
Abstract

This paper presents a back-end design flow for high

performance asynchronous ASICs using single-track full-

buffer (STFB) standard cells and industry standard CAD
tools to perform schematic capture, simulation, layout,

placement and routing. This flow is demonstrated and

evaluated on a 64-bit asynchronous prefix adder and its
test circuitry. The STFB standard cells provide low

latency and fast cycle-times at the expense of some timing

assumptions. This paper demonstrates that, by controlling
top-block sizes and/or wire length within the place &

route flow, ultra-high-performance circuits can be

automatically designed. In particular, in the TSMC 0.25

µm process our post-layout STFB standard-cell 64-bit
asynchronous prefix adder requires 0.96 mm2, offers a

latency of 2.1 ns, has a throughput of 1.4 GHz, and

operates at five process corners as well as a wide-range
of temperatures and voltages.

1. Introduction

As CMOS manufacturing technology scales into deep

and ultra-deep sub-micron design, problems with clock

skew, clock distribution, on-chip variations, and on-chip

communication in high-speed synchronous designs are

becoming increasingly difficult to overcome [1],

warranting the exploration of alternative design

approaches. In particular, asynchronous design is

emerging as an increasingly viable alternative.

Among the numerous asynchronous design styles

being developed [3], template-based fine-grain pipelines

have demonstrated very high performance [5][6][7][8][9].

Template-based approaches also have the advantage of

removing the need for generating, optimizing, and

verifying specifications for complex distributed

controllers, which is both difficult and error-prone [2], the

automation of which is an area of significant research

[17].

Various templates tradeoff latency, cycle time, and

robustness to timing. The most robust is the quasi-delay-

insensitive (QDI) templates proposed by Lines [5]. One of

most aggressive is the ultra-high-speed GasP [7]. GasP

offers high throughput but requires a bundled data design

style that involves additional timing margins and

assumptions that must be ensured and verified during

physical design. In addition, the delay elements needed to

address these timing assumptions often increase the

forward latency of the blocks, which may significantly

impact overall system performance. We recently proposed

the single-track full-buffer (STFB) templates [10] which

use 1-of-N data encoding to provide a practical tradeoff

between performance and robustness. It uses two-

dimensional pipelining to achieve similar throughput to

GasP with fewer timing assumptions and lower latency.

In this paper, we propose a back-end design flow to

support the automated design of STFB-based functional

blocks and/or chips with standard commercial tools. In

fact, to our knowledge, other back-end flows for template-

based fine-grain pipelines involve more labor-intensive

semi-automated full-custom flows [18][19] or have

adopted the use of existing low-performance standard cell

libraries [20]. Moreover, our STFB library and the QDI

library utilized in a high performance sequential decoder

chip [21] are among the first standard-cell libraries for

template-based designs that have been made available

(through the MOSIS Educational Program) [22], allowing

more widespread adoption of this technology.

This paper demonstrates and evaluates this standard-

cell-based flow on a 64-bit asynchronous prefix adder and

its test circuitry. In particular, in the TSMC 0.25 µm

process our STFB standard-cell 64-bit asynchronous

prefix adder requires 0.96 mm2, offers a latency of 2.1 ns

and has a throughput of 1.4 GHz. Moreover, post-layout

simulations show that it operates safely at five process

corners as well as a wide-range of temperatures and

voltages.

The remainder of this paper is organized as follows.

Section 2 reviews asynchronous channels and STFB

templates. Section 3 presents details of the transistor-level

design of the STFB cells. Section 4 describes the

asynchronous library and ASIC design flows. Section 5

details the proposed test chip. Section 6 presents

simulation results, Section 7 discusses area, cycle time,

High Performance Asynchronous ASIC Back-End Design Flow

Using Single-Track Full-Buffer Standard Cells

Marcos Ferretti, Recep O. Ozdag, Peter A. Beerel

Department of Electrical Engineering Systems

University of Southern California

Los Angeles, CA 90089 – USA

ferretti@usc.edu, ozdag@usc.edu, pabeerel@usc.edu

Proceedings of the 10th International Symposium on Asynchronous Circuits and Systems (ASYNC’04)

1522-8681/04 $20.00 © 2004 IEEE

and latency comparisons with QDI and synchronous

counterparts, and Section 8 draws some conclusions.

2. Background

This section reviews asynchronous channels and

introduces the single-track full-buffer (STFB) template.

2.1. Asynchronous Channels

An asynchronous channel is a bundle of wires and a

protocol to communicate data across the wires from one

pipeline stage (the sender) to another one (the receiver).

Figure 1 shows three different types of channels.

The bundled-data channel has the advantage that the

data is single-rail encoded (the same used in synchronous

design) but is dependent on the timing assumption that the

data is valid when the request signal is asserted. The

request signal is typically driven through a delay line with

a delay matched to the sender’s computation delay plus

some margin.

Alternatively, in a 1-of-N channel, the data (token)

value is 1-of-N encoded where N wires are used to

transmit N possible data values by asserting exactly one

wire at a time. A blank or NULL is encoded by de-

asserting all wires. 1-of-2 (dual-rail) and 1-of-4 encodings

are most common and both effectively use two wires per

bit to encode the data.

Figure 1. Asynchronous channels.

In the 1-of-N channel, the receiver detects the

presence of the token from the data itself and, once the

data is no longer needed, it acknowledges the sender. In

the typical four-phase protocol, the sender then removes

the data by resetting all wires and waits for the

acknowledgement to be de-asserted before sending

another token.

In the 1-of-N single-track channel, the receiver

detects the presence of the token, as in the 1-of-N

channel, but is also responsible for consuming it (by

resetting all the wires). The sender detects that the token

was consumed before sending another token.

Related designs include that from Berkel et al. [4]

who proposed single-track handshake circuits to control

medium-grain bundled-data pipelines. Sutherland et al.

[7] later developed faster single-track GasP circuits to

control fine-grain bundled-data pipelines. Nyström [8]

also proposed a dual-rail (1-of-2) single-track template

based on self-resetting pulsed-logic circuits like GasP but

which requires significantly more transistors and is

significantly slower. STFB templates, introduced in [10],

offer GasP-like performance with template-based

flexibility, allowing the utilization of conventional CAD

tools.

2.2. STFB templates

Figure 2 shows a typical STFB cell’s block diagram.

When there is no token in the right channel (R) (the

channel is empty), the Right environment Completion

Detection block (RCD) asserts the “B” signal, enabling

the processing of a next token. In this case, when the next

token arrives at the left channel (L) it is processed

lowering the state signal “S”, which creates an output

token to the right channel (R) and causes the State

Completion Detection block (SCD) to assert “A”,

removing the token from the left channel through the

Reset block. The presence of the output token on the right

channel resets the “B” signal which activates the two

PMOS transistors at the top of the N-stack, restoring “S”,

and deactivates the NMOS transistor at the bottom of the

N-stack, as shown in Figure 3, disabling the stage from

firing while the output channel is busy.

Figure 2. Typical STFB block diagram

Figure 3 shows a simplified schematic of the STFB

dual-rail template. The NOR gate in this figure is the

RCD, the NAND gate is the SCD and the NMOS

transistor stack defines the cell’s main function. Note that

the NMOS transistor stack is designed to be semi-weak-

conditioned in that it will not evaluate until all expected

input tokens arrive [10].

The cycle time of the STFB template is 6 transitions

and the forward latency is 2 transitions. This implies that

Proceedings of the 10th International Symposium on Asynchronous Circuits and Systems (ASYNC’04)

1522-8681/04 $20.00 © 2004 IEEE

the peak pipeline throughput can be achieved with just

three stages per token, which allow the implementation of

high performance small rings. The full-buffer

characteristic of STFB stage refers to the capacity of each

stage to hold up to one token.

Figure 3. Simplified dual-rail STFB template.

3. STFB Standard-Cell Design

This section describes the transistor-level

optimization implemented to improve performance and

reliability in a standard-cell environment. Due to the

timing assumptions in the STFB template, the transistor

level design of each cell and sub-cell was done manually

and checked through extensive SPICE simulation as

described below.

3.1. Transistor sizing strategy

An important characteristic of the STFB architecture

is that all the channels are point-to-point channels. This

means that there are no forked wires and the channel load

is a function of the wire length and the next stage input

capacitance. Consequently, since the fanout is always one,

the variance on output load is even more dominated by

the variation in the wire-lengths than is typical in

synchronous designs. Therefore, our initial version of the

library introduced here adopts a single-size strategy for

each STFB function. The chosen size is reasonable to

safely drive, with adequate performance, a buffer load

through up to a 1 mm long wire with 0.4 µm width and

0.5 µm spacing. This implies that we can place and route

a block as big as 0.5x0.5 mm with essentially no special

routing constraints. Larger blocks can also be

implemented as long as the wires are constrained to be

smaller than this limit. Longer wires would result in poor

transition times that could compromise timing

assumptions and thus functionality. In the future, special

CAD tools to automatically add STFB pipelined buffers

within the P&R flow could also accommodate longer

connections.

Although the TSMC 0.25 µm process allows

somewhat smaller transistors, we choose, as our minimum

NMOS transistor width 0.6 µm and minimum PMOS

transistor 1.4 µm. Also, we assumed, as a basis for the

STFB cells creation, that the strength of the main N-stack

should be, at least, twice of the minimum size NMOS.

This means that the width of each NMOS transistor in the

N-stack should be k*1.2 µm, where k is the number of

transistors in the path to drive the state to ground. For

example: for a 2 transistors path, the width of each N-

stack transistor should be at least 2.4 µm.

We use, for sizing, a known practical rule that one

inverter can drive efficiently four to five times its own

input load. By hand calculation we determined that,

because the main N-stack has twice the strength of a

minimum size inverter, it can safely drive a capacitance

load equivalent to 20 µm of “gate width”, which is

sufficient to drive the output transistor and the SCD as

shown in Figure 3.

3.2. Balanced response

Symmetrized transistor stacks are utilized to perform

the SCD and RCD functions inside the cell. Figure 4

shows a 2-input NAND gate where the NMOS transistor

stack of the conventional diagram is cut in the middle and

symmetrized to allow the same time response for both

inputs. This approach minimizes the data influence in the

cell timing behavior.

Figure 4. Sub-cell NAND2B_28_12: (a) symbol, (b)
conventional diagram and (c) implemented balanced

input diagram.

3.3. Output sub-cell STFB_POUT

 The output driver sub-cell STFB_POUT is utilized

in all STFB cells. It includes the staticizer structure and

three PMOS transistors utilized to restore the state input

(“S”) high as illustrated in Figure 5. If the output channel

is empty, the “B” signal is high, “R” is low, and “NR” is

high. During this time, M7 alone fights leakage and holds

“S” high. At the same time, M2 and M3 hold “R” low.

When “S” is driven low, the output driver PMOS

transistor M1 drives the output “R” high, which makes the

minimum size inverter drive “NR” low, deactivating M3

and activating M4 and M5. The RCD (not shown) will

also make the “B” signal fall, activating M6. M4 will hold

Proceedings of the 10th International Symposium on Asynchronous Circuits and Systems (ASYNC’04)

1522-8681/04 $20.00 © 2004 IEEE

the line high while M5 and M6 drive “S” back high,

turning off M1.

Notice that M6 is controlled by the “B” signal from

the RCD and its main function is to avoid any misfire

caused by charge-sharing in the N-stack when a token is

still present at the output (i.e., while the output channel is

busy). Also, M5, which is controlled by the staticizer

inverter (“NR” signal), is responsible to quickly assert

“S” after firing.

Figure 5. Sub-cell STFB_POUT (a) block diagram and
(b) schematic.

This output stage topology offers a significant

performance improvement allowing longer maximum

wire length when compared with the initially proposed

template [10]. It also improves robustness to charge

sharing in the N-stack because this output sub-cell now

has a lower switching threshold voltage.

3.4. The RCD sizing

The NOR gate in the STFB template (RCD) is also

implemented as a symmetrized gate and it is responsible

to drive the “B” signal low no later than the signal “NR”

goes low in order to disable the N-stack and restore the

signal “S”, as shown in Figure 6. This is an internal

timing constraint that needs to be met to avoid the short-

circuit current that would be caused by attempting to

restore “S” while the N-stack is still enabled.

Figure 6. B and NR simultaneous activation.

This timing assumption is satisfied by reducing the

load connected to the RCD output (WM6 = 0.6 µm, which

is good enough to fight N-stack charge sharing) and by

transistor sizing as shown in Figure 7, where the NMOS

transistors of the balanced RCD are 1.2 µm wide, while,

for a regular minimum sized NOR gate, we would use 0.6

µm.

Figure 7. (a) conventional 2-input NOR, (b) balanced
RCD and (c) staticizer inverter.

3.5. Input channel reset transistors

In the STFB template, the input token is consumed

by driving the input channel wires low. It is done when

the signal “A”, generated by the SCD block, activates a

set of 5 µm wide NMOS transistors connected to each

input wire. Also, to initially reset the entire circuitry, a

global “/Reset” (active low reset) signal is used to force

all channels low. Initially this signal was simply added as

one input to the SCD block [10]. However, a 3-input

NAND gate is much less efficient than a 2-input one.

Figure 8.a shows the initially proposed 3-input SCD,

where a 3-input NAND gate controls the reset transistors.

Figure 8.b and c show the implemented reset structure,

which uses 2-input NAND gates, allowing a smaller load

on the states (“S0”, “S1”, “S2”) and offering a better

performance of the SCD for dual-rail and 1-of-3 channels.

Notice that the added transistors share the same drain

connections, which results in a marginal increase in area

and input capacitance for the STFB stage.

Figure 8. SCD and reset (a) initially proposed and the
implemented (b) 1-of-2 and (c) 1-of-3.

3.6. Direct-path current analysis

A perceived problem with STFB designs is the

amount of direct-path current, also known as short-circuit

current, caused by violations of the timing constraint

associated with tri-stating a wire before the

Proceedings of the 10th International Symposium on Asynchronous Circuits and Systems (ASYNC’04)

1522-8681/04 $20.00 © 2004 IEEE

preceding/succeeding stage drives it. This section

analyzes this constraint in detail.

Figure 9 shows a conventional CMOS driver where

both the PMOS and the NMOS transistor gates are

connected together implementing an inverter. This means

that during the rise (tr) and fall (tf) time of the input

voltage (Vin) both transistors will be briefly active,

allowing a direct-path current from VDD to ground. Since

this current has an approximate triangular shape, we can

estimate the direct-path current as Idp = Ipeak/2 [11].

Figure 9. (a) inverter and (b) direct-path current.

For our STFB pipeline stages, the NMOS transistor

gate is connect to signal “A”, and the PMOS transistor

gate is connected to “Sx” (one of the “states”). Figure 10

shows this implementation and the direct-path current if

VA happens earlier than VSx. If the voltage difference (Vdiff

= VA - VSx) is zero, the STFB stage Idp is similar to a

conventional inverter. However, if one of the voltage

transitions occurs ahead of the other, i.e., Vdiff is different

than zero, we may observe a higher peak current during

one transition and a smaller peak current during the next

transition, or vice-versa.

Figure 10. (a) STFB output/input drivers and (b) direct-

path current if VA ≠ VSx.

Figure 11 shows the peak direct-path current versus

the PMOS-NMOS gate voltage difference during an input

rise/fall edge (Vdiff = VA - VSx). These values were obtained

through DC Hspice simulation analysis using typical

parameters with double than our minimum-sized

transistors. Notice that, assuming that VA and VSx have the

same shape (both have the same width, rise and fall

times), the average peak current is not significantly

different than the inverter peak current for Vdiff < 1 V.

This means that a considerable difference between VA and

VSx can be tolerated without a significant jump in power

supply consumption.

SPICE simulation also showed that the direct-path

current of the STFB templates is no worse than an

inverter driving the line, and the timing assumption

associated with tri-stating one stage before the other

drives the line is not a hard constraint. For our STFB

pipeline stages, the time difference between VA and VSx is

bounded by the wire-length constraint to ensure correct

operation.

Figure 11. Peak direct-path current versus the PMOS-
NMOS gate voltage difference.

4. Back-end design flow

Here we describe the generation of the standard-cell

asynchronous library and its utilization in the standard-

cell design flow.

4.1. Library design flow

Figure 12 shows the design flow utilized for the

creation of the STFB cell library. Each block is described

below:

Template specifications are the definitions of the

utilized template as described in Section 3 and in [10].

Schematic, symbol and functional (Verilog) cell

views are captured using Cadence Virtuoso environment

and a text editor. Currently this step is done manually,

however, synthesis from the template specifications is an

area of future work.

From the schematic, netlist SPICE files, that include

automatically estimated source-drain geometries, based

on gate widths, are generated for simulation and for LVS

(Layout Versus Schematic check using Dracula), which,

in turn, provides parasitic capacitance information and the

source-drain geometries extracted from layout. Extensive

Hspice simulations were used to verify the general

operation and performance of all cells pre and post-

layout. Schematic and symbol of frequently used sub-cell

circuits were created to simplify and speed-up this phase,

including a POUT sub-cell, various basic gates, and

several common control cores for different numbers of

inputs and outputs.

Proceedings of the 10th International Symposium on Asynchronous Circuits and Systems (ASYNC’04)

1522-8681/04 $20.00 © 2004 IEEE

Standard-cell specifications are the physical

constraints utilized during the custom layout of the cell.

For example, the cell height, power lines width, location

of routing grid, etc. These are the same parameters

utilized for synchronous cell designs and are necessary to

make automated placement and routing feasible.

Interestingly, the pins specifications needed to be in the

grid and on a metal shape whose width is an even

multiple of minor spacing grid steps (0.01 µm) to avoid

off-grid error messages in the ASIC P&R phase.

Figure 12. Standard-cell library design flow.

Layout & DRC are the manual physical design

steps. To simplify this phase, reducing errors and saving

time, sub-cell layouts were created matching the ones

described in the schematic phase. Therefore, for most of

the library cells, the top-level layout views are

implemented with a mixture of sub-cells and cell-specific

layout. The Diva Design Rule Checker (DRC) verifies

that the layout satisfies all process design rules, however,

it is also necessary to manually check if the cell complies

with the standard-cell specifications mentioned above.

Note also that the layout is done such that all cells DRC-

cleanly abut, even when horizontally and vertically

flipped.

An abstract layout view for the cells is generated

using the Cadence tool Envisia Abstract Generator. The

abstract file is in LEF format and represents the cells

physical dimensions and the metal layers with a

description of the power lines, input/output pins and metal

obstructions. The placement and routing tool uses this file

in the ASIC design flow.

The resulting Asynchronous Cell Library is a tree of

directories, for the Cadence tools, where the sub-levels

are the cells, their views (symbol, schematic, functional

and layout) and the abstract file. A preliminary version of

the STFB library has been released [22]. It contains all

common sub-cells for dual and 1-of-3 rail logic, cells for

Buffers, Splits, Merges, BitBuckets, and BitGenerators as

well specific cells used in our adder test chip. In the

future, Verilog behavioral views of all cells will be

completed and input capacitance and delay equations will

be characterized and included in the library using the

Liberty (.lib) file format [23].

4.2. STFB2_XOR2 cell example

Figure 13 shows the layout of the STFB2_XOR2 cell.

This cell is a STFB pipeline stage with two dual-rail input

channels and one dual-rail output channel. In our library,

this cell has four views: symbol, functional, schematic

and layout. The symbol view is used to instantiate the cell

in higher level schematics, the functional view is the

verilog behavioral description of the cell, the schematic

view has the transistor-level schematic of the cell,

including the symbols of the sub-cells used to implement

this cell, and the layout view, which, similarly to the

schematic view, is composed of a cell-specific part and

various sub-cells as shown in Figure 13. In this figure, we

can see that the STFB2_XOR2 cell includes the 8 input

transistors, that define the XOR function, and a

STFB2_CORE4I sub-cell, which includes 4 reset

transistors and one INV_28_12, one NAND2B_56_24,

one NOR2B_14_12OD and two STFB_POUT sub-cells.

(a)

(b)

(c)

Figure 13. STFB2_XOR2 cell layout (a) custom layout
and STFB2_CORE4I sub-cell, (b) with STFB2_CORE4I

sub-cell expanded, and (c) with all sub-cells
expanded.

Proceedings of the 10th International Symposium on Asynchronous Circuits and Systems (ASYNC’04)

1522-8681/04 $20.00 © 2004 IEEE

Notice that, by re-arranging the input transistor

connections shown in Figure 13.a, we can easily

implement other two-input one-output cells such as

STFB2_AND2 and STFB2_OR2.

4.3. Asynchronous ASIC design flow

Once we have STFB standard cells in our cell library,

a conventional ASIC design flow can be utilized to

generate a high performance asynchronous design as

shown in Figure 14. Note that currently the entire design

is entered through schematics (synthesis is an area of

future work) and each block is sent to P&R and are then

wired together in the chip assembly step. Verification can

be performed through Verilog cell-level simulation and

Nanosim transistor-level simulation.

Figure 14. Asynchronous ASIC design fow.

5. The evaluation and demonstration chip

A test chip was designed to validate the design flow

as well as the performance of the STFB templates. The

central block of the test chip is a 64-bit STFB prefix

adder, while the input and output circuitry were designed

to feed the adder and sample the results enabling the

checking of its performance and correctness at full-

throughput.

5.1. The Prefix adder

Given two n-bit numbers A and B in two’s

complement binary form, the addition operation, A+B, can

be performed by computing [14][15]:

1

1

−

−

⊕=

+=

⊕=

=

jjj

jjjj

jjj

jjj

cps

cpgc

bap

bag

 nj <≤0

where, c-1 is the adder primary carry input, aj, bj and sj are

bits of A, B and the addition result S respectively, gj is the

generate signal and pj is the propagate signal for the bits

at position j.

For an asynchronous 1-of-N implementation, aj, bj, cj

and sj are dual-rail channels, where, for example, a1j high

means aj = 1, and a0j high means aj = 0. Also, we use the

kj, “kill” signal, to form a 1-of-3 channel (kj, pj, gj). The

asynchronous equations become:

11

11

1

1

01101

11000

01101

11000

00

11

00

1001

11

−−

−−

−

−

+=

+=

+=

+=

+=

+=

=

+=

=

jjjjj

jjjjj

jjjjj

jjjjj

jjjj

jjjj

jjj

jjjjj

jjj

cLcLs

cLcLs

babaL

babaL

cpkc

cpgc

bak

babap

bag

 nj <≤0

where, L is the result of aj ⊕ bj (aj xor bj). This means that

aj and bj need to be duplicated since we need one pair for

the carry computation and another for the final sum.

Adapting from the usual synchronous definition

[12][16], we define (Kj:j, Pj:j, Gj:j) = (kj, pj, gj)

(asynchronous 1-of-3 channel) and:

),,(...),,(),,(),,(111::: iiijjjjjjjijiji gpkoogpkogpkGPK −−−=

where, j > i and o is the fundamental carry operator

adapted to the asynchronous implementation as:

))(),(),((),,(),,(ijjijijjiiijjj gpgppkpkgpkogpk ++=

Therefore, at each bit position, the final dual-rail

carry can be computed by:

1:0:0 11 −+= cPGc jjj

1:0:0 00 −+= cPKc jjj

where, c1-1 and c0-1 define the dual-rail adder primary

carry input.

Adapting from [14], the asynchronous addition can

be performed in the following steps:

Proceedings of the 10th International Symposium on Asynchronous Circuits and Systems (ASYNC’04)

1522-8681/04 $20.00 © 2004 IEEE

Step 1 (1 stage deep)

Duplicate (a0j, a1j) and (b0j, b1j) ∀j 0 ≤ j < n

Step 2 (1 stage deep)

Compute:

jjjjj

jjjjj

jjj

jjjjj

jjj

babaL

babaL

bak

babap

bag

01101

11000

00

1001

11

+=

+=

=

+=

=

 nj <≤0

Step 3 (log2 n stages deep)

For x = 1, 2… log2 n compute:

111 2:12:12
11 −−− −+−+−

+= xxx jjjjjj cPGc

111 2:12:12
00 −−− −+−+−

+= xxx jjjjjj cPKc

∀j 1212 1 −<≤−− xx j

=
+−+−+−

),,(
:12:12:12 jjjjjj xxx GPK

),,(
:12:12:12 111 jjjjjj xxx GPK

+−+−+− −−−

),,(111 2:122:122:12 −−− −+−−+−−+− xxxxxx jjjjjj
GPKo

∀j njx <≤− 12

Step 4 (1 stage deep)

Compute:

11

11

01101

11000

−−

−−

+=

+=

jjjjj

jjjjj

cLcLs

cLcLs
 nj <≤0

11:01:01

11:01:01

00

11

−−−−

−−−−

+=
+=

cPKc

cPGc

nnn

nnn

Figure 15 illustrates the above steps with an example,

an 8-bit asynchronous prefix adder, where, the thin arrows

are 1-of-2 (dual-rail) channels and the thick arrows are 1-

of-3 channels.

Notice that some STFB pipeline stages must have

two versions: one with unique output channel and another

with duplicated output channels. This is necessary

because we are using point-to-point single-track channels

(there are no forks in the wires). The pipeline stages used

with their library name are as shown below:

In Figure 16 the STFB2 prefix is used for stages with

only dual-rail channels, and STFB3 is used for stages with

at least one 1-of-3 channel. In particular, the

STFB3_AB_KPG stage implements the kpg part of step 2

(described above) and has two dual-rail input channels (A

and B) and one 1-of-3 output channel (KPG).

STFB3_AB_KPG2 implements the same functionality but

has two 1-of-3 output channels (KPG2). Similarly, cells

STFB3_KPG2_KPG and STFB3_KPG2_KPG2

implement the kpg part of step 3 and have two 1-of-3

input channels and one or two 1-of-3 output channels,

respectively. In the same manner, the carry generation

parts of step 3 and 4 are implemented by the cells

STFB3_KPGC_C and STFB3_KPGC_C2. Finally, step 1

and the sum parts of steps 2 and 4 are implemented by

STFB2_FORKs and STFB2_XOR2s. The buffers

(STFB2_BUFFER) are used for capacity matching

(“slack” matching).

Figure 15. 8-bit asynchronous prefix adder.

STFB2_FORK (fork stage)

STFB2_BUFFER (buffer stage)

STFB2_XOR2 (2-input xor stage)

STFB3_AB_KPG and STFB3_AB_KPG2

STFB3_KPG2_KPG and STFB3_KPG2_KPG2

STFB3_KPGC_C and STFB3_KPGC_C2

Figure 16. Pipeline stages utilized in the adder.

Figure 17. 8-bit async. prefix adder optimized.

Figure 17 shows an optimized version of the 8-bit

prefix adder, where the carry input (c-1) is forked at the

first step allowing an early computation of s0 and

improving the layout by replacing the bottom fork, which

Proceedings of the 10th International Symposium on Asynchronous Circuits and Systems (ASYNC’04)

1522-8681/04 $20.00 © 2004 IEEE

was used previously to supply c-1 to s0 and cn-1 (located in

two opposite extremes of the adder), with a simple buffer.

Also, the xor stages of the first half of the adder, from s1

to s(n/2)-1, can be moved one step earlier. These

modifications saved (n/2)-2 buffers and simplified the

layout.

In this small example, the 8-bit asynchronous prefix

adder is 6 levels deep (2 + log2 n + 1). The implemented

64-bit asynchronous prefix adder is, therefore, 9 levels

deep. This means that, after 9 times the forward latency of

the STFB templates (9*2 = 18 transitions) the resulting

64-bit plus carry out are available. Also, since the cycle

time of the STFB template is just 6 transitions, the 64-bit

adder can have up to 3 additions simultaneously being

processed (3 tokens in the pipeline) at maximum

throughput.

5.2. The input circuitry

The input circuitry generates a test pattern to be fed

into the adder. The INPUTGEN129 block is composed of

129 15-stage rings (two 64-bit numbers and carry in).

Figure 18 shows the 15-stage ring diagram, where we

have 14 buffers, one fork and one xor, and the square with

the letters TI is a token inserter block (not shown) and the

square with the letters BG is a controlled bit-generator

(not shown). Although the rings support up to 14 tokens

each, the maximum throughput of the ring is achieved

with 5 tokens.

Figure 18. 15-stage ring utilized in the input circuitry.

After the tokens are inserted by the TI cell, the BG

cell is enabled. Since, now, the xor stage has one token in

each input, it generates a token that enters the fork stage,

where one copy of the token is sent to the adder and

another is sent back into the ring. If BG is enabled to

generate “zero” tokens, the tokens in the ring simply

circulate making copies of themselves. If BG is enabled to

generate “one” tokens, the tokens in the ring are inverted

at every pass through the xor increasing the number of

scanned combinations.

5.3. The output circuitry

In order to test the adder running at full throughput,

we implemented output circuitry that samples the 65-bit

result (64-bit and carry out), forwarding to the output pins

one out of 128 results. Then, a much slower external

circuit can read and compare the results of the iteration

#1, #129, #257, #385, #513,…

If the input generator rings are loaded with 5 tokens

(no inversion enabled), the SAMPLER65 block outputs

all the 5 results in the order 1, 4, 2, 5 and 3.

Figure 19. 01 ring (a) circuit and (b) symbol.

Figure 19 shows a 01 ring, where, after reset, the

channel initializer (CI) block inserts a “zero” token in the

small ring. The output channel of the fork that returns to

the ring has both wires inverted (shown as a bubble on the

wire) before connect to the first buffer. This will make the

token change value at every loop and the circuit output

becomes a sequence 010101… Also, notice that this ring

has three stages and one token, which, for STFB, means

full throughput.

Figure 20. 1:128 sampler diagram.

Figure 20 illustrates a 1:128 sampler circuit where

the split stages (S), controlled by 01 rings, direct the input

token to a bit-bucket (BB), where the token is destroyed,

or to the next split. The SAMPLER65BY128 block, used

in our design, has a similar structure for the carry out

signal and, for the remaining 64 bits, each of the 01 ring

outputs are forked until they reach their respective 64 split

stages. Note also that single-track to single-rail converters

and their respective control circuits are not shown.

5.4. The chip layout

Figure 21 shows a picture of the laid-out 64-bit STFB

asynchronous prefix adder and its auxiliary test circuitry.

Each block P&R was performed separately with an area

utilization of 80%, the three blocks where forced to have

the same height (1.7 mm) and the placement of the adder

block pins matched their correspondents in the input and

sampler blocks. The total area is 4.1 mm2.

Notice that, by performing P&R on separated blocks,

we significantly reduce the probability of a very long wire

that could compromise the performance and the

functionality of the design. In fact, post-layout we

Proceedings of the 10th International Symposium on Asynchronous Circuits and Systems (ASYNC’04)

1522-8681/04 $20.00 © 2004 IEEE

guaranteed no STFB signal wires were longer than 1 mm.

Also, as filler cells, a total of 1.6 nF in bypass capacitors

were added.

Figure 21. The input, adder and sampler blocks.

5.5. Power Distribution and EM

Figure 22 shows a post-layout Nanosim simulation

result (transistor model TT, 25°C and VDD = 2.5V), where

we can see the format of each block current. The i(v129)

and i(vdd) are the input and the adder block current

respectively, and they are almost constant around 1.6 and

1.2A respectively (running at full throughput: 1.4 GHz).

The i(v65) is the sampler block current, whose ripple

depends on how far the token flows in the split pipeline

and varies from 0.2 to 0.6A. The overall current is

relatively constant, when compared to synchronous

designs, which significantly reduces the need for on-chip

bypass capacitors and offers very low Electro-Magnetic

Interference (EMI).

Figure 22. Typical simulation output.

As these designs consume significantly more current

than their slower synchronous counterparts, voltage drop

(IR drop) and the electromigration over the power lines

become important factors. Fortunately, the router supports

the insertion of a robust power grid to mitigate these

effects.

6. Simulation results

Table 1 shows the simulation results of the five

simulated corners. In this table, the conditions consist of

the combination of the model library (NMOS and PMOS

models: T = typical, S = slow and F =fast), the simulation

temperature, and the power supply voltage. Iav is the

average current of the three blocks when active. Latency

is the 64-bit adder propagation time, and Throughput is

the number of additions processed per second.

Table 1. Results

Conditions Iav Latency Throughput

TT, 25°C, 2.5V 3.3 A 2.1 ns 1.47 GHz

SS, 100°C, 2.2V 1.8 A 3.3 ns 943 MHz

FF, 0°C, 2.7V 4.6 A 1.6 ns 1.95 GHz

SF, 25°C, 2.5V 3.2 A 2.2 ns 1.46 GHz

FS, 25°C, 2.5V 3.2 A 2.2 ns 1.46 GHz

7. Comparisons

Table 2 shows a comparison of some STFB pipeline

stages with PCHB stages and static standard cell CMOS

gates. The latency and cycle time are written in terms of

number of transitions. The CMOS standard cell gates,

used in this comparison, were designed under the same

standard cell specification utilized for the STFB and

PCHB pipeline stages. Also, they are composed of a 2X

gate followed by an 8X inverter in order to match driving

strengths.

Table 2. STFB, PCHB and CMOS comparison.

Function Cell Latency
Cycle

Time

Area

(µm2)

Area

ratio

STFB 2 6 415 4.5

PCHB 2 14 726 7.9 Buffer

CMOS 2 - 92 1

STFB 2 6 472 4.6

PCHB 2 14 968 9.3
2-input

AND/OR
CMOS 2 - 104 1

STFB 2 6 472 2.6

PCHB 2 14 1048 5.7
2-input

XOR
CMOS 2 or 3 - 184 1

For these basic functions, the area ratio indicates that

the STFB stages are approximately 50% smaller than the

PCHB stages and about 5 times bigger than a CMOS

implementation (not considering the latch/flip-flop and

Proceedings of the 10th International Symposium on Asynchronous Circuits and Systems (ASYNC’04)

1522-8681/04 $20.00 © 2004 IEEE

clock-tree overhead required for synchronous designs).

Also, excluding the reset wire utilized by both the STFB

and PCHB stages, the STFB dual-rail implementation

uses 33% less wires than PCHB and just twice the number

of wires of the CMOS circuit.

8. Conclusions

This paper introduces a STFB standard-cell library

available through the MOSIS Education Program, which

facilitates a conventional back-end flow for ultra-high-

performance asynchronous blocks. Implementation details

of the STFB cells are presented and the flow is

demonstrated on several significant size blocks - a 64-bit

adder and its test circuitry. Post-layout results show

performance of over 1.4 Gigahertz in TSMC’s 0.25 µm

process. Since the STFB cells can easily be interfaced

with other even more robust templates, such blocks may

be used to solve performance bottlenecks in a bigger

design where ultra-high performance is needed.

9. Acknowledgements

This research has been partially supported by NSF

Grant CCR-0086036 and gifts from TRW, Fulcrum

Microsystems and the MOSIS Educational Program.

Thanks to Jay Moon for his valuable help with the CAD

tools, to Sachit Chandra for his help with the design flow

and Sunan Tugsinavisut for many helpful discussions.

Nanosim and Hspice are trademarks of Synopsys,

Inc. (Mountain View, CA). Dracula, Verilog, Virtuoso,

Envisia and Silicon Ensemble are trademarks of Cadence

Design Systems, Inc. (San Jose, CA). All other

trademarks are proprietary of their respective owners.

References

[1] W. J. Dally and J. Poulton, Digital Systems Engineering,

Cambridge Univ. Press, Cambridge, UK, 1998

[2] K. Y. Yun, P. A. Beerel, V. Vakilotojar, A. Dooply, and J.

Arceo, “The Design and Verification of a Low-Control-

Overhead Asynchronous Differential Equation Solver”,

IEEE Transactions on VLSI, Dec. 1998

[3] A. Davis and S. M. Nowick, “An Introduction to

Asynchronous Design”, Univ. of Utah Tech. Rep., Dept. of

Computer Science, UUCS-97-013, Sept. 19, 1997.

[4] K. van Berkel, and A. Bink,, “Single-Track Handshake

Signaling with Application to Micropipelines and

Handshake Circuits”, Proc. ASYNC, pp: 122–133, 1996.

[5] A. M. Lines, “Pipelined Asynchronous Circuits”, Master

Thesis, California Institute of Technology, June 1998.

[6] A. J. Martin, A. Lines, R. Manohar, M. Nyström, P. Penzes,

R. Southworth, U. Cummings, and T. K. Lee, “The Design

of an Asynchronous MIPS R3000 Microprocessor.” Proc.of

ARVLSI, pp. 164-181, 1997.

[7] I. Sutherland and S. Fairbanks, “GasP: A Minimal FIFO

Control”, Proc. of ASYNC, pp: 46 – 53, 2001.

[8] M. Nyström, “Asynchronous Pulse Logic”, PhD Thesis,

California Institute of Technology, May 14, 2001.

[9] M. Singh and S. M. Nowick, “High-Throughput

Asynchronous Pipelines for Fine-Grain Dynamic

Datapaths”, Proc. of ASYNC, pp: 198 – 209, 2000.

[10]M. Ferretti and P. A. Beerel, “Single-Track Asynchronous

Pipeline Templates Using 1-of-N Encoding”, Proceedings of

DATE, pp: 1008–1015, Paris, France, March 2002.

[11] J. M. Rabaey, Digital Integrated Circuits, Prentice Hall

Electronics and VLSI Series, New Jersey, USA 1996.

[12] I. Koren, Computer Arithmetic Algorithms, 2nd Edition, A.

K. Peters, Natick, MA, USA 2002

[13] R. Manohar, J. A. Tierno, “Asynchronous Parallel Prefix

Computation”, IEEE Transactions on Computers, pp: 1244

-1252, vol. 47, Nov. 1998.

[14] A. Goldovsky, R. Kolagotla, C.J. Nicol and M. Besz, “A

1.0-nsec 32-bit Tree Adder in 0.25-µm static CMOS”, Proc.

42nd IEEE Midwest Symp. on Circuits and Systems, pp: 608

-612, vol. 2, 1999.

[15] A. Goldovsky, H.R. Srinivas, R. Kolagotla and R. Hengst,

“A Folded 32-bit Prefix Tree Adder in 0.16-µm static

CMOS”, Proc. 43rd IEEE Midwest Symp. on Circuits and

Systems, pp: 368–373, Lansing MI, August 2000.

[16] R.P. Brent and H. T. Kung, “A regular layout for parallel

adders”, IEEE Trans. on Computers, C-31, pp: 260-264,

March 1982.

[17] Theobald, M. and Nowick, S.M., “Transformations for the

synthesis and optimization of asynchronous distributed

control”, Proc. Design Automation Conference, pp: 263 -

268, June 2001.

[18]U. Cummings, “Terabit Clockless Crowbar Switch in 130

nm”, Proc. 15th Hot Chips Conference, August, 2003.

[19]A. J. Martin, M. Nyström, K. Papadantonakis, P. I. Penzes,

P. Prakash, C. G. Wong, J. Chang, K. S. Ko, B. Lee, E. Ou,

J. Pugh, E. Talvala, J. T. Tong, A. Tura, “The Lutonium: a

sub-nanojoule asynchronous 8051 microcontroller”,

ASYNC’2003.

[20] M. Renaudin, P. Vivet, F. Robin. “ASPRO-216: A

Standard-Cell QDI 16-BIT RISC Asynchronous

Microprocessor”, ASYNC’98.

[21] R. O. Ozdag and P. A. Beerel, “A Channel Based

Asynchronous Low Power High Performance Standard-Cell

Based Sequential Decoder Implemented with QDI

Templates”, ASYNC’04.

[22] USC Asynchronous CAD/VLSI Group Standard Cell

Library, http://jungfrau.usc.edu/AsyncLib.html, October

2003.

[23] Synopsys, Liberty User Guide, Vol. 1 and 2, version

2003.10, October 2003

Proceedings of the 10th International Symposium on Asynchronous Circuits and Systems (ASYNC’04)

1522-8681/04 $20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

