 

this current has an approximate triangular shape, we can 

estimate the direct-path current as Idp = Ipeak/2 [11]. 

Figure 9. (a) inverter and (b) direct-path current. 

For our STFB pipeline stages, the NMOS transistor 

gate is connect to signal “A”, and the PMOS transistor 

gate is connected to “Sx” (one of the “states”). Figure 10 

shows this implementation and the direct-path current if 

VA happens earlier than VSx. If the voltage difference (Vdiff

= VA - VSx) is zero, the STFB stage Idp is similar to a 

conventional inverter. However, if one of the voltage 

transitions occurs ahead of the other, i.e., Vdiff is different 

than zero, we may observe a higher peak current during 

one transition and a smaller peak current during the next 

transition, or vice-versa. 

Figure 10. (a) STFB output/input drivers and (b) direct-

path current if VA ≠ VSx.

Figure 11 shows the peak direct-path current versus 

the PMOS-NMOS gate voltage difference during an input 

rise/fall edge (Vdiff = VA - VSx). These values were obtained 

through DC Hspice simulation analysis using typical 

parameters with double than our minimum-sized 

transistors. Notice that, assuming that VA and VSx have the 

same shape (both have the same width, rise and fall 

times), the average peak current is not significantly 

different than the inverter peak current for Vdiff < 1 V. 

This means that a considerable difference between VA and 

VSx can be tolerated without a significant jump in power 

supply consumption.  

SPICE simulation also showed that the direct-path 

current of the STFB templates is no worse than an 

inverter driving the line, and the timing assumption 

associated with tri-stating one stage before the other 

drives the line is not a hard constraint. For our STFB 

pipeline stages, the time difference between VA and VSx is 

bounded by the wire-length constraint to ensure correct 

operation.  

Figure 11. Peak direct-path current versus the PMOS-
NMOS gate voltage difference. 

4. Back-end design flow 

Here we describe the generation of the standard-cell 

asynchronous library and its utilization in the standard-

cell design flow.  

4.1. Library design flow 

Figure 12 shows the design flow utilized for the 

creation of the STFB cell library. Each block is described 

below: 

Template specifications are the definitions of the 

utilized template as described in Section 3 and in [10].  

Schematic, symbol and functional (Verilog) cell 

views are captured using Cadence Virtuoso environment 

and a text editor. Currently this step is done manually, 

however, synthesis from the template specifications is an 

area of future work.  

From the schematic, netlist SPICE files, that include 

automatically estimated source-drain geometries, based 

on gate widths, are generated for simulation and for LVS

(Layout Versus Schematic check using Dracula), which, 

in turn, provides parasitic capacitance information and the 

source-drain geometries extracted from layout. Extensive 

Hspice simulations were used to verify the general 

operation and performance of all cells pre and post-

layout. Schematic and symbol of frequently used sub-cell 

circuits were created to simplify and speed-up this phase, 

including a POUT sub-cell, various basic gates, and 

several common control cores for different numbers of 

inputs and outputs. 
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Standard-cell specifications are the physical 

constraints utilized during the custom layout of the cell. 

For example, the cell height, power lines width, location 

of routing grid, etc. These are the same parameters 

utilized for synchronous cell designs and are necessary to 

make automated placement and routing feasible. 

Interestingly, the pins specifications needed to be in the 

grid and on a metal shape whose width is an even 

multiple of minor spacing grid steps (0.01 µm) to avoid 

off-grid error messages in the ASIC P&R phase. 

Figure 12. Standard-cell library design flow. 

Layout & DRC are the manual physical design 

steps. To simplify this phase, reducing errors and saving 

time, sub-cell layouts were created matching the ones 

described in the schematic phase. Therefore, for most of 

the library cells, the top-level layout views are 

implemented with a mixture of sub-cells and cell-specific 

layout. The Diva Design Rule Checker (DRC) verifies 

that the layout satisfies all process design rules, however, 

it is also necessary to manually check if the cell complies 

with the standard-cell specifications mentioned above.  

Note also that the layout is done such that all cells DRC-

cleanly abut, even when horizontally and vertically 

flipped. 

An abstract layout view for the cells is generated 

using the Cadence tool Envisia Abstract Generator. The 

abstract file is in LEF format and represents the cells 

physical dimensions and the metal layers with a 

description of the power lines, input/output pins and metal 

obstructions. The placement and routing tool uses this file 

in the ASIC design flow. 

The resulting Asynchronous Cell Library is a tree of 

directories, for the Cadence tools, where the sub-levels 

are the cells, their views (symbol, schematic, functional 

and layout) and the abstract file. A preliminary version of 

the STFB library has been released [22]. It contains all 

common sub-cells for dual and 1-of-3 rail logic, cells for 

Buffers, Splits, Merges, BitBuckets, and BitGenerators as 

well specific cells used in our adder test chip. In the 

future, Verilog behavioral views of all cells will be 

completed and input capacitance and delay equations will 

be characterized and included in the library using the 

Liberty (.lib) file format [23]. 

4.2. STFB2_XOR2 cell example 

Figure 13 shows the layout of the STFB2_XOR2 cell. 

This cell is a STFB pipeline stage with two dual-rail input 

channels and one dual-rail output channel. In our library, 

this cell has four views: symbol, functional, schematic 

and layout. The symbol view is used to instantiate the cell 

in higher level schematics, the functional view is the 

verilog behavioral description of the cell, the schematic 

view has the transistor-level schematic of the cell, 

including the symbols of the sub-cells used to implement 

this cell, and the layout view, which, similarly to the 

schematic view, is composed of a cell-specific part and 

various sub-cells as shown in Figure 13. In this figure, we 

can see that the STFB2_XOR2 cell includes the 8 input 

transistors, that define the XOR function, and a 

STFB2_CORE4I sub-cell, which includes 4 reset 

transistors and one INV_28_12, one NAND2B_56_24, 

one NOR2B_14_12OD and two STFB_POUT sub-cells. 

(a)

(b) 

(c)

Figure 13. STFB2_XOR2 cell layout (a) custom layout 
and STFB2_CORE4I sub-cell, (b) with STFB2_CORE4I 

sub-cell expanded, and (c) with all sub-cells 
expanded. 
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Notice that, by re-arranging the input transistor 

connections shown in Figure 13.a, we can easily 

implement other two-input one-output cells such as 

STFB2_AND2 and STFB2_OR2.  

4.3. Asynchronous ASIC design flow 

Once we have STFB standard cells in our cell library, 

a conventional ASIC design flow can be utilized to 

generate a high performance asynchronous design as 

shown in Figure 14. Note that currently the entire design 

is entered through schematics (synthesis is an area of 

future work) and each block is sent to P&R and are then 

wired together in the chip assembly step.  Verification can 

be performed through Verilog cell-level simulation and 

Nanosim transistor-level simulation. 

Figure 14. Asynchronous ASIC design fow. 

5. The evaluation and demonstration chip 

A test chip was designed to validate the design flow 

as well as the performance of the STFB templates. The 

central block of the test chip is a 64-bit STFB prefix 

adder, while the input and output circuitry were designed 

to feed the adder and sample the results enabling the 

checking of its performance and correctness at full-

throughput. 

5.1. The Prefix adder 

Given two n-bit numbers A and B in two’s 

complement binary form, the addition operation, A+B, can 

be performed by computing [14][15]: 

1
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−

⊕=

+=

⊕=

=

jjj

jjjj

jjj

jjj

cps

cpgc

bap

bag

        nj <≤0

where, c-1 is the adder primary carry input, aj, bj and sj are 

bits of A, B and the addition result S respectively, gj is the 

generate signal and pj is the propagate signal for the bits 

at position j.

For an asynchronous 1-of-N implementation, aj, bj, cj

and sj are dual-rail channels, where, for example, a1j high 

means aj = 1, and a0j high means aj = 0. Also, we use the 

kj, “kill” signal, to form a 1-of-3 channel (kj, pj, gj). The 

asynchronous equations become: 
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        nj <≤0

where, L is the result of aj ⊕ bj (aj xor bj). This means that 

aj and bj need to be duplicated since we need one pair for 

the carry computation and another for the final sum. 

Adapting from the usual synchronous definition 

[12][16], we define (Kj:j, Pj:j, Gj:j ) = (kj, pj, gj)

(asynchronous 1-of-3 channel) and: 

),,(...),,(),,(),,( 111::: iiijjjjjjjijiji gpkoogpkogpkGPK −−−=

where, j > i and o is the fundamental carry operator 

adapted to the asynchronous implementation as: 

))(),(),((),,(),,( ijjijijjiiijjj gpgppkpkgpkogpk ++=

Therefore, at each bit position, the final dual-rail 

carry can be computed by: 

1:0:0 11 −+= cPGc jjj
       

1:0:0 00 −+= cPKc jjj

where, c1-1 and c0-1 define the dual-rail adder primary 

carry input. 

Adapting from [14], the asynchronous addition can 

be performed in the following steps: 
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Step 1 (1 stage deep) 

Duplicate (a0j, a1j) and (b0j, b1j) ∀j 0 ≤ j < n

Step 2 (1 stage deep) 

Compute: 
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bag
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=

         nj <≤0

Step 3 ( log2 n  stages deep) 

For x = 1, 2… log2 n  compute: 

111 2:12:12
11 −−− −+−+−

+= xxx jjjjjj cPGc

111 2:12:12
00 −−− −+−+−

+= xxx jjjjjj cPKc

∀j 1212 1 −<≤−− xx j

=
+−+−+−

),,(
:12:12:12 jjjjjj xxx GPK

     ),,(
:12:12:12 111 jjjjjj xxx GPK

+−+−+− −−−

        ),,( 111 2:122:122:12 −−− −+−−+−−+− xxxxxx jjjjjj
GPKo

∀j njx <≤− 12

Step 4 (1 stage deep) 

Compute: 
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11000
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−−
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+=

jjjjj

jjjjj
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cLcLs
      nj <≤0

             

11:01:01
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nnn

nnn

Figure 15 illustrates the above steps with an example, 

an 8-bit asynchronous prefix adder, where, the thin arrows 

are 1-of-2 (dual-rail) channels and the thick arrows are 1-

of-3 channels.  

Notice that some STFB pipeline stages must have 

two versions: one with unique output channel and another 

with duplicated output channels. This is necessary 

because we are using point-to-point single-track channels 

(there are no forks in the wires). The pipeline stages used 

with their library name are as shown below: 

In Figure 16 the STFB2 prefix is used for stages with 

only dual-rail channels, and STFB3 is used for stages with 

at least one 1-of-3 channel. In particular, the 

STFB3_AB_KPG stage implements the kpg part of step 2

(described above) and has two dual-rail input channels (A 

and B) and one 1-of-3 output channel (KPG). 

STFB3_AB_KPG2 implements the same functionality but 

has two 1-of-3 output channels (KPG2). Similarly, cells 

STFB3_KPG2_KPG and STFB3_KPG2_KPG2 

implement the kpg part of step 3 and have two 1-of-3 

input channels and one or two 1-of-3 output channels, 

respectively. In the same manner, the carry generation 

parts of step 3 and 4 are implemented by the cells 

STFB3_KPGC_C and STFB3_KPGC_C2. Finally, step 1

and the sum parts of steps 2 and 4 are implemented by 

STFB2_FORKs and STFB2_XOR2s. The buffers 

(STFB2_BUFFER) are used for capacity matching 

(“slack” matching). 

Figure 15. 8-bit asynchronous prefix adder. 

STFB2_FORK (fork stage) 

STFB2_BUFFER (buffer stage) 

STFB2_XOR2 (2-input xor stage) 

STFB3_AB_KPG and STFB3_AB_KPG2 

STFB3_KPG2_KPG and STFB3_KPG2_KPG2 

STFB3_KPGC_C and STFB3_KPGC_C2 

Figure 16. Pipeline stages utilized in the adder. 

Figure 17. 8-bit async. prefix adder optimized. 

Figure 17 shows an optimized version of the 8-bit 

prefix adder, where the carry input (c-1) is forked at the 

first step allowing an early computation of s0 and 

improving the layout by replacing the bottom fork, which 
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was used previously to supply c-1 to s0 and cn-1 (located in 

two opposite extremes of the adder), with a simple buffer. 

Also, the xor stages of the first half of the adder, from s1

to s(n/2)-1, can be moved one step earlier. These 

modifications saved (n/2)-2 buffers and simplified the 

layout. 

In this small example, the 8-bit asynchronous prefix 

adder is 6 levels deep (2 + log2 n  + 1). The implemented 

64-bit asynchronous prefix adder is, therefore, 9 levels 

deep. This means that, after 9 times the forward latency of 

the STFB templates (9*2 = 18 transitions) the resulting 

64-bit plus carry out are available. Also, since the cycle 

time of the STFB template is just 6 transitions, the 64-bit 

adder can have up to 3 additions simultaneously being 

processed (3 tokens in the pipeline) at maximum 

throughput. 

5.2. The input circuitry 

The input circuitry generates a test pattern to be fed 

into the adder. The INPUTGEN129 block is composed of 

129 15-stage rings (two 64-bit numbers and carry in). 

Figure 18 shows the 15-stage ring diagram, where we 

have 14 buffers, one fork and one xor, and the square with 

the letters TI is a token inserter block (not shown) and the 

square with the letters BG is a controlled bit-generator 

(not shown). Although the rings support up to 14 tokens 

each, the maximum throughput of the ring is achieved 

with 5 tokens. 

Figure 18. 15-stage ring utilized in the input circuitry. 

After the tokens are inserted by the TI cell, the BG 

cell is enabled. Since, now, the xor stage has one token in 

each input, it generates a token that enters the fork stage, 

where one copy of the token is sent to the adder and 

another is sent back into the ring. If BG is enabled to 

generate “zero” tokens, the tokens in the ring simply 

circulate making copies of themselves. If BG is enabled to 

generate “one” tokens, the tokens in the ring are inverted 

at every pass through the xor increasing the number of 

scanned combinations.  

5.3. The output circuitry 

In order to test the adder running at full throughput, 

we implemented output circuitry that samples the 65-bit 

result (64-bit and carry out), forwarding to the output pins 

one out of 128 results. Then, a much slower external 

circuit can read and compare the results of the iteration 

#1, #129, #257, #385, #513,… 

If the input generator rings are loaded with 5 tokens 

(no inversion enabled), the SAMPLER65 block outputs 

all the 5 results in the order 1, 4, 2, 5 and 3. 

Figure 19. 01 ring (a) circuit and (b) symbol. 

Figure 19 shows a 01 ring, where, after reset, the 

channel initializer (CI) block inserts a “zero” token in the 

small ring. The output channel of the fork that returns to 

the ring has both wires inverted (shown as a bubble on the 

wire) before connect to the first buffer. This will make the 

token change value at every loop and the circuit output 

becomes a sequence 010101… Also, notice that this ring 

has three stages and one token, which, for STFB, means 

full throughput. 

Figure 20. 1:128 sampler diagram. 

Figure 20 illustrates a 1:128 sampler circuit where 

the split stages (S), controlled by 01 rings, direct the input 

token to a bit-bucket (BB), where the token is destroyed, 

or to the next split. The SAMPLER65BY128 block, used 

in our design, has a similar structure for the carry out 

signal and, for the remaining 64 bits, each of the 01 ring 

outputs are forked until they reach their respective 64 split 

stages. Note also that single-track to single-rail converters 

and their respective control circuits are not shown. 

5.4. The chip layout

Figure 21 shows a picture of the laid-out 64-bit STFB 

asynchronous prefix adder and its auxiliary test circuitry. 

Each block P&R was performed separately with an area 

utilization of 80%, the three blocks where forced to have 

the same height (1.7 mm) and the placement of the adder 

block pins matched their correspondents in the input and 

sampler blocks. The total area is 4.1 mm2.

Notice that, by performing P&R on separated blocks, 

we significantly reduce the probability of a very long wire 

that could compromise the performance and the 

functionality of the design. In fact, post-layout we 
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guaranteed no STFB signal wires were longer than 1 mm. 

Also, as filler cells, a total of 1.6 nF in bypass capacitors 

were added. 

Figure 21. The input, adder and sampler blocks. 

5.5. Power Distribution and EM 

Figure 22 shows a post-layout Nanosim simulation 

result (transistor model TT, 25°C and VDD = 2.5V), where 

we can see the format of each block current. The i(v129) 

and i(vdd) are the input and the adder block current 

respectively, and they are almost constant around 1.6 and 

1.2A respectively (running at full throughput: 1.4 GHz). 

The i(v65) is the sampler block current, whose ripple 

depends on how far the token flows in the split pipeline 

and varies from 0.2 to 0.6A.  The overall current is 

relatively constant, when compared to synchronous 

designs, which significantly reduces the need for on-chip 

bypass capacitors and offers very low Electro-Magnetic 

Interference (EMI).  

Figure 22. Typical simulation output. 

As these designs consume significantly more current 

than their slower synchronous counterparts, voltage drop 

(IR drop) and the electromigration over the power lines 

become important factors. Fortunately, the router supports 

the insertion of a robust power grid to mitigate these 

effects.

6. Simulation results 

Table 1 shows the simulation results of the five 

simulated corners. In this table, the conditions consist of 

the combination of the model library (NMOS and PMOS 

models: T = typical, S = slow and F =fast), the simulation 

temperature, and the power supply voltage. Iav is the 

average current of the three blocks when active. Latency 

is the 64-bit adder propagation time, and Throughput is 

the number of additions processed per second. 

Table 1. Results 

Conditions Iav  Latency Throughput 

TT, 25°C, 2.5V 3.3 A 2.1 ns 1.47 GHz 

SS, 100°C, 2.2V 1.8 A 3.3 ns 943 MHz 

FF, 0°C, 2.7V 4.6 A 1.6 ns 1.95 GHz 

SF, 25°C, 2.5V 3.2 A 2.2 ns 1.46 GHz 

FS, 25°C, 2.5V 3.2 A 2.2 ns 1.46 GHz 

7. Comparisons

Table 2 shows a comparison of some STFB pipeline 

stages with PCHB stages and static standard cell CMOS 

gates. The latency and cycle time are written in terms of 

number of transitions. The CMOS standard cell gates, 

used in this comparison, were designed under the same 

standard cell specification utilized for the STFB and 

PCHB pipeline stages. Also, they are composed of a 2X 

gate followed by an 8X inverter in order to match driving 

strengths. 

Table 2. STFB, PCHB and CMOS comparison. 

Function Cell Latency 
Cycle

Time 

Area 

(µm2)

Area 

ratio 

STFB 2 6 415 4.5 

PCHB 2 14 726 7.9 Buffer 

CMOS 2 - 92 1 

STFB 2 6 472 4.6 

PCHB 2 14 968 9.3 
2-input 

AND/OR 
CMOS 2 - 104 1 

STFB 2 6 472 2.6 

PCHB 2 14 1048 5.7 
2-input 

XOR
CMOS 2 or 3 - 184 1 

For these basic functions, the area ratio indicates that 

the STFB stages are approximately 50% smaller than the 

PCHB stages and about 5 times bigger than a CMOS 

implementation (not considering the latch/flip-flop and 
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clock-tree overhead required for synchronous designs). 

Also, excluding the reset wire utilized by both the STFB 

and PCHB stages, the STFB dual-rail implementation 

uses 33% less wires than PCHB and just twice the number 

of wires of the CMOS circuit. 

8. Conclusions

This paper introduces a STFB standard-cell library 

available through the MOSIS Education Program, which 

facilitates a conventional back-end flow for ultra-high-

performance asynchronous blocks. Implementation details 

of the STFB cells are presented and the flow is 

demonstrated on several significant size blocks - a 64-bit 

adder and its test circuitry.  Post-layout results show 

performance of over 1.4 Gigahertz in TSMC’s 0.25 µm

process. Since the STFB cells can easily be interfaced 

with other even more robust templates, such blocks may 

be used to solve performance bottlenecks in a bigger 

design where ultra-high performance is needed. 
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