
Abstract 
 
This paper presents a new fast and templatized 

family of fine-grain asynchronous pipeline stages based 
on the single-track protocol. No explicit control wires 
are required outside of the datapath and the data is 1-
of-N encoded. With a forward latency of 2 transitions 
and a cycle time of 6 for most configurations, the new 
family can run at 1.6 GHz using MOSIS TSMC 0.25 µm 
process. This is significantly faster than all known 
quasi-delay-insensitive templates and has less timing 
assumptions than the recently proposed ultra-high-
speed GasP bundled-data circuits. 

1 Introduction 

As CMOS manufacturing technology scales into 
deep and ultra-deep sub-micron design, problems with 
clock skew, clock distribution, and on-chip 
communication in high-speed synchronous designs are 
becoming increasingly difficult to overcome [1], 
warranting the exploration of alternative design 
approaches. In particular, asynchronous design is 
emerging as an increasingly viable alternative. 

Among the numerous asynchronous design styles 
being developed, template-based fine-grain pipelines 
have demonstrated very high performance [5][7][8][9]. 
Template-based approaches also have the advantage of 
removing the need for generating, optimizing, and 
verifying specifications for complex distributed 
controllers, which is both difficult and error-prone [2]. 
Various templates tradeoff latency, cycle time, and 
robustness to timing. The most robust is the quasi-
delay-insensitive (QDI) templates proposed by Lines 
[5]. One of most aggressive is the ultra-high-speed 
GasP [7]. GasP offers high throughput but requires a 
bundled data design style that involves additional 
timing margins and assumptions that must be verified 
during physical design and that introduces higher 
latency through the data path than even the QDI 
templates, possibly yielding lower system performance. 

The single-track full-buffer (STFB) templates 
proposed in this paper use 1-of-N data encoding and 

two-dimensional pipelining instead of single-rail 
encoding and fine-grain pipelining used by GasP. They 
have two key advantages. First, they remove the GasP 
bundling constraint, making them easier to design and 
verify. Second, they reduce forward latency by 58% at 
the cost of a 26% slower cycle time compared to GasP. 
The overall performance impact of this tradeoff 
depends on characteristics of the system. In particular, 
if the system is latency-critical, where the performance 
is determined by how fast an individual data token 
flows through the system, a STFB system can be 
significantly faster than the comparable GasP system 
despite having local cycle times that are somewhat 
larger.   

The remainder of this paper is organized as follows. 
After Section 2 provides relevant background 
information, Sections 3 through 6 describes our 
proposed 1-of-N templates in detail. Latency and 
throughput simulation results of STFB buffers with 
both QDI and GasP buffers are compared in Section 7 
followed by some conclusions drawn in Section 8. 

2 Background 

In the absence of the clock, providing global 
synchronization, masking logic hazards, and signaling 
the end of each computation step, asynchronous circuits 
operate using event-driven logic. In particular, 
asynchronous circuits are often decomposed into 
processing blocks that communicate data (called 
tokens) through asynchronous channels. This 
decomposition facilitates re-using asynchronous blocks 
and simplifies the design of complex systems. 

2.1  Asynchronous channels 

An asynchronous channel is a bundle of wires and a 
protocol to communicate data across the wires from a 
sender to a receiver. Figure 1 shows three different 
types of channels.  

The bundled-data channel has the advantage that the 
data is single-rail encoded (the same used in 
synchronous design) but is dependent on the timing 
assumption that the data is valid when the request 
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signal is asserted. The request signal is typically driven 
by a matched delay line that is larger than the sender’s 
computation delay plus some margin.  

Alternatively, in a 1-of-N channel, the token value is 
1-of-N encoded, meaning that N wires are used to 
transmit N possible data values by asserting exactly one 
wire at a time. A blank or NULL data is encoded by de-
asserting all wires. 1-of-2 (dual-rail) and 1-of-4 
encodings are most common and both effectively use 
two wires per bit to encode the data.  

In the 1-of-N channel, the receiver detects the 
presence of the token from the data itself and, once it no 
longer needs the data, acknowledges the sender. In the 
typical four-phase protocol, the sender then removes the 
data by resetting all wires and waits for the 
acknowledgement to be de-asserted before sending 
another token. 

In the 1-of-N single-track channel, the receiver 
detects the presence of the token as in the 1-of-N 
channel but is also responsible for consuming it (by 
resetting all the wires). The sender detects that the 
token was consumed before sending another token. 

 

Figure 1. Asynchronous channels. 

Berkel et al. [4] proposed single-track handshake 
circuits to control medium-grain bundled-data 
pipelines. Sutherland et al. [5] later developed faster 
single-rail GasP circuits to control fine-grain bundled-
data pipelines. Nyström [8] recently also proposed a 
dual-rail (1-of-2) single-track template based on self-
resetting pulsed-logic circuits like GasP but which 
requires significantly more transistors and is 
significantly slower. 

 

Figure 2. Single-track protocol typical connection. 

Figure 2 illustrates a single-wire single-track 
channel. The sender waits for the wire to be low 
(“ready”) before sending a request by driving the wire 
high (“busy”). After the receiver detects the wire is high 
and consumes the data, it drives the wire low.  

Note that “transceivers” can also be implemented 
using the single-track wire to transport data in both 
directions if, for every communication event, it is well 
defined which block will send and which will receive 
[4]. Similarly, mutually exclusive transmitters and 
receivers may be connected to the same wire [4]. 

2.2  Weak-condition half-buffer (WCHB) 

Figure 3 illustrates a well-known dual-rail buffer 
implementation called weak-condition half-buffer 
(WCHB) in [5]. L and R identify the left and right 
environments, 0 and 1 identify the zero and one rails, 
and “e” identifies the enable signals (high means 
“ready” and low means “acknowledge”).  After reset, 
L0, L1, R0 and R1 are low while Le and Re are high.  
Data arrives by one of the left inputs (Lx) rising. This 
will cause Sx to go low, which will drive the 
corresponding output Rx high and the left enable Le 
low. The left environment then will lower Lx while the 
right environment receives the data Rx and lowers Re. 
The buffer then raises Le and lowers Rx. The cycle 
completes when the right environment re-asserts Re. 
Note that for clarity reset circuitry and staticizers are 
not typically shown. Note also that the generation and 
reset of the output token implies that the corresponding 
input token has been consumed and reset, respectively, 
a property called weak conditioned in [10] and weak 
indicatability in [11]. 

 

Figure 3. WCHB buffer. 

We can derive an estimate of cycle time by counting 
the number of gate delays or transitions in a cycle of 
operation. The WCHB buffer is faster than other QDI 
buffers, having a cycle time of only 10 transitions. For 
more complex processing blocks with many inputs, 
however, WCHB is not recommended because it 
generally requires too many stacked PMOS transistors, 
making it slower than alternative templates.  

2.3  GasP bundled data 

Figure 4 shows the GasP circuit where, after reset, L, 
R, and A are high. When L is driven low by the left 



environment, the self-resetting NAND will fire, driving 
A low. This will restore L, activate the data latches, and 
drive R low, propagating the signal and avoiding re-
evaluation until after R is restored high by the right 
environment. The self-resetting NAND will restore 
itself by driving A high after 3 transitions. The output 
of the NAND controls the latches in a parallel single-
rail datapath.  

 

Figure 4. GasP diagram. 

GasP circuits take 4 transitions to forward data and 2 
transitions to reset, i.e., move a “bubble” or blank 
backwards. Of the 4 transitions forward latency, 
approximately two transitions are required for latency 
through the latches and satisfying setup/hold times 
leaving approximately two transitions for computation.  
Note that the control circuit itself makes up the delay 
line and that it is the datapath designer’s responsibility 
to pipeline the datapath to match the control circuit 
delay while satisfying all setup/hold times.  

2.4  Fine-grain vs. two dimensional pipelining 

The WCHB and GasP templates represent a 
fundamental dichotomy in pipelining philosophy. The 
GasP design targets standard datapath widths of, for 
example, 32-bits. In fact, GasP circuits can be viewed 
as a complex method of distributing a clock that 
naturally facilitates gated clocking. Consequently, the 
bundled timing constraint captures many of the same 
problems as clock distribution and clock skew. The 
WCHB template, on the other hand, is generally applied 
to small datapaths, say 4 bits, and wider datapaths are 
made up of a two-dimensional array of communicating 
blocks [6]. The motivation of limiting individual QDI 
templates such as the WCHB to small datapaths is to 
keep the completion-sensing overhead to a minimum, 
thereby facilitating reasonable throughput while 
preserving robustness to timing. The completion of a 
wide datapath, if needed, can be pipelined across 
several pipeline stages using a technique called pipeline 
completion sensing [6]. Similarly, the broadcasting of a 
control signal affecting the entire datapath can be 
pipelined to avoid having a large completion tree for 
the acknowledgement signals. In this way, two-

dimensional pipelines can have a cycle time that is 
independent of datapath width.  

Moreover, the WCHB, along with other QDI 
templates, generally have significantly lower latency 
than their GasP template counterparts because they do 
not suffer from the latch delay and setup/hold times. 
Replicating the control circuits for each row (slice of 
bits) of the two-dimensional array, however, may result 
in increased area and power.  

3 STFB buffers  

In asynchronous design, buffers are used to balance 
pipelines for performance-driven slack matching [5] or 
simply storing data. Figure 5 illustrates our 1-of-N 
STFB buffer template. 

 

Figure 5. 1-of-N STFB buffer. 

When one of the n inputs (Lx) is driven high by the 
left environment, the corresponding NAND gate will 
drive Sx low, thereby driving both the corresponding 
Rx and A (the “Acknowledgement” signal) high. A 
going high causes Lx to reset low, enabling the left 
environment to send a new token. Meanwhile, Rx going 
high causes the B (“Busy”) signal to lower, restoring Sx 
high and preventing the NANDs to re-fire even if a new 
token arrives. The restoring of Sx, in turn, resets “A”. 
The cycle completes when the right environment lowers 
Rx, resetting B low, and allowing a new data token to 
be processed. Since distinct tokens can simultaneously 
be at the left and right environments, the template is 
said to be a full buffer and have slack of 1.  

The gate that drives “A” (Acknowledge) is called a 
state completion detector (SCD) because it detects that 
the internal state of the template has captured the input 
token. The gate that drives “B” is called a right 
completion detector (RCD) because it detects that the 
output token has been sent to the right environment. 
Note that the generation of the output token indicates 
[11][13] that the corresponding input token was valid 
and consumed. However, the reset of output tokens is 
caused by the right environment and does not indicate 
that the input tokens have reset. Consequently, we call 
the STFB buffer, along with most STFB logic 
templates, semi-weak-conditioned. As such, there is a 



timing assumption that the template must reset the input 
channel before “A” resets.  

 

Figure 6. Dual-rail STFB buffer. 

Figure 6 shows, as an example, a dual-rail STFB 
buffer. Figure 7 shows an optimized version in which 
the static NAND gates driving S0 and S1 are merged 
into one dual-rail dynamic gate that is reset only by the 
B signal. Figure 8 shows a similarly optimized 1-of-4 
STFB buffer circuit and symbol. 

 

Figure 7. Optimized dual-rail STFB buffer. 

 

Figure 8. Optimized 1-of-4 STFB buffer. 

STFB buffers have an estimated cycle time of 6 
transitions. This is 40% faster than WCHB and the 
same as GasP. The latency is 2 transitions, which is the 
same as WCHB but half that of GasP. 

The STFB buffer, however, has higher complexity 
than both WCHB and GasP buffers. Compared to 
WCHB buffer, including required staticizers and reset 
circuit (Figure 20), the STFB buffer has 7 more 
transistors. This increased complexity, however, is 
mitigated by the fact that the proposed STFB buffer is a 
full buffer (i.e., has slack of 1), while WCHB is a half 
buffer (slack of ½). Moreover, the STFB buffer does 
not require the acknowledge wires (Le/Re), which may 
represent a significant saving in area and routing effort. 

In addition, the power consumption per communication 
of STFB buffer is potentially lower than WCHB buffer 
because each communication requires half the number 
of wire transitions. 

Compared to a GasP buffer with a standard 32-bit 
datapath, the area and power consumption of a STFB 
pipeline may be higher because the two-dimensional 
STFB pipeline will be made up of many buffers in 
parallel and each buffer will have control circuit 
overhead. 

Figure 9 shows the handshaking expansion (HSE) 
equation and the signal transition graph (STG) for the 
presented buffers. The notation “+”, “↑” and “-”, “↓” 
represent the rising and falling of the signals 
respectively. The left and right environments drive the 
dotted arrows and the dashed arrows represent timing 
constraints. The arrows are annotated with delays in 
terms of transitions. 

 
STFB buffer ≡ ∗ [[¬R∧ L→R↑]; L↓] 

 
 
 
 
 
 

Figure 9. STFB buffer: (1) HSE and (2) STG. 

As can be deduced from the STG, the STFB buffer 
has somewhat tight timing constraints. In particular, the 
timing margin between the tri-stating of an output wire 
(one transition after S+) and the earliest time the 
environment can reset the wire (R-) is zero. Moreover, 
the timing margin between tri-stating of an input wire 
(two transitions after S+) and the earliest time the left 
environment can drive the wire (L+) is also zero. In 
particular, if these margins are violated, significant 
short circuit current may occur during the transitioning 
of the line. In addition, it is assumed that three 
transitions are sufficient to fully discharge/charge a 
line. This poses significant constraints on both 
transistor sizing and post-layout analog verification, but 
efforts to solve these problems are on going [5]. Unless 
otherwise noted, these timing constraints apply to all 
subsequent examples. 

4 STFB forks and joins 

This section covers a variety of non-linear pipelines 
stages that involve multiple input and/or multiple 
output channels and can perform more complex logic 
functions. While we focus on two dual-rail (1-of-2) 
inputs/outputs, templates that handle more channels 
and/or 1-of-N encoding are natural extensions. 
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4.1  Dual-rail STFB semi-weak-cond. AND 

 

Figure 10. SFTB semi-weak-conditioned AND. 

Figure 10 illustrates an STFB AND stage that 
performs c = a*b, where a and b are dual-rail single-
track inputs and c is the dual-rail single-track output.  

All the inputs are “acknowledged” by the signal A as 
soon as S0 or S1 goes low. For S1, this happens when 
a1 and b1 are high. For S0, a0 or b0 driven low is 
sufficient to define the logic result, but the circuit 
explicitly waits for one of the three input combinations 
00, 01, and 10 to arrive before lowering S0. In this way, 
the evaluation of S0 implies that both tokens (a and b) 
arrived, guaranteeing that the acknowledgement does 
not precede the arrival of a late token, making this gate 
semi-weak-conditioned.  

4.2  Dual-rail STFB non weak-conditioned AND  

 

Figure 11. Non weak-conditioned STFB AND. 

Figure 11 shows a non weak-conditioned AND. This 
circuit generates a zero result token as soon as one of 
the inputs is zero even if the other input has not arrived. 
When all the inputs are finally present, however, the 
stage sends an acknowledgement to all inputs. 

To do this, while forwarding the early zero result, 
the gate’s SCD (State Completion Detector) sets A 
high, which will disable the logic for future evaluations 
by keeping  /A low and will hold the information that 

an acknowledge is pending. When the LCD (Left 
environment Completion Detector) detects that all input 
tokens are present, the acknowledge signal is passed to 
the transistors that will “consume” the data at the inputs 
and A is reset to zero. This will restore /A high and the 
gate will be ready to evaluate again. This LCD structure 
adds two transitions to the cycle time but loosens the 
timing margin between S- and resetting the inputs 
(corresponding to L- in Figure 9) by two gate delays. 

Notice that for multiple inputs, this gate has a much 
simpler NMOS transistor stack than the weak-
conditioned STFB AND. 

4.3  Dual-rail STFB OR and STFB XORs 

A dual-rail STFB OR performs the  logic operation: 
c = a+b, where a and b are dual-rail single-track inputs 
and c is the dual-rail single-track output. This function 
can be implemented either with semi-weak-conditioned 
logic or with non-weak-conditioned logic simply by 
rearranging the transistors in the NMOS stack of the 
AND circuits presented in Section 4.1 and 4.2 .  

Similarly, the dual-rail STFB XOR performs the 
logic operation: c = a⊕ b, where a and b are dual-rail 
single-track inputs and c is the dual-rail single-track 
output. The STFB XOR, however, must be semi-weak-
conditioned, because all input token values must be 
known before the output value is known. 

4.4  Dual-rail STFB non-conditional merge 

 

Figure 12. STFB NCMerge.  

The non-conditional merge operation concatenates 
the incoming data from different mutually exclusive 
input channels. Figure 12 shows a 2-to-1 non-
conditional merge circuit and symbol. 

4.5  Dual-rail STFB copy 

The copy operation consists of replicating the 
incoming data to several different paths if all output 
paths are ready. Otherwise, the input data must wait. 

Figure 13 shows the 1-to-2 copy. Notice that the 
four-input NOR gate (with a stack of four PMOS 
transistors) driving B slows down the STFB Copy 
performance. To speed-up the B signal, however, we 



can use 2 two-input NOR gates to generate Ba and Bb 
and replace the B NMOS transistors with stacked Ba 
and Bb NMOS transistors (see Figure 8). 

 

Figure 13. STFB copy. 

4.6  Dual-rail STFB full adder 

To implement a full adder (STFB FA) we need to 
compute the sum and the carry out before resetting the 
inputs. As illustrated in Figure 14 and Figure 15, this 
can be done with a three-input XOR and a three input 
majority (MAJ) gate. The XOR generates the sum 
(s=a+b+ci) and the MAJ generates the carry out 
(co=MAJ(a,b,ci)). 

 

Figure 14. STFB FA: (a) XOR and (b) majority gates. 

 

Figure 15. STFB FA acknowledgement circuit. 

In this structure, the carry evaluates as soon as 
enough inputs arrive to define the correct output value 
but the acknowledgement waits for both outputs to be 
generated which, because the sum is an XOR gate, 
implicitly means that all inputs have arrived. Note that 
the acknowledgement circuitry adds two gate delays to 
the cycle time but also loosens the timing margin 
between S- and resetting the inputs by two gates. 

The long nmos stacks in the sum and carry circuits 
can be reduced by one transistor by removing the 

transistors controlled by /As and /Ac and making As 
and Ac new inputs of their respective RCD NOR gates. 

5 STFB conditional stages 

This section covers a variety of stages in which input 
and/or output channels are conditionally read or written. 

5.1  Dual-rail STFB split 

The split operation consists of forwarding incoming 
tokens to one of two output channels based on the value 
of a control (C) channel. If the chosen output path is 
busy, the data must wait. Note that the micropipeline 
version of this block, which samples the control signal 
rather than consuming it, is called a select [12]. 

Figure 16 shows the 1-to-2 STFB split circuit and 
symbol. In this example, when C is low, L is directed to 
Ra and, when C is high, to Rb. Interestingly, the STFB 
split allows a token to be forwarded to one channel 
even if the other channel is busy, which increases the 
degree of parallelism. 

 

Figure 16. STFB split. 

5.2  Dual-rail STFB merge 

 

Figure 17. STFB Merge. 



The merge operation consists of choosing one of the 
incoming tokens based on the value of a control (C) 
input. If the output path is busy, the input and control 
must wait. After forwarding the data, the control token 
is also consumed. 

Figure 17 shows the 2-to-1 merge circuit and 
symbol. When C=0, La is directed to R and, when C=1, 
Lb is directed to R. 

6 Auxiliary stages 

This section covers bit generators used to generate a 
stream of tokens, bit buckets to consume unwanted 
tokens, converters between single-track and four-phase 
protocols, and staticizer/reset circuitry. 

6.1  Four-phase to STFB converters 

The “transmitter” circuit, illustrated in Figure 18, is 
our proposed interface between four-phase 
asynchronous logic and STFB. In this circuit, if Le is 
high and the right environment is ready, a data from the 
left environment will be transmitted and the signal Le 
will be set low. This also disables the buffer, avoiding 
re-transmitting the same data after the right 
environment consumes it. Le will remain low until both 
inputs return to zero (four-phase protocol). When this 
happens, Le is set high and the transmitter is ready for 
the next data. 

The “receiver” circuit, illustrated in Figure 19, is our 
proposed interface between STFB and four-phase 
asynchronous logic. In this circuit, if Re is high (the 
right environment is ready), a data from the left 
environment will be received and the buffer will wait 
for the signal Re to be set low. When Re goes low, a 
three gate-delay pulse is generated to consume the left 
environment data and the receiver is reset (R0 and R1 
goes low). While Re is low, R0 and R1 are reset and no 
new data is received (four-phase protocol). When Re 
returns to high, the receiver is ready for the next data. 

The cycle time of these converters is 9 transitions 
when connected to WCHB buffers. 

 

Figure 18. STFB Tx 

 

Figure 19. STFB Rx 

6.2  Staticizers and reset circuitry 

As shown in Figure 20, in order to preserve the state 
of the circuit during long periods of inactivity, weak 
PMOS transistors (M1 and M2) may be added to hold 
S0 and S1 high despite leakage currents. Moreover, 
staticizers (implemented with two inverters) may be 
placed at each output wire to mitigate both leakage 
current and cross-talk. Also, to further reduce crosstalk, 
the transistors M3 and M4 can be added to help hold 
one wire low while the other is driven high. 

 

Figure 20. STFB staticizer and reset circuitry. 

The reset procedure is simple: after power up, if any 
output wire remains high, the respective B signal will 
automatically disable the PMOS drivers. Then, 
lowering the /Reset signal will force the “A” signal 
high resetting all the wires. 

For simplicity, the reset input, the staticizers, M1, 
M2, M3 and M4 have typically not been illustrated but 
should be assumed present. 

6.3  Dual-rail STFB bit generators and buckets 

 

Figure 21. STFB bit generator (a) and bucket (b). 

A bit generator creates a data token every time the 
line is empty, while a bit bucket consumes unwanted 



tokens. Both are also useful in test circuitry. The 
proposed STFB bit generator and bit bucket are shown 
in Figure 21.  

7 Simulation results 

The MOSIS TSMC 0.25µm (Vdd = 2.5V and T = 
25°C) process parameters were used for the following 
hspice simulation results. 

The transistor sizing strategy we adopted to compare 
STFB, WCHB, and GasP buffers was very simple. The 
smallest widths were Wn = 0.6 µm and Wp = 1.4 µm 
for the NMOS and PMOS transistors respectively. The 
output (line-drivers) transistors where designed two 
times the smallest size. The width of each stacked 
transistor was the smallest size multiplied by the 
number of transistors in the stack. To operate properly, 
the PMOS of the GasP self-resetting NAND needed to 
be increased to Wp = 2.8 µm and the NOR used in the 
STFB buffer was implemented with Wn = 0.9 µm.  
Different transistor sizing may yield better 
performance, but a significant change in the relation 
between the three approaches is not expected. 

We simulated three different pipelines implemented 
with 10 buffer stages, a bit generator at the source, and 
a bit bucket at the sink, using dual-rail STFB and 
WCHB buffers and 1-bit GasP control. Table 1 
compares their throughput and latency per stage. The 
single-rail GasP does achieve the highest throughput 
but at the expense of significantly larger latency. 
Compared to WCHB, the proposed STFB achieves both 
faster latency and throughput. We also simulated the 
STFB pipeline where each stage was separated by 0.5 
mm length of wires. The pipeline worked correctly, 
demonstrating robustness to wire load, but at a reduced 
throughput of 1.1 GHz. 

Table 1. Buffers throughput and latency 

 
 

Non-linear STFB pipeline templates have similar 
cycle times. Unfortunately, we could not perform 
detailed hspice simulation comparisons of non-linear 
pipeline stages because GasP implementations for many 
of these stages were not presented in [7]. However, we 
believe we would see a similar throughput-latency 
tradeoff as seen in the buffers. In addition, since the 
fastest QDI templates for these non-linear structures are 
significantly slower than WCHB buffers, we expect the 
advantage of our non-linear templates over QDI is even 
more significant. 

8 Conclusions 

STFB templates were proposed for high-speed 
asynchronous non-linear pipeline design. The templates 
use 1-of-N data encoding rather than single-rail 
encoding to avoid the bundling constraint that is hard to 
design and verify. The templates have lower latency 
and 60% higher throughput than the fastest known QDI 
templates and have 58% lower latency than the most 
aggressive GasP templates. Consequently, for systems 
that are latency-critical, STFB templates may yield a 
significant performance advantage. Quantification of 
this advantage is part of our future work. We also plan 
to formally verify the presented timing constraints. 
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