
Abstract

This paper presents a new fast and templatized

family of fine-grain asynchronous pipeline stages based
on the single-track protocol. No explicit control wires
are required outside of the datapath and the data is 1-
of-N encoded. With a forward latency of 2 transitions
and a cycle time of 6 for most configurations, the new
family can run at 1.6 GHz using MOSIS TSMC 0.25 µm
process. This is significantly faster than all known
quasi-delay-insensitive templates and has less timing
assumptions than the recently proposed ultra-high-
speed GasP bundled-data circuits.

1 Introduction

As CMOS manufacturing technology scales into
deep and ultra-deep sub-micron design, problems with
clock skew, clock distribution, and on-chip
communication in high-speed synchronous designs are
becoming increasingly difficult to overcome [1],
warranting the exploration of alternative design
approaches. In particular, asynchronous design is
emerging as an increasingly viable alternative.

Among the numerous asynchronous design styles
being developed, template-based fine-grain pipelines
have demonstrated very high performance [5][7][8][9].
Template-based approaches also have the advantage of
removing the need for generating, optimizing, and
verifying specifications for complex distributed
controllers, which is both difficult and error-prone [2].
Various templates tradeoff latency, cycle time, and
robustness to timing. The most robust is the quasi-
delay-insensitive (QDI) templates proposed by Lines
[5]. One of most aggressive is the ultra-high-speed
GasP [7]. GasP offers high throughput but requires a
bundled data design style that involves additional
timing margins and assumptions that must be verified
during physical design and that introduces higher
latency through the data path than even the QDI
templates, possibly yielding lower system performance.

The single-track full-buffer (STFB) templates
proposed in this paper use 1-of-N data encoding and

two-dimensional pipelining instead of single-rail
encoding and fine-grain pipelining used by GasP. They
have two key advantages. First, they remove the GasP
bundling constraint, making them easier to design and
verify. Second, they reduce forward latency by 58% at
the cost of a 26% slower cycle time compared to GasP.
The overall performance impact of this tradeoff
depends on characteristics of the system. In particular,
if the system is latency-critical, where the performance
is determined by how fast an individual data token
flows through the system, a STFB system can be
significantly faster than the comparable GasP system
despite having local cycle times that are somewhat
larger.

The remainder of this paper is organized as follows.
After Section 2 provides relevant background
information, Sections 3 through 6 describes our
proposed 1-of-N templates in detail. Latency and
throughput simulation results of STFB buffers with
both QDI and GasP buffers are compared in Section 7
followed by some conclusions drawn in Section 8.

2 Background

In the absence of the clock, providing global
synchronization, masking logic hazards, and signaling
the end of each computation step, asynchronous circuits
operate using event-driven logic. In particular,
asynchronous circuits are often decomposed into
processing blocks that communicate data (called
tokens) through asynchronous channels. This
decomposition facilitates re-using asynchronous blocks
and simplifies the design of complex systems.

2.1 Asynchronous channels

An asynchronous channel is a bundle of wires and a
protocol to communicate data across the wires from a
sender to a receiver. Figure 1 shows three different
types of channels.

The bundled-data channel has the advantage that the
data is single-rail encoded (the same used in
synchronous design) but is dependent on the timing
assumption that the data is valid when the request

Single-Track Asynchronous Pipeline Templates Using 1-of-N Encoding

Marcos Ferretti, Peter A. Beerel

Department of Electrical Engineering Systems
University of Southern California
Los Angeles, CA 90089 – USA

ferretti@usc.edu, pabeerel@usc.edu

signal is asserted. The request signal is typically driven
by a matched delay line that is larger than the sender’s
computation delay plus some margin.

Alternatively, in a 1-of-N channel, the token value is
1-of-N encoded, meaning that N wires are used to
transmit N possible data values by asserting exactly one
wire at a time. A blank or NULL data is encoded by de-
asserting all wires. 1-of-2 (dual-rail) and 1-of-4
encodings are most common and both effectively use
two wires per bit to encode the data.

In the 1-of-N channel, the receiver detects the
presence of the token from the data itself and, once it no
longer needs the data, acknowledges the sender. In the
typical four-phase protocol, the sender then removes the
data by resetting all wires and waits for the
acknowledgement to be de-asserted before sending
another token.

In the 1-of-N single-track channel, the receiver
detects the presence of the token as in the 1-of-N
channel but is also responsible for consuming it (by
resetting all the wires). The sender detects that the
token was consumed before sending another token.

Figure 1. Asynchronous channels.

Berkel et al. [4] proposed single-track handshake
circuits to control medium-grain bundled-data
pipelines. Sutherland et al. [5] later developed faster
single-rail GasP circuits to control fine-grain bundled-
data pipelines. Nyström [8] recently also proposed a
dual-rail (1-of-2) single-track template based on self-
resetting pulsed-logic circuits like GasP but which
requires significantly more transistors and is
significantly slower.

Figure 2. Single-track protocol typical connection.

Figure 2 illustrates a single-wire single-track
channel. The sender waits for the wire to be low
(“ready”) before sending a request by driving the wire
high (“busy”). After the receiver detects the wire is high
and consumes the data, it drives the wire low.

Note that “transceivers” can also be implemented
using the single-track wire to transport data in both
directions if, for every communication event, it is well
defined which block will send and which will receive
[4]. Similarly, mutually exclusive transmitters and
receivers may be connected to the same wire [4].

2.2 Weak-condition half-buffer (WCHB)

Figure 3 illustrates a well-known dual-rail buffer
implementation called weak-condition half-buffer
(WCHB) in [5]. L and R identify the left and right
environments, 0 and 1 identify the zero and one rails,
and “e” identifies the enable signals (high means
“ready” and low means “acknowledge”). After reset,
L0, L1, R0 and R1 are low while Le and Re are high.
Data arrives by one of the left inputs (Lx) rising. This
will cause Sx to go low, which will drive the
corresponding output Rx high and the left enable Le
low. The left environment then will lower Lx while the
right environment receives the data Rx and lowers Re.
The buffer then raises Le and lowers Rx. The cycle
completes when the right environment re-asserts Re.
Note that for clarity reset circuitry and staticizers are
not typically shown. Note also that the generation and
reset of the output token implies that the corresponding
input token has been consumed and reset, respectively,
a property called weak conditioned in [10] and weak
indicatability in [11].

Figure 3. WCHB buffer.

We can derive an estimate of cycle time by counting
the number of gate delays or transitions in a cycle of
operation. The WCHB buffer is faster than other QDI
buffers, having a cycle time of only 10 transitions. For
more complex processing blocks with many inputs,
however, WCHB is not recommended because it
generally requires too many stacked PMOS transistors,
making it slower than alternative templates.

2.3 GasP bundled data

Figure 4 shows the GasP circuit where, after reset, L,
R, and A are high. When L is driven low by the left

environment, the self-resetting NAND will fire, driving
A low. This will restore L, activate the data latches, and
drive R low, propagating the signal and avoiding re-
evaluation until after R is restored high by the right
environment. The self-resetting NAND will restore
itself by driving A high after 3 transitions. The output
of the NAND controls the latches in a parallel single-
rail datapath.

Figure 4. GasP diagram.

GasP circuits take 4 transitions to forward data and 2
transitions to reset, i.e., move a “bubble” or blank
backwards. Of the 4 transitions forward latency,
approximately two transitions are required for latency
through the latches and satisfying setup/hold times
leaving approximately two transitions for computation.
Note that the control circuit itself makes up the delay
line and that it is the datapath designer’s responsibility
to pipeline the datapath to match the control circuit
delay while satisfying all setup/hold times.

2.4 Fine-grain vs. two dimensional pipelining

The WCHB and GasP templates represent a
fundamental dichotomy in pipelining philosophy. The
GasP design targets standard datapath widths of, for
example, 32-bits. In fact, GasP circuits can be viewed
as a complex method of distributing a clock that
naturally facilitates gated clocking. Consequently, the
bundled timing constraint captures many of the same
problems as clock distribution and clock skew. The
WCHB template, on the other hand, is generally applied
to small datapaths, say 4 bits, and wider datapaths are
made up of a two-dimensional array of communicating
blocks [6]. The motivation of limiting individual QDI
templates such as the WCHB to small datapaths is to
keep the completion-sensing overhead to a minimum,
thereby facilitating reasonable throughput while
preserving robustness to timing. The completion of a
wide datapath, if needed, can be pipelined across
several pipeline stages using a technique called pipeline
completion sensing [6]. Similarly, the broadcasting of a
control signal affecting the entire datapath can be
pipelined to avoid having a large completion tree for
the acknowledgement signals. In this way, two-

dimensional pipelines can have a cycle time that is
independent of datapath width.

Moreover, the WCHB, along with other QDI
templates, generally have significantly lower latency
than their GasP template counterparts because they do
not suffer from the latch delay and setup/hold times.
Replicating the control circuits for each row (slice of
bits) of the two-dimensional array, however, may result
in increased area and power.

3 STFB buffers

In asynchronous design, buffers are used to balance
pipelines for performance-driven slack matching [5] or
simply storing data. Figure 5 illustrates our 1-of-N
STFB buffer template.

Figure 5. 1-of-N STFB buffer.

When one of the n inputs (Lx) is driven high by the
left environment, the corresponding NAND gate will
drive Sx low, thereby driving both the corresponding
Rx and A (the “Acknowledgement” signal) high. A
going high causes Lx to reset low, enabling the left
environment to send a new token. Meanwhile, Rx going
high causes the B (“Busy”) signal to lower, restoring Sx
high and preventing the NANDs to re-fire even if a new
token arrives. The restoring of Sx, in turn, resets “A”.
The cycle completes when the right environment lowers
Rx, resetting B low, and allowing a new data token to
be processed. Since distinct tokens can simultaneously
be at the left and right environments, the template is
said to be a full buffer and have slack of 1.

The gate that drives “A” (Acknowledge) is called a
state completion detector (SCD) because it detects that
the internal state of the template has captured the input
token. The gate that drives “B” is called a right
completion detector (RCD) because it detects that the
output token has been sent to the right environment.
Note that the generation of the output token indicates
[11][13] that the corresponding input token was valid
and consumed. However, the reset of output tokens is
caused by the right environment and does not indicate
that the input tokens have reset. Consequently, we call
the STFB buffer, along with most STFB logic
templates, semi-weak-conditioned. As such, there is a

timing assumption that the template must reset the input
channel before “A” resets.

Figure 6. Dual-rail STFB buffer.

Figure 6 shows, as an example, a dual-rail STFB
buffer. Figure 7 shows an optimized version in which
the static NAND gates driving S0 and S1 are merged
into one dual-rail dynamic gate that is reset only by the
B signal. Figure 8 shows a similarly optimized 1-of-4
STFB buffer circuit and symbol.

Figure 7. Optimized dual-rail STFB buffer.

Figure 8. Optimized 1-of-4 STFB buffer.

STFB buffers have an estimated cycle time of 6
transitions. This is 40% faster than WCHB and the
same as GasP. The latency is 2 transitions, which is the
same as WCHB but half that of GasP.

The STFB buffer, however, has higher complexity
than both WCHB and GasP buffers. Compared to
WCHB buffer, including required staticizers and reset
circuit (Figure 20), the STFB buffer has 7 more
transistors. This increased complexity, however, is
mitigated by the fact that the proposed STFB buffer is a
full buffer (i.e., has slack of 1), while WCHB is a half
buffer (slack of ½). Moreover, the STFB buffer does
not require the acknowledge wires (Le/Re), which may
represent a significant saving in area and routing effort.

In addition, the power consumption per communication
of STFB buffer is potentially lower than WCHB buffer
because each communication requires half the number
of wire transitions.

Compared to a GasP buffer with a standard 32-bit
datapath, the area and power consumption of a STFB
pipeline may be higher because the two-dimensional
STFB pipeline will be made up of many buffers in
parallel and each buffer will have control circuit
overhead.

Figure 9 shows the handshaking expansion (HSE)
equation and the signal transition graph (STG) for the
presented buffers. The notation “+”, “↑” and “-”, “↓”
represent the rising and falling of the signals
respectively. The left and right environments drive the
dotted arrows and the dashed arrows represent timing
constraints. The arrows are annotated with delays in
terms of transitions.

STFB buffer ≡ ∗ [[¬R∧ L→R↑]; L↓]

Figure 9. STFB buffer: (1) HSE and (2) STG.

As can be deduced from the STG, the STFB buffer
has somewhat tight timing constraints. In particular, the
timing margin between the tri-stating of an output wire
(one transition after S+) and the earliest time the
environment can reset the wire (R-) is zero. Moreover,
the timing margin between tri-stating of an input wire
(two transitions after S+) and the earliest time the left
environment can drive the wire (L+) is also zero. In
particular, if these margins are violated, significant
short circuit current may occur during the transitioning
of the line. In addition, it is assumed that three
transitions are sufficient to fully discharge/charge a
line. This poses significant constraints on both
transistor sizing and post-layout analog verification, but
efforts to solve these problems are on going [5]. Unless
otherwise noted, these timing constraints apply to all
subsequent examples.

4 STFB forks and joins

This section covers a variety of non-linear pipelines
stages that involve multiple input and/or multiple
output channels and can perform more complex logic
functions. While we focus on two dual-rail (1-of-2)
inputs/outputs, templates that handle more channels
and/or 1-of-N encoding are natural extensions.

(1)

(2)

L+ R+ S-

S+ L- R-

1 1

2 2
2 2

1

3+ 3+

4.1 Dual-rail STFB semi-weak-cond. AND

Figure 10. SFTB semi-weak-conditioned AND.

Figure 10 illustrates an STFB AND stage that
performs c = a*b, where a and b are dual-rail single-
track inputs and c is the dual-rail single-track output.

All the inputs are “acknowledged” by the signal A as
soon as S0 or S1 goes low. For S1, this happens when
a1 and b1 are high. For S0, a0 or b0 driven low is
sufficient to define the logic result, but the circuit
explicitly waits for one of the three input combinations
00, 01, and 10 to arrive before lowering S0. In this way,
the evaluation of S0 implies that both tokens (a and b)
arrived, guaranteeing that the acknowledgement does
not precede the arrival of a late token, making this gate
semi-weak-conditioned.

4.2 Dual-rail STFB non weak-conditioned AND

Figure 11. Non weak-conditioned STFB AND.

Figure 11 shows a non weak-conditioned AND. This
circuit generates a zero result token as soon as one of
the inputs is zero even if the other input has not arrived.
When all the inputs are finally present, however, the
stage sends an acknowledgement to all inputs.

To do this, while forwarding the early zero result,
the gate’s SCD (State Completion Detector) sets A
high, which will disable the logic for future evaluations
by keeping /A low and will hold the information that

an acknowledge is pending. When the LCD (Left
environment Completion Detector) detects that all input
tokens are present, the acknowledge signal is passed to
the transistors that will “consume” the data at the inputs
and A is reset to zero. This will restore /A high and the
gate will be ready to evaluate again. This LCD structure
adds two transitions to the cycle time but loosens the
timing margin between S- and resetting the inputs
(corresponding to L- in Figure 9) by two gate delays.

Notice that for multiple inputs, this gate has a much
simpler NMOS transistor stack than the weak-
conditioned STFB AND.

4.3 Dual-rail STFB OR and STFB XORs

A dual-rail STFB OR performs the logic operation:
c = a+b, where a and b are dual-rail single-track inputs
and c is the dual-rail single-track output. This function
can be implemented either with semi-weak-conditioned
logic or with non-weak-conditioned logic simply by
rearranging the transistors in the NMOS stack of the
AND circuits presented in Section 4.1 and 4.2 .

Similarly, the dual-rail STFB XOR performs the
logic operation: c = a⊕ b, where a and b are dual-rail
single-track inputs and c is the dual-rail single-track
output. The STFB XOR, however, must be semi-weak-
conditioned, because all input token values must be
known before the output value is known.

4.4 Dual-rail STFB non-conditional merge

Figure 12. STFB NCMerge.

The non-conditional merge operation concatenates
the incoming data from different mutually exclusive
input channels. Figure 12 shows a 2-to-1 non-
conditional merge circuit and symbol.

4.5 Dual-rail STFB copy

The copy operation consists of replicating the
incoming data to several different paths if all output
paths are ready. Otherwise, the input data must wait.

Figure 13 shows the 1-to-2 copy. Notice that the
four-input NOR gate (with a stack of four PMOS
transistors) driving B slows down the STFB Copy
performance. To speed-up the B signal, however, we

can use 2 two-input NOR gates to generate Ba and Bb
and replace the B NMOS transistors with stacked Ba
and Bb NMOS transistors (see Figure 8).

Figure 13. STFB copy.

4.6 Dual-rail STFB full adder

To implement a full adder (STFB FA) we need to
compute the sum and the carry out before resetting the
inputs. As illustrated in Figure 14 and Figure 15, this
can be done with a three-input XOR and a three input
majority (MAJ) gate. The XOR generates the sum
(s=a+b+ci) and the MAJ generates the carry out
(co=MAJ(a,b,ci)).

Figure 14. STFB FA: (a) XOR and (b) majority gates.

Figure 15. STFB FA acknowledgement circuit.

In this structure, the carry evaluates as soon as
enough inputs arrive to define the correct output value
but the acknowledgement waits for both outputs to be
generated which, because the sum is an XOR gate,
implicitly means that all inputs have arrived. Note that
the acknowledgement circuitry adds two gate delays to
the cycle time but also loosens the timing margin
between S- and resetting the inputs by two gates.

The long nmos stacks in the sum and carry circuits
can be reduced by one transistor by removing the

transistors controlled by /As and /Ac and making As
and Ac new inputs of their respective RCD NOR gates.

5 STFB conditional stages

This section covers a variety of stages in which input
and/or output channels are conditionally read or written.

5.1 Dual-rail STFB split

The split operation consists of forwarding incoming
tokens to one of two output channels based on the value
of a control (C) channel. If the chosen output path is
busy, the data must wait. Note that the micropipeline
version of this block, which samples the control signal
rather than consuming it, is called a select [12].

Figure 16 shows the 1-to-2 STFB split circuit and
symbol. In this example, when C is low, L is directed to
Ra and, when C is high, to Rb. Interestingly, the STFB
split allows a token to be forwarded to one channel
even if the other channel is busy, which increases the
degree of parallelism.

Figure 16. STFB split.

5.2 Dual-rail STFB merge

Figure 17. STFB Merge.

The merge operation consists of choosing one of the
incoming tokens based on the value of a control (C)
input. If the output path is busy, the input and control
must wait. After forwarding the data, the control token
is also consumed.

Figure 17 shows the 2-to-1 merge circuit and
symbol. When C=0, La is directed to R and, when C=1,
Lb is directed to R.

6 Auxiliary stages

This section covers bit generators used to generate a
stream of tokens, bit buckets to consume unwanted
tokens, converters between single-track and four-phase
protocols, and staticizer/reset circuitry.

6.1 Four-phase to STFB converters

The “transmitter” circuit, illustrated in Figure 18, is
our proposed interface between four-phase
asynchronous logic and STFB. In this circuit, if Le is
high and the right environment is ready, a data from the
left environment will be transmitted and the signal Le
will be set low. This also disables the buffer, avoiding
re-transmitting the same data after the right
environment consumes it. Le will remain low until both
inputs return to zero (four-phase protocol). When this
happens, Le is set high and the transmitter is ready for
the next data.

The “receiver” circuit, illustrated in Figure 19, is our
proposed interface between STFB and four-phase
asynchronous logic. In this circuit, if Re is high (the
right environment is ready), a data from the left
environment will be received and the buffer will wait
for the signal Re to be set low. When Re goes low, a
three gate-delay pulse is generated to consume the left
environment data and the receiver is reset (R0 and R1
goes low). While Re is low, R0 and R1 are reset and no
new data is received (four-phase protocol). When Re
returns to high, the receiver is ready for the next data.

The cycle time of these converters is 9 transitions
when connected to WCHB buffers.

Figure 18. STFB Tx

Figure 19. STFB Rx

6.2 Staticizers and reset circuitry

As shown in Figure 20, in order to preserve the state
of the circuit during long periods of inactivity, weak
PMOS transistors (M1 and M2) may be added to hold
S0 and S1 high despite leakage currents. Moreover,
staticizers (implemented with two inverters) may be
placed at each output wire to mitigate both leakage
current and cross-talk. Also, to further reduce crosstalk,
the transistors M3 and M4 can be added to help hold
one wire low while the other is driven high.

Figure 20. STFB staticizer and reset circuitry.

The reset procedure is simple: after power up, if any
output wire remains high, the respective B signal will
automatically disable the PMOS drivers. Then,
lowering the /Reset signal will force the “A” signal
high resetting all the wires.

For simplicity, the reset input, the staticizers, M1,
M2, M3 and M4 have typically not been illustrated but
should be assumed present.

6.3 Dual-rail STFB bit generators and buckets

Figure 21. STFB bit generator (a) and bucket (b).

A bit generator creates a data token every time the
line is empty, while a bit bucket consumes unwanted

tokens. Both are also useful in test circuitry. The
proposed STFB bit generator and bit bucket are shown
in Figure 21.

7 Simulation results

The MOSIS TSMC 0.25µm (Vdd = 2.5V and T =
25°C) process parameters were used for the following
hspice simulation results.

The transistor sizing strategy we adopted to compare
STFB, WCHB, and GasP buffers was very simple. The
smallest widths were Wn = 0.6 µm and Wp = 1.4 µm
for the NMOS and PMOS transistors respectively. The
output (line-drivers) transistors where designed two
times the smallest size. The width of each stacked
transistor was the smallest size multiplied by the
number of transistors in the stack. To operate properly,
the PMOS of the GasP self-resetting NAND needed to
be increased to Wp = 2.8 µm and the NOR used in the
STFB buffer was implemented with Wn = 0.9 µm.
Different transistor sizing may yield better
performance, but a significant change in the relation
between the three approaches is not expected.

We simulated three different pipelines implemented
with 10 buffer stages, a bit generator at the source, and
a bit bucket at the sink, using dual-rail STFB and
WCHB buffers and 1-bit GasP control. Table 1
compares their throughput and latency per stage. The
single-rail GasP does achieve the highest throughput
but at the expense of significantly larger latency.
Compared to WCHB, the proposed STFB achieves both
faster latency and throughput. We also simulated the
STFB pipeline where each stage was separated by 0.5
mm length of wires. The pipeline worked correctly,
demonstrating robustness to wire load, but at a reduced
throughput of 1.1 GHz.

Table 1. Buffers throughput and latency

Non-linear STFB pipeline templates have similar
cycle times. Unfortunately, we could not perform
detailed hspice simulation comparisons of non-linear
pipeline stages because GasP implementations for many
of these stages were not presented in [7]. However, we
believe we would see a similar throughput-latency
tradeoff as seen in the buffers. In addition, since the
fastest QDI templates for these non-linear structures are
significantly slower than WCHB buffers, we expect the
advantage of our non-linear templates over QDI is even
more significant.

8 Conclusions

STFB templates were proposed for high-speed
asynchronous non-linear pipeline design. The templates
use 1-of-N data encoding rather than single-rail
encoding to avoid the bundling constraint that is hard to
design and verify. The templates have lower latency
and 60% higher throughput than the fastest known QDI
templates and have 58% lower latency than the most
aggressive GasP templates. Consequently, for systems
that are latency-critical, STFB templates may yield a
significant performance advantage. Quantification of
this advantage is part of our future work. We also plan
to formally verify the presented timing constraints.

References

[1] W. J. Dally and J. Poulton, Digital Systems Engineering,
Cambridge Univ. Press, Cambridge, UK, 1998

[2] K. Y. Yun, P. A. Beerel, V. Vakilotojar, A. Dooply, and J.
Arceo, “The Design and Verification of a Low-Control-
Overhead Asynchronous Differential Equation Solver”,
IEEE Transactions on VLSI, Dec. 1998

[3] A. Davis and S. M. Nowick, “An Introduction to
Asynchronous Design”, Univ. of Utah Tech. Rep., Dept.
of Computer Science, UUCS-97-013, Sept. 19, 1997.

[4] K. van Berkel, and A. Bink,, “Single-Track Handshake
Signaling with Application to Micropipelines and
Handshake Circuits”, Proc. ASYNC, pp: 122–133, 1996.

[5] A. M. Lines, “Pipelined Asynchronous Circuits”, Master
Thesis, California Institute of Technology, June 1998.

[6] A. J. Martin, A. Lines, R. Manohar, M. Nyström, P.
Penzes, R. Southworth, U. Cummings, and T. K. Lee,
“The Design of an Asynchronous MIPS R3000
Microprocessor.” Proc.of ARVLSI, pp. 164-181, 1997.

[7] I. Sutherland and S. Fairbanks, “GasP: A Minimal FIFO
Control”, Proc. of ASYNC, pp: 46 – 53, 2001.

[8] M. Nyström, “Asynchronous Pulse Logic”, PhD Thesis,
California Institute of Technology, May 14, 2001.

[9] M. Singh and S. M. Nowick, “High-Throughput
Asynchronous Pipelines for Fine-Grain Dynamic
Datapaths”, Proc. of ASYNC, pp: 198 – 209, 2000.

[10] C.L. Seitz. “System timing,” in C. A. Mead and L.A.
Conway, editors, Introduction to VLSI Systems, chapter 7.
Addison-Wesley, 1980.

[11] C.D. Nielsen. “Evaluation of Function Blocks for
Asynchronous Design,” Proceedings of ACM, pp:454-
459, September 1994.

[12] I.E. Sutherland, “Micropipelines”, Communications of
the ACM, vol. 32, #6, pp: 720-738, June 1989.

[13] V.I. Varshavsky (editor), Self-Timed Control of
Concurrent Processes : The Design of Aperiodic Logical
Circuits in Computers and Discrete Systems, Kluwer
Academic Publishers, Dordrecht, The Netherlands,
January 1990.

