

SINGLE-TRACK ASYNCHRONOUS PIPELINE TEMPLATE

by

Marcos Ferretti

A Dissertation Presented to the
FACULTY OF THE GRADUATE SCHOOL

UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfillment of the

Requirements for the Degree
DOCTOR OF PHILOSOPHY

(ELECTRICAL ENGINEERING)

August 2004

Copyright 2004 Marcos Ferretti

 ii

DEDICATION

To my wife.

 iii

ACKNOWLEDGMENTS

This work would not be possible without the vision and knowledge of my advisor,

Peter A. Beerel. His support and guidance were essential for the development of new

ideas. Also, he and his wife, Janet, were always available for help, creating a friendly

and productive environment.

I would like to thank my friends, from the USC Asynchronous CAD/VLSI Group,

for all these years of invaluable suggestions, comments and friendship: Sunan

Tugsinavisut, Recep O. Ozdag, Hoshik Kim, Sangyun Kim, Jay Moon, Shantanu

Awasthi and Pankaj Golani.

I am especially grateful to the USC professors, in particular, Massoud Pedram,

Won Namgoong, Roger Zimmermann and Kian Kaviani, and to the USC Electrical

Engineering staff, Tim Boston, Diane Demetras, Lisa I. Connell and Marylee

Reynolds, for their patience and crucial help. Also, I am grateful to all my UNICAMP

professors, including my former MS advisor, José Antonio Siqueira Dias, for all their

efforts to teach me the foundations of electrical engineering and their support for my

continuing studies at USC.

I would like to acknowledge the generous support from National Science

Foundation Grant CCR-0086036 and the gifts from TRW, Fulcrum Microsystems and

the MOSIS Educational Program.

Thanks are due to Helen Thompson, Sam Reynolds, Wes Hansford, and all the

MOSIS support people for the great cooperation and effort to meet our needs.

 iv

I also would like to thank Andrew Lines for his encouraging comments and

discussions, Mike Moacanin and Jeremy Boulton for helping with the temperature

measurements.

It is important to acknowledge Prof. Rogerio C. Leite, Sergio C. Leite, Ichiro

Aoki, Ricardo R. Maciel and Newton E. Fujii, whom I had the opportunity to work

with. They contributed to shape my views of business, politics and friendship. They

also encouraged me to pursue new knowledge and goals.

My deepest gratitude is reserved to my wife, Lilione, whose love, confidence and

understanding never failed to me. I could never have done this work without her.

Lastly, I would like to thank my parents, Raul and Aurora, and my siblings, Nair,

Santo e Geraldo, for supporting me throughout my life and for being there when I

needed them.

 v

Contents

Dedication...ii

Acknowledgments .. iii

List of Figures .. viii

List of Tables...xi

List of Tables...xi

Abstract ..xii

1 Introduction...1

1.1 Asynchronous Design...2

1.2 Test structures ..5

1.3 Design flow ..6

1.4 Contribution of this work ...8

1.5 Organization ..8

2 Background ...10

2.1 Asynchronous channels..10

2.2 QDI weak-condition half-buffer (WCHB) ..12

2.3 GasP bundled data...14

2.4 Fine-grain vs. two dimensional pipelining...15

3 Single-Track Full-Buffer circuits ..17

3.1 STFB buffers ..17

3.2 STFB forks and joins..22

3.2.1 Dual-rail STFB semi-weak-conditioned AND .. 23

3.2.2 Dual-rail STFB non weak-conditioned AND .. 24

3.2.3 Dual-rail STFB OR and STFB XORs ... 26

3.2.4 Dual-rail STFB non-conditional merge ... 27

 vi

3.2.5 Dual-rail STFB fork... 27

3.2.6 Dual-rail STFB full adder .. 28

3.3 STFB conditional stages.. 30

3.3.1 Dual-rail STFB split... 31

3.3.2 Dual-rail STFB merge ... 32

3.3.3 Dual-rail STFB one bit memory .. 33

3.4 Auxiliary stages ... 35

3.4.1 Four-phase to STFB converters ... 35

3.4.2 Dual-rail STFB bit generators and bit buckets... 37

3.4.3 Channel initializer.. 38

4 STFB Standard-Cell Design...40

4.1 Transistor sizing strategy .. 40

4.2 Balanced response... 41

4.3 Output sub-cell STFB_POUT.. 42

4.4 The RCD sizing.. 44

4.5 Input channel reset transistors .. 45

4.6 Direct-path current analysis ... 46

4.7 Reset tree ... 50

4.8 Noise margin ... 51

4.9 Static single-track protocol ... 56

4.10 Timing margin: The ten transitions STFB template .. 59

5 Throughput analysis and comparison...62

5.1 Introduction... 62

5.2 Pipeline optimization... 62

6 The evaluation and demonstration chip ...70

6.1 Introduction... 70

 vii

6.2 The Prefix adder ..70

6.3 The input circuitry..78

6.4 The output circuitry..80

6.5 The chip layout...82

6.6 Power Distribution and EM...83

6.7 Simulation results...84

6.8 Comparisons ..85

6.9 Demonstration chip implementation and test...86

6.10 Test results ...90

7 Conclusions..98

References...100

Appendix A: STFB Standard Cell Library...105

Appendix B: Demonstration chip schematics ...160

 viii

LIST OF FIGURES

Figure 1 – Synchronous blocks with clock (a) and asynchronous blocks (b).1

Figure 2 – Asynchronous circuit design flow under development.6

Figure 3 - Asynchronous channels. ...10

Figure 4 - Single-track protocol typical connection...12

Figure 5 - QDI WCHB buffer: (a) schematic and (b) symbol.13

Figure 6 - GasP diagram. ...14

Figure 7 - 1-of-N STFB buffer: (a) schematic and (d) block diagram.18

Figure 8 - Dual-rail STFB buffer...19

Figure 9 - Optimized dual-rail STFB buffer. ...19

Figure 10 - Optimized 1-of-4 STFB buffer. ..20

Figure 11 - STFB buffer: (a) HSE (handshaking expansion) and (b) STG (signal
transition graph). ..22

Figure 12 - SFTB semi-weak-conditioned AND: (a) schematic, (b) symbol, and (c)
block diagram..23

Figure 13 - Non weak-conditioned STFB AND: (a) schematic, (b) symbol, and (c)
block diagram..25

Figure 14 - STFB NCMerge: (a) schematic, (b) symbol, and (c) block diagram. .27

Figure 15 - STFB copy: (a) schematic, (b) symbol, and (c) block diagram.28

Figure 16 - STFB FA: (a) XOR and (b) majority gates...29

Figure 17 - STFB FA acknowledgement circuit...30

Figure 18 - STFB FA block diagram...30

Figure 19 - STFB split: (a) schematic, (b) symbol, and (c) block diagram............32

Figure 20 - STFB Merge: (a) schematic, (b) symbol, and (c) block diagram.33

 ix

Figure 21 - STFB 1-bit memory: (a) schematic, (b) symbol, and (c) block
diagram. ...34

Figure 22 - STFB Tx: (a) schematic, (b) symbol, and (c) block diagram36

Figure 23 - STFB Rx: (a) schematic, (b) symbol, and (c) block diagram.37

Figure 24 - STFB bit (a) generator and (b) bucket. ...38

Figure 25 - Channel initializer (a) schematic and (b) symbol.................................38

Figure 26. Sub-cell NAND2B_28_12: (a) symbol, (b) conventional diagram and
(c) implemented balanced input diagram. ..42

Figure 27. Sub-cell STFB_POUT (a) block diagram and (b) schematic................43

Figure 28. B and NR simultaneous activation. ...44

Figure 29. (a) conventional 2-input NOR, (b) balanced RCD and (c) staticizer
inverter...45

Figure 30. SCD and reset (a) initially proposed and the implemented (b) 1-of-2
and (c) 1-of-3..46

Figure 31. (a) inverter and (b) direct-path current. ..47

Figure 32. (a) STFB output/input drivers and (b) direct-path current if VA ≠≠≠≠ VSx.
...47

Figure 33. Peak direct-path current versus the PMOS-NMOS gate voltage
difference. ..48

Figure 34 – (a) Two consecutive STFB buffers at full-throughput with 1mm long
wire between them and (b) “Sx” (U1) and “A” (U2) signals (VDD = 2.5V). ...49

Figure 35 – Left side stage “Sx” (U0) and “A” (U1) signals with a very short wire
between U0 and U1 (VDD = 2.5V). ..49

Figure 36 - Right side stage “Sx” (U1) and “A” (U0) signals with a very short
wire between U1 and U2 (VDD = 2.5V). ...50

Figure 37. 1-of-N Static Single-Track asynchronous channel.57

Figure 38. Static Single-Track channel drivers implementation: (a) sender and
(b) receiver “drive-and-hold” circuits...58

Figure 39 - 10-transistions STFB signal transition graph (STG).60

 x

Figure 40 - 10-transitions STFB template. ...60

Figure 41 - Comparison of two 15-buffer pipelines: (top) throughput and
(bottom) Eττττ2 metric versus pipeline occupancy (x)..67

Figure 42. 8-bit asynchronous prefix adder. ..74

Figure 43. Pipeline stages utilized in the adder..74

Figure 44. 8-bit async. prefix adder optimized. ...75

Figure 45. (a) 64-bit STFB Prefix Adder schematic, (b) input and (c) output
details. ..77

Figure 46. INPUTGEN129BY9 block diagram..79

Figure 47. 9-stage ring utilized in the input circuitry..79

Figure 48. SAMPLER65BY1000, MUX 64 to 8 and single-rail converters block
diagram. ...81

Figure 49. The input, adder and sampler block layout with respective areas,
transistor counts and simulated current and throughput...............................83

Figure 50. Typical simulation output..84

Figure 51. ASYNC1b layout has 20.5 mm2 and 132 pins.87

Figure 52. ASYNC1b demonstration chip (die photo). ...88

Figure 53. Demonstration chip on the test board. ...89

Figure 54. Test chip and equipment setup..90

Figure 55. Chip#3 at 1.25GHz (2.5V on-chip, 2.26A, 40oC package, fan at 1.5”).91

Figure 56. Logic Analyzer capture wave form of the loading sequence.92

Figure 57. Logic Analyzer capture wave form of the running mode.93

Figure 58. Graphics of chip #3 measurements. ..95

Figure 59. Chip #4 (under -25oC air flow) compared with chip #3 results............96

 xi

LIST OF TABLES

Table 1 - Noise source analysis ..53

Table 2. Results ...85

Table 3. STFB, PCHB and CMOS comparison. ..85

Table 4. Example of loaded operands used for test: sequence 042-F0AF.94

Table 5. Sequence of output results from 042-F0AF test case (sample 1:3971). ...94

Table 6. Measurements of chip #3 with fan at 1.5" distance.95

 xii

ABSTRACT

This PhD dissertation presents the single-track full-buffer (STFB) templates for a

new fast family of fine-grain high-performance asynchronous pipeline building blocks

based on the single-track protocol. A demonstration design, implemented using our

STFB standard cell library designed for MOSIS TSMC 0.25 µm process, is presented

and analyzed. It includes a 64-bit prefix adder and achieves 1.45 GHz.

The STFB template does not require control wires outside of the datapath and the

data is 1-of-N encoded. With a forward latency of 2 transitions and a cycle time of

only 6 transitions for most of the configurations, the new family can run up to 2 GHz

using the MOSIS TSMC 0.25 µm process. This is significantly faster than all known

quasi-delay-insensitive (QDI) templates and has less timing assumptions than the

recently proposed ultra-high-speed GasP bundled-data circuits.

STFB functional blocks can offer three times higher throughput requiring half of

the area when compared with QDI circuits. In particular, they are advantageous when

the distance between two consecutive data tokens is small, as found in loops with

multiple tokens, shared resources or small loops with one token.

The template-based approach makes designing STFB blocks simple. Designing

complex pipelined circuits using STFB blocks can use the same flow and cad as any

channel-based asynchronous architecture. Physical design may in fact be easier than in

QDI-based circuits because there are fewer wires between blocks – i.e., there is no

acknowledgement wire. There is one constraint, however, in order to satisfy the timing

assumptions, the channel load needs to be bounded and, since the STFB channels are

 xiii

point-to-point connections (no fork in the wires), this bounding is achieved by simply

limiting the maximum wire length between STFB pipeline stages.

 1

1 INTRODUCTION

As CMOS manufacturing technology scales into deep and ultra-deep sub-micron

design, problems with process and within die variations, clock skew, clock

distribution, and on-chip communication in high-speed synchronous designs are

becoming increasingly difficult to overcome [12], warranting the exploration of

alternative design approaches. In particular, asynchronous design is emerging as an

increasingly viable alternative.

In synchronous design, the clock signal is used to synchronize the state update

across the system, while in asynchronous designs, there is no global synchronization

and all the blocks are data-driven as shown in Figure 1. The clock signal controls the

exact moment when the latches should sample the input data. In order to guarantee

that the data is stable when sampled, the clock period should account for the worst-

case delay including clock skew and all physical variations.

Figure 1 – Synchronous blocks with clock (a) and asynchronous blocks (b).

 2

1.1 Asynchronous Design

The performance of asynchronous circuits is not limited by any global signal and

the activity of each stage is data driven, which facilitates the following advantageous

characteristics:

1) No clock distribution and no clock skew. Clock skew is defined as the time

difference between the occurrence of the real clock edge and the desired clock

edge. This difference must be measured and minimized to ensure correct

operation and that performance does not significantly suffer. The problems of

clock distribution and clock skew minimization are becoming increasingly

significant as the technology scales, and within die variations increase, and as

more complex system-on-chip (SoC) designs with higher clock frequencies

are expected by the market place. The clock distribution network is also

responsible for a considerable amount of the consumed power, representing

20–50% of the total power on a chip [36][14] and efforts to reduce its

contribution to total power are on-going.

2) Low power consumption. Although asynchronous circuits in general have

more control overhead, blocks that have no data to process remain completely

inactive, providing the equivalent of perfect clock-gating [40]. In particular,

clock gating in synchronous circuits is an ad hoc method of obtaining the

same result and is manageable only at a coarse grain level [33]. Consequently,

many asynchronous chips have demonstrated significantly lower dynamic

power dissipation than their synchronous counterparts [40][20]. That said, it

 3

should be noted that the problem of increasing static power dissipation due to

higher leakage currents in state-of-the-art processes is a common problem to

both synchronous and asynchronous circuits and one for which there is active

research in both domains.

3) Average case performance. The data-driven nature of asynchronous circuits

implies that the performance is a function of the data being processed and can

be measured as an average over time. In fact, by optimizing for the common

case, some asynchronous circuit’s average performance can be dramatically

higher than its worst-case performance. There are two ways this average case

performance may take shape. First, the asynchronous architecture may be

designed to take advantage of the input statistics of the data, such as the

presence of small numbers. Secondly, the asynchronous physical design may

focus on critical cycles in the design and allow longer narrower wires between

less critical blocks. In contrast, the synchronous circuit’s clock frequency

must be adjusted to accommodate the worst-case computation [57][37].

Consequently, some asynchronous circuits have demonstrated significantly

better average case performance than the worst-case performance of their

synchronous counterparts [37].

4) Easing of global timing issues. Moreover, as the technology moves into deep

sub micron, wire delays will require several clock cycles to propagate

information across the chip and multiple clock domains may need to

communicate in a SoC design. Asynchronous interfaces can be used to shell

 4

encapsulate the synchronous blocks and all the communications can be done

using latency-insensitive asynchronous channels [7][8].

5) Automatic adaptation to physical properties. Synchronous designs have to

adjust their clock frequency to cover variations in fabrication process,

temperature and power supply. Asynchronous designs, on the other hand,

naturally adapt to this conditions and the speed variation in any path will not

affect the functionality of the system.

6) Improved EMI. In synchronous systems, most of the circuit activity occurs

around the clock edge, causing a concentration of energy in the clock

harmonics. In asynchronous, the activity is uncorrelated, which produces a

more distributed noise spectrum with lower peak noise [56]. This

characteristic may be very important for SoC and mixed-mode designs.

Among the numerous asynchronous design styles being developed, template-

based fine-grain pipelines have demonstrated very high performance

[26][47][34][42][43][44]. Template-based approaches have the advantage of removing

the need for generating, optimizing, and verifying specifications for complex

distributed controllers, which is both difficult and error-prone [57]. Various templates

tradeoff latency, cycle time, and robustness to timing. One of the most robust is the

quasi-delay-insensitive (QDI) template proposed by Lines [26]. One of the most

aggressive is the ultra-high-speed GasP [47]. GasP offers high throughput but requires

a bundled data design style that involves additional timing margins and assumptions

that must be verified during physical design and that introduces higher latency through

 5

the data path than even the QDI templates, possibly yielding lower system

performance.

The single-track full-buffer (STFB) templates presented here and in [18], use 1-

of-N data encoding and two-dimensional pipelining instead of single-rail encoding and

fine-grain pipelining used by GasP. They have two key advantages. First, they remove

the GasP bundling constraint, making them easier to design and verify. Second, they

reduce forward latency by 58% at the cost of a 26% slower cycle time compared to

GasP. The overall performance impact of this tradeoff depends on characteristics of

the system. In particular, if the system is latency-critical, where the performance is

determined by how fast an individual data token flows through the system, a STFB

system can be significantly faster than the comparable GasP system despite having

local cycle times that are somewhat larger.

1.2 Test structures

A test chip was designed to validate the design flow as well as the performance of

the STFB templates. The central block of the test chip is a 64-bit STFB prefix adder,

while the input and output circuitry were designed to feed the adder and sample the

results enabling the checking of its performance and correctness at full-throughput.

The input circuit allows loading 129 9-stage rings that are used to continuously

feed the adder with two 64-bit operands and one bit carry in. The 64-bit prefix adder

structure processes all the inputs simultaneously and generates the 64-bit sum and the

carry out with throughput of 1.4GHz. The output circuit is a programmable sampler

that forwards results to the pins at manageable rates without slowing down the adder.

 6

1.3 Design flow

The USC Asynchronous CAD and VLSI group and the Columbia Asynchronous

group are working together to define a complete asynchronous circuit design

methodology that will offer automated tools for design of both high-performance and

low-power asynchronous circuits. The diagram shown in Figure 2 shows the main

steps of the design flow. We will be able to start with a language based model, such

as CSP [30] and Verilog [10], as the input description of the desired top-level

functionality of the chip and may contain information about the constraints on power,

energy consumption, throughput, latency, chip area, etc.

Figure 2 – Asynchronous circuit design flow under development.

V

E

R

I

F

I

C

A

T

O

N

Language based input
description (CSP, Verilog, C)

Architectural design

Micro architectural design

Functional pipelining

Slack optimization

Handshake expansion
optimization

Gate level design

Placement and routing

Simulation

and

performance

analysis

Default
handshake
selection

 7

In this initial description, however, it is not necessary for the designer to inform

any detail regarding internal structure or the specific asynchronous protocols to be

used in the circuit under development. The next step, the basic architecture design,

identifies the number and relative characteristics of the basic blocks in the design

(register files, ALUs, multipliers, etc.). We plan to automate this step by adapting

variations in classical high-level synthesis, i.e., scheduling, resource sharing, and

binding. In the next step, the micro-architecture design, the designer can choose to

implement the architecture with various methods ranging from fine grain pipelines

template-based using delay insensitive cells or the STFB templates, presented in this

work, to components utilizing bounded delay assumptions with no fine grain

pipelining. Once defined the micro-architecture design style, various optimizations can

be applied, namely selection of the handshaking protocol, defining the level of

pipelining, and slack optimization for pipelined designs. With this micro-architecture,

the next step is to identify critical components and perform handshaking optimization

to achieve higher performance and lower power. Based on the final micro-architecture,

a gate or transistor level design can be generated. This can be done either

automatically, using new template-based synthesis techniques that our group is

creating, or manually. Finally, placement and routing can be applied basically the

same way as for synchronous circuit design. This step may require buffer insertion,

due to long wires, which would loop back to slack optimization step in an iterative

way.

At every step in the design process, verification and performance analysis tools

are used to verify the correct functionality and the overall performance. The focus this

 8

work is the generation of new templates for template-based design, as well as to help

develop the above CAD frame for the automated design of asynchronous systems.

1.4 Contribution of this work

Our main objective is to present our novel high-performance asynchronous

pipeline stages, the Single-Track Full Buffer (STFB) templates, which offers high

throughput requiring only 6 to 10 transitions per cycle. To accomplish this we

implemented:

1) A set of linear and non-linear STFB stages. These templates are freely

available through MOSIS Educational Program into a library of standard cells

with schematic, layout and symbol views, allowing their easy use (see

appendix A).

2) Implementation of a demonstration chip. A 64-bit prefix adder and its test

structures were designed and implemented, using the MOSIS TSMC 0.25 µm

technology, in order to demonstrate the advantage of the small cycle time and

modularity offered by the STFB templates as well the flexibility and easy of

use of conventional (synchronous) back-end design flow to implement a

STFB asynchronous design.

1.5 Organization

The remainder of this work is organized as follows. Section 2 provides relevant

background information. Sections 3 and 4 describe our proposed 1-of-N templates in

detail. Latency and throughput analysis of STFB buffers with QDI buffers are

 9

compared in Section 5. The demonstration test chip is presented on Section 6 followed

by conclusions drawn in Section 7.

 10

2 BACKGROUND

In the absence of the clock, providing global synchronization, masking logic

hazards, and signaling the end of each computation step, asynchronous circuits operate

using event-driven logic. In particular, asynchronous circuits are often decomposed

into processing blocks that communicate data (called tokens) through asynchronous

channels. This decomposition facilitates re-using asynchronous blocks and simplifies

the design of complex systems.

2.1 Asynchronous channels

An asynchronous channel is a bundle of wires and a protocol to communicate data

across the wires from a sender to a receiver. Figure 3 shows three different types of

channels.

Figure 3 - Asynchronous channels.

 11

The bundled-data channel has the advantage that the data is single-rail encoded

(the same used in synchronous design) but is dependent on the timing assumption that

the data is valid when the request signal is asserted. The request signal is typically

driven by a matched delay line that is larger than the sender’s computation delay plus

some margin.

Alternatively, in a 1-of-N channel, the token value is 1-of-N encoded, meaning

that N wires are used to transmit N possible data values by asserting exactly one wire

at a time. A blank or NULL data is encoded by de-asserting all wires. 1-of-2 (dual-

rail) and 1-of-4 encodings are the most common, and both effectively use two wires

per bit to encode the data.

In the 1-of-N channel, the receiver detects the presence of the token from the data

itself and, once it no longer needs the data, acknowledges the sender. In the typical

four-phase protocol, the sender then removes the data by resetting all wires and waits

for the acknowledgement to be de-asserted before sending another token.

In the 1-of-N single-track channel, the receiver detects the presence of the token

as in the 1-of-N channel but is also responsible for consuming it (by resetting all the

wires). The sender detects that the token was consumed before sending another token.

Berkel et al. [3] proposed single-track handshake circuits to control medium-grain

bundled-data pipelines. Sutherland et al. [47] later developed faster single-rail GasP

circuits to control fine-grain bundled-data pipelines. Nyström [34] recently also

proposed a dual-rail (1-of-2) single-track template based on self-resetting pulsed-logic

 12

circuits like GasP but which requires significantly more transistors and is significantly

slower than STFB.

Figure 4 illustrates a single-wire single-track channel. The sender waits for the

wire to be low (“ready”) before sending a request by driving the wire high (“busy”).

After the receiver detects the wire is high and consumes the data, it drives the wire

low.

Figure 4 - Single-track protocol typical connection.

Note that “transceivers” can also be implemented using the single-track wire to

transport data in both directions if, for every communication event, it is well defined

which block will send and which will receive [3]. Similarly, mutually exclusive

transmitters and receivers may be connected to the same wire [3]. These possibilities,

however, were not covered in our STFB template for the sake of modularity, reliability

and performance.

2.2 QDI weak-condition half-buffer (WCHB)

Figure 5 illustrates a well-known dual-rail buffer implementation called weak-

condition half-buffer (WCHB) in [26]. L and R identify the left and right

 13

environments, 0 and 1 identify the false and the true rails respectively, and “e”

identifies the enable signals (high means “ready” and low means “acknowledge”).

After reset, L0, L1, R0 and R1 are low while Le and Re are high. Data arrives by one

of the left inputs (Lx) rising. This will cause Sx to go low, which will drive the

corresponding output Rx high and the left enable Le low. The left environment then

will lower Lx while the right environment receives the data Rx and lowers Re. The

buffer then raises Le and lowers Rx. The cycle completes when the right environment

re-asserts Re. Note that for clarity reset circuitry and staticizers are not typically

shown. Note also that the generation and reset of the output token implies that the

corresponding input token has been consumed and reset, respectively, a property

called weak conditioned in [26] and weak indicatability in [33].

Figure 5 - QDI WCHB buffer: (a) schematic and (b) symbol.

We can derive an estimate of cycle time by counting the number of gate delays or

transitions in a cycle of operation. The WCHB buffer is faster than other QDI buffers,

having a forward latency (fw) of 2 transitions, a backward latency (bw) of 3 transitions

and cycle time of only 10 transitions. However, for more complex processing blocks

with many inputs, WCHB is not recommended because it generally requires too many

stacked PMOS transistors, making it slower than alternative templates.

 14

2.3 GasP bundled data

Figure 6 shows the GasP circuit where, after reset, L, R, and A are high. When L

is driven low by the left environment, the self-resetting NAND will fire, driving A

low. This will restore L, activate the data latches, and drive R low, propagating the

signal and avoiding re-evaluation until after R is restored high by the right

environment. The self-resetting NAND will restore itself by driving A high after 3

transitions. The output of the NAND controls the latches in a parallel single-rail

datapath.

Figure 6 - GasP diagram.

GasP circuits take 4 transitions to forward data and 2 transitions to reset, i.e., 2

transitions to move a “bubble” (or a “blank”) backwards. Of the 4 transitions forward

latency, approximately two transitions are required for latency through the latches and

satisfying setup/hold times leaving approximately two transitions for computation.

Note that the control circuit itself makes up the delay line and that it is the datapath

 15

designer’s responsibility to pipeline the datapath to match the control circuit delay

while satisfying all setup/hold times and time margin due to process variations.

2.4 Fine-grain vs. two dimensional pipelining

The QDI and GasP templates represent a fundamental dichotomy in pipelining

philosophy. The GasP design targets standard datapath widths of, for example, 32-bits.

In fact, GasP circuits can be viewed as a complex method of distributing a clock that

naturally facilitates gated clocking. Consequently, GasP bundled timing constraint

captures many of the same problems as clock distribution and clock skew since it has a

global timing assumption that all the 32-bits in the width of the data path will be valid

when the request arrives. The QDI templates, on the other hand, are generally applied

to small datapaths, say 4 bits, and wider datapaths are made up of a two-dimensional

array of communicating blocks [11][28][29]. The motivation of limiting individual

QDI templates such as the WCHB to small datapaths is to keep the completion-

sensing overhead to a minimum, thereby facilitating reasonable throughput while

preserving robustness to timing. For our circuits, as we will see below, it also implies

we must guarantee only local timing assumptions, which are easier to test and verify

than a wide data-path bundle data constrain.

 The completion of a wide datapath, if needed, can be pipelined across several

pipeline stages using a technique called pipelined completion sensing [11][28][29].

Similarly, the broadcasting of a control signal affecting the entire datapath can be

pipelined to avoid having a large completion tree for the acknowledgement signals. In

 16

this way, two-dimensional pipelines can have a cycle time that is independent of

datapath width.

Moreover, the WCHB, along with other QDI templates, generally have

significantly lower latency than their GasP template counterparts because they do not

suffer from the latch delay and setup/hold times. Replicating the control circuits for

each row (slice of bits) of the two-dimensional array, however, may result in increased

area and power.

 17

3 SINGLE-TRACK FULL-BUFFER CIRCUITS

3.1 STFB buffers

In asynchronous design, buffers are used to balance pipelines for performance-

driven slack matching [26] or simply storing data. Figure 7 illustrates our 1-of-N

STFB buffer template and its block diagram. When one of the n inputs (Lx) is driven

high by the left environment, the corresponding NAND gate will drive Sx low,

thereby driving both the corresponding Rx and “A” (the “Acknowledgement” signal)

high. “A” going high causes Lx to reset low, enabling the left environment to send a

new token. Meanwhile, Rx going high causes the “B” (“Busy”) signal to lower,

restoring Sx high and preventing the NANDs to re-fire even if a new token arrives.

The restoring of Sx, in turn, resets “A”. The cycle completes when the right

environment lowers Rx, resetting “B” low, and allowing a new data token to be

processed. Since distinct tokens can simultaneously be at the left and right

environments, the template is said to be a full buffer and have capacity (slack) of 1

token per buffer.

 18

(a)

(b)

Figure 7 - 1-of-N STFB buffer: (a) schematic and (d) block diagram.

As shown in the block diagram, the gate that drives “A” (Acknowledge) is called

SCD (State Completion Detector) because it detects that the internal state of the

template has captured the input token. The gate that drives “B” is called RCD (Right

Completion Detector) because it detects that the output token has been sent to the right

environment. The SCD is responsible for the reset of the input token and the RCD

enables the main block to operate when the output channel is clear. Note that the

 19

generation of the output token indicates [30][48] that the corresponding input token

was valid and consumed. However, the reset of output tokens is caused by the right

environment and does not indicate that the input tokens have reset. Consequently, we

call the STFB buffer, along with most STFB logic templates, semi-weak-conditioned.

As such, there is a timing assumption that the template must reset the input channel

before “A” is de-asserted.

Figure 8 shows, as an example, a dual-rail STFB buffer. Figure 9 shows an

optimized version in which the static NAND gates driving S0 and S1 are merged into

one dual-rail dynamic gate that is reset only by the “B” signal. Figure 10 shows a

similarly optimized 1-of-4 STFB buffer circuit and symbol.

Figure 8 - Dual-rail STFB buffer.

Figure 9 - Optimized dual-rail STFB buffer.

 20

Figure 10 - Optimized 1-of-4 STFB buffer.

STFB buffers have a cycle time of 6 transitions. This is 40% faster than WCHB

and the same as GasP. The latency is 2 transitions, which is the same as WCHB and

half that of GasP.

The STFB buffer, however, has higher complexity than both WCHB and GasP

buffers. Compared to WCHB buffer, including required staticizers and reset circuit

[26], the STFB buffer has 7 more transistors. This increased complexity, however, is

mitigated by the fact that the proposed STFB buffer is a full buffer (i.e., has slack of

1), while WCHB is a half buffer (slack of ½). Moreover, the STFB buffer does not

require the acknowledge wires (Le/Re), which may represent a significant saving in

area and routing effort, and allow the implementation of more complex functions,

 21

which would require to move to PCHB since WCHB is used only for buffers. In

addition, the power consumption per communication of STFB buffer is potentially

lower than WCHB buffer since each communication requires half the number of wire

transitions.

Compared to a GasP buffer with a standard 32-bit datapath, the area and power

consumption of a STFB pipeline may be higher because the two-dimensional STFB

pipeline will be made up of many buffers in parallel and each buffer will have its

control circuit overhead.

Figure 11 shows the handshaking expansion (HSE) equation and the signal

transition graph (STG) for the presented buffers. The notation “+”, “↑” and “-”, “↓”

represent the rising and falling of the signals respectively. The left and right

environments drive the dotted arrows and the dashed arrows represent timing

constraints. The arrows are annotated with delays in terms of transitions. The greater

than or equal sign (“ ”) reflects a timing assumption, which states that the separation

between identified events is at least the specified number of transitions.

STFB buffer ≡ ∗[[¬R∧L→R↑]; L↓]

(a)

(b)

 22

Figure 11 - STFB buffer: (a) HSE (handshaking expansion) and (b) STG (signal
transition graph).

As can be deduced from the STG, the STFB buffer has somewhat tight timing

constraints. In particular, the timing margin between the tri-stating of an output wire

(one transition after S+) and the earliest time the environment can reset the wire (R-)

is zero. Moreover, the timing margin between tri-stating of an input wire (two

transitions after S+) and the earliest time the left environment can drive the wire (L+)

is also zero. In particular, if these margins are violated, significant short circuit current

may occur during the transitioning of the line. In addition, it is assumed that three

transitions are sufficient to fully discharge/charge a line. To accommodate these

constrains, the channel load needs to be bounded. This is achieved by limiting the wire

length of the channels, which can be easily verified after the placement and routing

phase. Moreover, automated static timing analysis tools are under development to

further improve the design robustness and sign-off process. Unless otherwise noted,

these timing constraints apply to all subsequent examples.

3.2 STFB forks and joins

This section covers a variety of non-linear pipelines stages that involve multiple

input and/or multiple output channels and can perform more complex logic functions.

While we focus on two dual-rail (1-of-2) inputs/outputs, templates that handle more

channels and/or 1-of-N encoding are natural extensions.

 23

3.2.1 Dual-rail STFB semi-weak-conditioned AND

Figure 12 illustrates an STFB AND stage and its block diagram that performs c =

a*b, where a and b are dual-rail single-track inputs and c is the dual-rail single-track

output.

(c)

Figure 12 - SFTB semi-weak-conditioned AND: (a) schematic, (b) symbol, and (c)
block diagram.

All the inputs are “acknowledged” by the signal “A” as soon as S0 or S1 goes

low. For S1, this happens when a1 and b1 are high. For S0, a0 or b0 driven low is

sufficient to define the logic result, but the circuit explicitly waits for one of the three

input combinations 00, 01, and 10 to arrive before lowering S0. In this way, the

 24

evaluation of S0 also implies that both tokens (a and b) arrived, guaranteeing that the

acknowledgement does not precede the arrival of a late token, making this gate semi-

weak-conditioned.

3.2.2 Dual-rail STFB non weak-conditioned AND

Figure 13 shows a non weak-conditioned AND stage and its block diagram. This

circuit generates a zero result token as soon as one of the inputs is zero even if the

other input has not arrived. When all the inputs are finally present, however, the stage

sends an acknowledgement to all inputs.

 25

(c)

Figure 13 - Non weak-conditioned STFB AND: (a) schematic, (b) symbol, and (c)
block diagram.

To do this, while forwarding the early zero result, the gate’s SCD (State

Completion Detector) sets “A” high, which will disable the logic for future

evaluations by keeping “/A” low and will hold the information that an acknowledge is

pending. When the LCD (Left environment Completion Detector) detects that all input

tokens are present, the acknowledge signal is passed to the transistors that will

 26

“consume” the data at the inputs and “A” is reset to zero. This will restore “/A” high

and the gate will be ready to evaluate again. This LCD structure adds two transitions

to the cycle time but loosens the timing margin between S- and resetting the inputs

(corresponding to L- in Figure 11) by two gate delays.

Notice that for multiple inputs, this gate has a much simpler NMOS transistor

stack than the weak-conditioned STFB AND.

3.2.3 Dual-rail STFB OR and STFB XORs

By re-arranging the transistors in the evaluation stack (main block), different logic

functions may be implemented within the STFB template. A dual-rail STFB OR

performs the logic operation: c = a+b, where a and b are dual-rail single-track inputs

and c is the dual-rail single-track output. This function can be implemented either with

semi-weak-conditioned logic or with non-weak-conditioned logic simply by

rearranging the transistors in the NMOS stack of the AND circuits presented in

Section 3.2.1 and 3.2.2.

Similarly, the dual-rail STFB XOR performs the logic operation: c = a⊕b, where

a and b are dual-rail single-track inputs and c is the dual-rail single-track output. The

STFB XOR, however, must be semi-weak-conditioned, because, for any XOR gate, all

input token values must be known before the output value could be computed.

 27

3.2.4 Dual-rail STFB non-conditional merge

The non-conditional merge operation concatenates the incoming data from

different mutually exclusive input channels. Figure 14 shows a 2-to-1 non-conditional

merge circuit, symbol, and block diagram.

Figure 14 - STFB NCMerge: (a) schematic, (b) symbol, and (c) block diagram.

3.2.5 Dual-rail STFB fork

The fork operation consists of replicating the incoming data to several different

paths if all output paths are ready. Otherwise, the input data must wait.

Figure 15 shows the 1-to-2 fork stage. Notice that the four-input NOR gate (with

a stack of four PMOS transistors) driving B slows down the STFB fork performance.

To speed-up the B signal, however, we can use 2 two-input NOR gates to generate Ba

 28

and Bb, and replace the B NMOS transistors with stacked Ba and Bb NMOS

transistors (similar to what is shown in Figure 10).

(c)

Figure 15 - STFB copy: (a) schematic, (b) symbol, and (c) block diagram.

3.2.6 Dual-rail STFB full adder

This is an example of STFB computational stage. To implement a full adder

(STFB FA) we need to compute the sum and the carry out before resetting the inputs.

As illustrated in Figure 16 and Figure 17, this can be done with a three-input XOR and

a three input majority (MAJ) gate. The XOR generates the sum (s=a+b+ci) and the

 29

MAJ generates the carry out (co=MAJ(a,b,ci)). Figure 18 shows the block diagram of

the STFB FA.

In this structure, the carry evaluates as soon as enough inputs arrive to define the

correct output value but the acknowledgement waits for both outputs to be generated

which, because the sum is an XOR gate, implicitly means that all inputs have arrived.

Note that the acknowledgement circuitry adds two gate delays to the cycle time but

also loosens the timing margin between S- and resetting the inputs by two gates.

Figure 16 - STFB FA: (a) XOR and (b) majority gates.

The long nmos stacks in the sum and carry circuits can be reduced by one

transistor by removing the transistors controlled by /As and /Ac and making As and

Ac new inputs of their respective RCD NOR gates.

 30

Figure 17 - STFB FA acknowledgement circuit.

Figure 18 - STFB FA block diagram.

3.3 STFB conditional stages

This Section covers a variety of stages in which input and/or output channels are

conditionally read or written.

 31

3.3.1 Dual-rail STFB split

The split operation consists of forwarding incoming tokens to one of two output

channels based on the value of a control (C) channel. If the chosen output path is busy,

the data must wait. Note that the micropipeline version of this block, which samples

the control signal rather than consuming it, is called a select [46].

Figure 19 shows the 1-to-2 STFB split circuit, symbol, and block diagram. In this

example, when C is low (C0 = 1), L is directed to Ra and, when C is high (C1 = 1), to

Rb. Interestingly, the STFB split allows a token to be forwarded to one channel even if

the other channel is busy (each output has its own RCD), which increases the degree

of parallelism.

 32

(c)

Figure 19 - STFB split: (a) schematic, (b) symbol, and (c) block diagram.

3.3.2 Dual-rail STFB merge

The merge operation consists of choosing one of the incoming tokens based on

the value of a control (C) input. If the output path is busy, the input and control tokens

must wait. After forwarding the data, the control token is also consumed.

 33

(c)

Figure 20 - STFB Merge: (a) schematic, (b) symbol, and (c) block diagram.

Figure 20 shows the 2-to-1 merge circuit, symbol, and block diagram. When C is

low (C0 = 1), La is directed to R and, when C is high (C1 = 1), Lb is directed to R.

3.3.3 Dual-rail STFB one bit memory

Figure 21 shows a STFB one-bit memory stage. The circuit of has a static

memory unit (two inverters), an input (L), an output (R), and a control channel (C). If

 34

the control input is low (C0=1), the memory content is transferred to the output (R)

and C0 is consumed. If the control input is high (C1=1), the memory is written with

the L input value and both, C1 and L, are consumed.

Figure 21 - STFB 1-bit memory: (a) schematic, (b) symbol, and (c) block diagram.

Notice that the control signal flows only trough the channel C, which guarantees

the read and write operations are executed in the requested order. Also, there is a

timing assumption that the 3 transitions of the write operation are long enough to set

the memory value.

(c)

 35

3.4 Auxiliary stages

This Section covers bit generators used to generate a stream of tokens, bit buckets

to consume unwanted tokens, converters between single-track and four-phase

protocols, and staticizer/reset circuitry.

3.4.1 Four-phase to STFB converters

The “transmitter” circuit, illustrated in Figure 22, is our proposed interface

between four-phase asynchronous logic and STFB. In this circuit, if Le is high and the

right environment is ready, a data arriving from the left environment will be

transmitted to the right environment and the signal Le will be set low. This also

disables the buffer, avoiding re-transmitting the same data after the right environment

consumes it. Le will remain low until both inputs return to zero (four-phase protocol).

When this happens, Le is set high and the transmitter is ready for the next data.

 36

(c)

Figure 22 - STFB Tx: (a) schematic, (b) symbol, and (c) block diagram

The “receiver” circuit, illustrated in Figure 23, is our proposed interface between

STFB and four-phase asynchronous logic. In this circuit, if Re is high (the right

environment is ready), a data from the left environment will be received and the buffer

will wait for the signal Re to be set low. When Re goes low, a three gate-delay pulse is

generated to consume the left environment data and the receiver is reset (R0 and R1

 37

goes low). While Re is low, R0 and R1 are reset and no new data is received (four-

phase protocol). When Re returns to high, the receiver is ready for the next data.

(c)

Figure 23 - STFB Rx: (a) schematic, (b) symbol, and (c) block diagram.

The cycle time of these converters is 10 transitions when connected to WCHB

buffers, which matches the WCHB buffer cycle time.

3.4.2 Dual-rail STFB bit generators and bit buckets

A bit generator creates a data token every time the line is empty, while a bit

bucket consumes unwanted tokens. Both are also useful in test circuitry. The proposed

STFB bit generator and bit bucket are shown in Figure 24.

 38

Figure 24 - STFB bit (a) generator and (b) bucket.

3.4.3 Channel initializer

Some circuits, such as loops, may require some form of initialization that cannot

be done by a bit generator since it is required just once. One approach is to modify the

pipeline stage that needs to be initialized and, instead of simply reset the input wires

during the reset phase, place a valid token at its input. This requires a new design and

layout of that stage. Another approach is to use an external drive circuit to pull a wire

up during a short 3 transitions to “inject” a token in the line after the /Reset signal is

deasserted (rise edge of the /Reset signal). Figure 25 shows our channel initializer

circuit and symbol. It is an edge to pulse converter with open-drain PMOS driver. The

value i represents the injected value in the channel after reset.

Figure 25 - Channel initializer (a) schematic and (b) symbol.

Since the STFB stages are very fast, we must take care not to use the channel

initializer in two consecutive channels to avoid one token overrunning the other.

Rather, for neighboring channels that require initialization, we propose to use

modified stages.

 39

Another approach is to add a non-conditional merge stage in the pipeline, by

replacing a buffer for example, with one input connected to the pipeline and use to

other input to insert the initialization tokens we want. This method was used in our

demonstration design as described below.

 40

4 STFB STANDARD-CELL DESIGN

In this chapter we present a number of implementation issues of the STFB

standard-cell design. Due to the timing assumptions in the STFB template, the

transistor level design of each cell and sub-cell was done manually and checked

through extensive SPICE simulation as described below.

4.1 Transistor sizing strategy

An important characteristic of the STFB architecture is that all the channels are

point-to-point channels. This means that there are no forked wires and the channel

load is a function of the wire length and the next stage input capacitance.

Consequently, since the fanout is always one, the variance on output load is even more

dominated by the variation in the wire-lengths than is typical in synchronous designs.

Therefore, our initial version of the library introduced here adopts a single-size

strategy for each STFB function. The chosen size is reasonable to safely drive, with

adequate performance, a buffer load through up to a 1 mm long wire with 0.4 µm

width and 0.5 µm spacing. This implies that we can place and route a block as big as

0.5x0.5 mm with essentially no special routing constraints. Larger blocks can also be

implemented as long as the wires are constrained to be smaller than this limit. Longer

wires would result in poor transition times that could compromise timing assumptions

and thus functionality. In the future, special CAD tools to automatically add STFB

pipelined buffers within the P&R flow could also accommodate longer connections.

 41

Although the TSMC 0.25 µm process allows somewhat smaller transistors, we

choose, as our minimum NMOS transistor width 0.6 µm and minimum PMOS

transistor 1.4 µm. Also, we assumed, as a basis for the STFB cells creation, that the

strength of the main N-stack should be, at least, twice of the minimum size NMOS.

This means that the width of each NMOS transistor in the N-stack should be k*1.2

µm, where k is the number of transistors in the path to drive the state to ground. For

example: for a 2 transistors path, the width of each N-stack transistor should be at least

2.4 µm.

We use, for sizing, a known practical rule that one inverter can drive efficiently

four to five times its own input load. By hand calculation we determined that, because

the main N-stack has twice the strength of a minimum size inverter, it can safely drive

a capacitance load equivalent to 20 µm of “gate width”, which is sufficient to drive the

output transistor and the SCD as shown in Figure 9.

4.2 Balanced response

Symmetrized transistor stacks are utilized to perform the SCD and RCD functions

inside the cell. Figure 26 shows a 2-input NAND gate where the NMOS transistor

stack of the conventional diagram is cut in the middle and symmetrized to allow the

same time response for both inputs. This approach minimizes the data influence in the

cell timing behavior.

 42

Figure 26. Sub-cell NAND2B_28_12: (a) symbol, (b) conventional diagram and (c)
implemented balanced input diagram.

4.3 Output sub-cell STFB_POUT

 The output driver sub-cell STFB_POUT is utilized in all STFB cells. It includes

the staticizer structure and three PMOS transistors utilized to restore the state input

(“S”) high as illustrated in Figure 27. If the output channel is empty, the “B” signal is

high, “R” is low, and “NR” is high. At the same time, M2 and M3 hold “R” low.

When “S” is driven low, the output driver PMOS transistor M1 drives the output “R”

high, which makes the minimum size inverter drive “NR” low, deactivating M3 and

activating M4 and M5. The RCD (not shown) will also make the “B” signal fall,

activating M6. M4 will hold the line high while M5 and M6 drive “S” back high,

turning off M1.

M6 and M7 are responsible to fight leakage and charge-sharing. When the output

channel is empty, all output rails are low, “B” is high, and thus M7 alone is active. On

the other hand, when one output rail is high, “B” is low, and M6 fights leakage and

holds “S” high. For this output rail that is high, M6 and M5 are active, while for all

other output rails, M6 and M7 transistors are active. M7 can be much smaller than M6

because while “B” is high, the risk of charge-sharing problems is dramatically reduced

 43

as the internal node C at the bottom of the N-stack is actively driven low and thus its

capacitance cannot contribute to charge-sharing.

Compared to the original template [18], this template also improves robustness to

charge sharing in the N-stack because this output sub-cell now has a lower switching

threshold voltage of the “S” signal. In the initial template, M1 was driving the line

without M2 and M3, which made the activation threshold of the “S” signal

approximately 0.5V (i.e., Vtp) below the power supply voltage (VDD). By adding M2

and M3, the activation threshold of “S” is much lower (around 60% of VDD).

The introduction of M5 also yields a significant performance improvement

allowing longer maximum wire length when compared with the initially proposed

template [18]. In particular, M5, controlled by the staticizer inverter (“NR” signal),

quickly asserts “S” after its output rail is driven high. This enables M6 to be smaller,

thereby reducing the load on the “B” signal enabling a faster cycle-time.

Figure 27. Sub-cell STFB_POUT (a) block diagram and (b) schematic.

 44

4.4 The RCD sizing

The NOR gate in the STFB template (RCD) is also implemented as a

symmetrized gate and it is responsible to drive the “B” signal low no later than the

signal “NR” goes low in order to disable the N-stack and restore the signal “S”, as

shown in Figure 28. This is an internal timing constraint that needs to be met to avoid

the short-circuit current that would be caused by attempting to restore “S” while the

N-stack is still enabled.

Figure 28. B and NR simultaneous activation.

This timing assumption is satisfied by reducing the load connected to the RCD

output (WM6 = 0.6 µm, which is good enough to fight N-stack charge sharing) and by

transistor sizing as shown in Figure 29, where the NMOS transistors of the balanced

RCD are 1.2 µm wide, while, for a regular minimum sized NOR gate, we would use

0.6 µm.

 45

Figure 29. (a) conventional 2-input NOR, (b) balanced RCD and (c) staticizer inverter.

4.5 Input channel reset transistors

In the STFB template, the input token is consumed by driving the input channel

wires low. It is done when the signal “A”, generated by the SCD block, activates a set

of 5 µm wide NMOS transistors connected to each input wire. Also, to initially reset

the entire circuitry, a global “/Reset” (active low reset) signal is used to force all

channels low. Initially this signal was simply added as one input to the SCD block

[18]. However, a 3-input NAND gate is much less efficient than a 2-input one. Figure

30.a shows the initially proposed 3-input SCD, where a 3-input NAND gate controls

the reset transistors. Figure 30.b and c show the implemented reset structure, which

uses 2-input NAND gates, allowing a smaller load on the states (“S0”, “S1”, “S2”) and

offering a better performance of the SCD for dual-rail and 1-of-3 channels. Notice that

the added transistors share the same drain connections, which results in a marginal

increase in area and input capacitance for the STFB stage.

 46

Figure 30. SCD and reset (a) initially proposed and the implemented (b) 1-of-2 and (c)
1-of-3.

4.6 Direct-path current analysis

A perceived problem with STFB designs is the amount of direct-path current, also

known as short-circuit current, caused by violations of the timing constraint associated

with tri-stating a wire before the preceding/succeeding stage drives it. This section

analyzes this constraint in detail.

Figure 31 shows a conventional CMOS driver where both the PMOS and the

NMOS transistor gates are connected together implementing an inverter. This means

that during the rise (tr) and fall (tf) time of the input voltage (Vin) both transistors will

be briefly active, allowing a direct-path current from VDD to ground. Since this current

has an approximate triangular shape, we can estimate the direct-path current as Idp =

Ipeak/2 [39].

 47

Figure 31. (a) inverter and (b) direct-path current.

For our STFB pipeline stages, the NMOS transistor gate is connect to signal “A”,

and the PMOS transistor gate is connected to “Sx” (one of the “states”). Figure 32

shows this implementation and the direct-path current if VA happens earlier than VSx. If

the voltage difference (Vdiff = VA - VSx) is zero, the STFB stage Idp is similar to a

conventional inverter. However, if one of the voltage transitions occurs ahead of the

other, i.e., Vdiff is different than zero, we may observe a higher peak current during one

transition and a smaller peak current during the next transition, or vice-versa.

Figure 32. (a) STFB output/input drivers and (b) direct-path current if VA ≠ VSx.

Figure 33 shows the peak direct-path current versus the PMOS-NMOS gate

voltage difference during an input rise/fall edge (Vdiff = VA - VSx). These values were

obtained through DC Hspice simulation analysis using typical parameters with double

than our minimum-sized transistors. Notice that, assuming that VA and VSx have the

same shape (both have the same width, rise and fall times), the average peak current is

 48

not significantly different than the inverter peak current for Vdiff < 1 V. This means that

a considerable difference between VA and VSx can be tolerated without a significant

jump in power supply consumption.

SPICE simulation also showed that the direct-path current of the STFB templates

is no worse than an inverter driving the line, and the timing assumption associated

with tri-stating one stage before the other drives the line is not a hard constraint. For

our STFB pipeline stages, the time difference between VA and VSx is bounded by the

wire-length constraint to ensure correct operation.

Figure 33. Peak direct-path current versus the PMOS-NMOS gate voltage difference.

Therefore, since we can size the drivers of VA and VSx, we may avoid most of the

Idp even using our six-transitions STFB template. This careful sizing allows the state

signal “Sx” of one stage not to overlap the acknowledge signal “A”. This can be

illustrated by a simulation of four STFB buffer (U0, U1, U2 and U3), where between

U1 and U2 there is a 1 mm long wire and between U0 and U1, and U2 and U3, there is

a very short wire as on Figure 34, Figure 35 and Figure 36.

 49

Figure 34 – (a) Two consecutive STFB buffers at full-throughput with 1mm long wire
between them and (b) “Sx” (U1) and “A” (U2) signals (VDD = 2.5V).

Figure 35 – Left side stage “Sx” (U0) and “A” (U1) signals with a very short wire
between U0 and U1 (VDD = 2.5V).

L

Sx

RCD

A

L

Sx

RCD

A

1 mm
U1 U2

(a)

Sx

A

(b)

Sx

A

 50

Figure 36 - Right side stage “Sx” (U1) and “A” (U0) signals with a very short wire
between U1 and U2 (VDD = 2.5V).

4.7 Reset tree

As the circuits grow in complexity and number of stages, special care needs to be

taken with the /Reset signal to avoid the destruction of any token that reaches a stage

that is still being reset (reset skew). Also, the /Reset rising edge needs to be fast to

guarantee that all the stages connected to that Reset line are operational when the

process starts. One option is connect all the stages /Reset wires to a big driver that

would reset all stages effectively simultaneously. Another alternative (less brute-force)

is to create a balanced reset tree of inverters where, at the leafs of the tree would be

connected to all the bit generators, channel initializers, STFB Tx (see Section 3.4.1)

and initialized stages and passive stages would be connected to leafs that have two or

more fewer inverters from the root. This allows the passive stages to come out of reset

at least two or more transitions earlier than their active counterparts, providing a reset

margin ensuring the passive stages are ready to accept tokens from their active

counterparts.

Sx

A

 51

4.8 Noise margin

As for any family of digital circuits, we need to consider the STFB templates

reliability to noise. We use the worst-case analytical analysis described in [12], and

applied in [58] and [15], with the intended process (TSMC 0.25µm) parameters, where

the minimum transistor size used in our circuits are: Wn = 0.6 µm and Wp = 1.4 µm

for the minimum width of the NMOS and PMOS transistors respectively. For this

analysis, we are using the transistor sizing strategy described on Section 4.1.

Figure 27 shows the STFB output stage where the state signal “S” is hold high by

the transistor M7. This means that the NMOS transistor stack has to over-power the

state pull-up transistors M7 in order to lower the respective state “S”. Therefore, a

high level input signal (VIH) needs to be higher than 0.75V, which is bigger than just

the NMOS threshold voltage (Vtn = 0.53V). If M7 were stronger, VIH would be higher

(close to half of the power supply voltage: VDD / 2). However, this would also slow

down the circuit and increase the direct-path current for every operation.

Noise can cause a signal VS, the ideal correct input value, to be perceived by the

receiver circuit as VR = VS + VN, where VN is additive noise. If VS = 0 V, the worst-

case noise must be smaller than VIH (0.75V). For VS = VDD , the worst case noise must

be smaller than half VDD to avoid change the “state” of the staticizer holding the line.

To be reliable we need to have a signal-to-noise ratio (SNR) bigger than one for both

cases as shown in equations (1) and (2).

N

IH
L V

VSNR = (1)

 52

N

DD
H V

VSNR .
2
1= (2)

A good part of the system-created noise is proportional to the signal amplitude

swing, which means that increasing VDD will not improve the SNR. Therefore, we will

analyze the noise as shown in equation (3).

NIDDNN VVKV += . (3)

where, KN.VDD represents the noise sources that are proportional to VDD (2.5V) such

as cross talk and signal-induced power supply noise, and VNI represents the noise

sources that are independent of the signal amplitude such as receiver offsets and

unrelated power supply noise.

 53

Table 1 - Noise source analysis

Parameter Definition Value

KC
Cross talk coupling coefficient for two 100 µm long 0.4

µm wide metal 4 wire with 0.5 µm spacing
0.1

AttnCP PMOS staticizer cross talk noise attenuation. 0.97

AttnCN NMOS staticizer cross talk noise attenuation. 0.88

KPS Power supply noise due to signal switching. 5% [58]

KNP Worst case: KNP = AttnCP.KC + KPS 0.147

KNN Worst case: KNN = AttnCN.KC + KPS 0.138

Rx_O Next stage input offset 0.1 V

Rx_S Next stage sensitivity 0

PS Power supply noise (5% [58] of 2.5V) 0.125 V

AttnPS Power supply noise attenuation 1

Tx_O Output offset 0

VNI Worst case: VNI = Rx_O + Rx_S + AttnPS.PS + Tx_O 0.23 V

VNP Worst case noise: VNP = KNP.VDD + VNI 0.60 V

VNN Worst case noise: VNN = KNN.VDD + VNI 0.58 V

SNRH Worst case SNRH = 1.25 /VNN 2.2

SNRL Worst case SNRL = 0.75 /VNP 1.3

 54

Table 1, shows the parameters used in our analysis. The meaning of each parameter is

detailed below:

KC : The cross talk coupling coefficient KC is estimated by the equation below:

CO

C
C CC

CK
+

=
(4)

where, CC is the parasitic coupling capacitance between the “aggressor” and the

“victim” wires, and CO is the capacitance between the “victim” wire and the substrate

including the input and output capacitance of the stages connected by this wire. For a

100 µm long, with spacing of 0.5 µm, and 0.4 µm wide wire implemented using metal

4 with in the TSMC 0.25 µm process, and connecting the output of an STFB buffer to

an input of another STFB buffer, we have, approximately, the wire to substrate

capacitance CW = 2.5 fF, the STFB buffer output capacitance (including staticizer) Cout

= 37.7 fF, and the STFB buffer input capacitance Cin = 17.4 fF. Therefore, we

estimate: CO = CW + Cin + Cout = 2.5 + 37.7 + 17.4 = 57.6 fF. Since the capacitance

between two metal 2 wires, for a wire spacing of 0.5 µm, is 6.45x10-2 fF/µm, we

estimate CC = 6.45 fF, resulting KC = 0.1.

AttnC: The static driver cross talk noise attenuation AttnC should be near half if the

line were continuously driven. However, STFB stages actively drive the line high

during 3 transitions, and low during 3 transitions. This means that, unless the pipeline

is running at full throughput (6 transitions per token), the output staticizers are holding

the line when it is not being actively driven. To compute a worst-case scenario, we

considered the victim line hold by the staticizer, while the aggressor is actively driven.

 55

We can compute AttnCN = Rsn/(Rsn + Rdp) and AttnCP = Rsp/(Rsp + Rdn), where Rs is

the staticizer impedance and Rd is the driver impedance. For the STFB buffer we have

Rsn = 6.9 Ω, Rdn = 0.82 Ω, Rsp = 24.2 Ω and Rdp = 0.94 Ω, resulting AttnCN = 0.88

and AttnCP = 0.97, which means almost no attenuation. In other words, the current

staticizers are very weak and make little difference with respect to the noise.

KPS : The power supply noise due to signal switching KPS is assumed to be 5% as

in [58].

Rx_O: The next stage input offset Rx_O is the difference between the nominal VIH

and the minimum VIH expected (reducing VIH reduces our noise margin), estimated to

be < 0.1V.

Rx_S: The next stage sensitivity Rx_S represents the extra voltage range required

over VIH in order to properly activate the next stage. This, in fact, would improve our

noise margin since it would require a final VIH closer to VDD/2. Also, in our STFB

stage, once the driven state (S0 or S1) is low enough to activate the PMOS driver, the

stack pull-up became weaker and the switching point is very abrupt due to the positive

feedback. Therefore we selected 0V, meaning that the stage will react immediately

once VIH is reached.

PS: The power supply noise unrelated to signal switching PS is assumed to be 5%

as in [58].

AttnPS: The power supply noise attenuation AttnPS is 1, meaning: no attenuation

(worst-case) assuming VIH is independent of the power supply.

 56

Tx_O: The output sensitivity Tx_O represents variation in the output voltage,

which is 0V for full-swing (rail-to-rail) circuits.

The final SNRL is 1.3 for the two 100 µm parallel lines. For 300 µm lines, the

SNRL would be approximately equal to one, the safe limit for the worst-case SNR.

Although this analysis is very conservative, based on it, we dedicated extra care in the

layout and post-layout verification to avoid malfunctions due to noise issues.

However, this analysis is limited to 0.25 µm or bigger technologies since it does

not take into account the line resistance effect, which is very important for deep sub-

micron processes. For these processes, a more robust single track protocol is needed,

and we propose the static single-track (SST) protocol as described below.

4.9 Static single-track protocol

For deeper sub-micron technologies, the impact of increased wire resistance must

be addressed. In particular, dynamic long-distance wires are very dangerous because

staticizers are generally too weak to combat coupling noise in the presence of highly

resistive wires. Naive solutions include shielding the at-risk wires, increasing the size

of staticizers, and/or increased the spacing between wires, all of which have

substantial costs in area, power, and/or performance. This section introduces a novel

Static Single-Track (SST) protocol that addresses these issues by continuously driving

the wire at only a marginal cost in area, power, and performance.

 57

Figure 37. 1-of-N Static Single-Track asynchronous channel.

Figure 37 shows the 1-of-N SST channel block diagram. This new asynchronous

communication protocol can be described by two main operations modes that each

communication block has during the hand shaking through the single-track: the drive

and the hold modes (indicated by the half arrow head and the dot, respectively). For

the SST protocol, each communication stage has the ability to change a wire logic

level by strongly driving it towards the one logic level during a bounded time interval,

and the same block is responsible to strongly hold the same wire, as long as necessary,

if the wire reaches the opposite logic level. Therefore, although it is a single-track

channel, there is no use of weak staticizers to hold the logic level in the wires,

whatever is the wire logic level, inclusive during transitions, there is always a strong

drive path as if it were statically driven, and there is no fight between the drive and the

hold phases. Initially, we called SST the “no fight” protocol [17]. Moreover, for high-

resistive wires, this protocol may improve performance by seamlessly allowing the

single-track wire to be strongly driven on both ends towards the same direction as

explained below.

Sender Receiver 1-of-N

SST channel

 58

Figure 38. Static Single-Track channel drivers implementation: (a) sender and (b)

receiver “drive-and-hold” circuits.

One proposed implementation of SST line driver is shown in Figure 38. The

active drivers are M1 and M10. The additional transistors M2 and M11 ensure that

there is no fight during transitions of the wire, allowing M3 and M12 to be as large as

desired to combat coupling noise. Therefore, each side of the wire has complementary

“drive-and-hold” circuits.

 In particular, let us explain how M3 and M12 act to continuously drive the

channel wire. Consider first the case in which the sender side “S” is high and “A” is

low. In this case, the line can be low (for example after reset) or high (a token is

stalled on the channel). While it is low, M2 and M3 strongly keep the line low,

whereas when the line is high, M11 and M12 strongly keep the line high. Conversely,

when the sender side “S” is low and “A” is low, M1 actively drives the wire high.

Lastly, when “A” is high M10 actively drives the wire low. Thus, in all cases, there is

a strong path from the wire to a power supply.

The ability to drive the wire continuously is counter-intuitive to the single-track

protocol in which both the sender and receiver go tri-state after sending/receiving a

 59

token. The key leap is to realize that the sender/receiver can also be responsible for

actively driving the line before sending/receiving the token, and this is the great

accomplishment of the SST protocol. It may also be instructive to view this novel

driver as a combinational staticizer of a dynamic inverter in which the feedback

inverter is duplicated and the N and P portions are split between sender and receiver

sides.

For deep-sub-micron high-resistive wires, the SST protocol may improve the

driving characteristics of long wires because, once a transition is detected, the “hold”

side is activated, helping to fully drive the wire. This unique characteristic may

significantly contribute to overcome long wires impedance and noise related issues.

Lastly, it should be emphasized that the SST protocol is not specific to STFB

circuits, but can also be applied to other single-track circuits, including GasP [47] and

ASTPL [34].

4.10 Timing margin: The ten transitions STFB template

Figure 40 shows an alternative 10 transitions STFB template, and Figure 39 its

STG. This template offers a self-reset 3-transitions active output (S- to S+ period),

which is independent of the output wire load, one transition of margin for R+ to hold

S+, and two transitions of margin between the drive/reset phase of the output/input

single-track wires.

 60

Figure 39 - 10-transistions STFB signal transition graph (STG).

Figure 40 - 10-transitions STFB template.

As we can see, in the 10-transitions STFB template, two more gates (2 transitions)

are added in the A and B signal paths, and the signal A is used to “self-reset” the states

S0 and S1 by lowering B. Once the output has a token, the B signal is hold low even

after A is restored low. These extra transitions increase the template cycle time to 10

transitions, while the active and reset phase are still 3 transitions long, which results in

2 transitions (2 gate-delay) margin on each side of the template drive (input/output).

The price for these margins is a slightly more complex circuit, which may not be

much difference for complex stages, for instance, the full-adder (Figure 16 and Figure

 61

17), which already has 8-transitions, and a 67% slower cycle time, when compared

with the 6-transitions template. However, for latency critical systems (“token-limited”

as shown on Figure 35) the 10-transitions STFB template offers the same performance

as the 6-transitions one. Moreover, 10-transitions STFB is still much better than most

of the QDI templates [26], which would require 14 to 18 transitions per cycle, and it

can be used in conjunction to the 6-transitions templates since the active and reset

phase has the same duration (3 transitions) on both templates.

For complex stages with many inputs and outputs, for 1-of-4 stages for example,

the 10-transistions template may have some of the added inverters in the SCD and

RCD changed to NAND/NOR gates allowing easy handling of multiple tracks. For

example, a 10-transistion 1-of-4 STFB stage could have two 2-input NOR gates

connected through a 2-input NAND gate in order to perform the RCD function.

However, in order to emphasize the advantages of the small cycle time offered by

our circuits, especially in situations where we need high throughput, and we have

small loops with a single token or big loops with multiple tokens, we plan to

concentrate our research on the 6-transition STFB template family.

 62

5 THROUGHPUT ANALYSIS AND COMPARISON

5.1 Introduction

The performance of a circuit can be optimized based on different metrics, such as:

throughput, energy, latency, area, etc. In this thesis, we concentrate our efforts to

optimize throughput [26], while latency, area estimation and the Eτ2 [49] will also be

used for comparison. Although more complex STFB stages offer a bigger advantage

when compared with QDI stages with the same functionality, most of the time, we will

compare STFB buffers with WCHB buffers, which are the fastest QDI stages.

The Eτ2 metric is the product of the energy (E) times the square of cycle time (τ).

This metric is approximately independent of the power supply voltage (VDD) since E is

proportional to VDD
2 and τ is proportional to VDD

-1, and it allows us to compare

different designs even when they are running at different power supply voltages or

when the energy and throughput of one pipeline are both higher than another. The

higher the Eτ2 metric, the less efficient is the pipeline, which means more energy per

processed token.

5.2 Pipeline optimization

The static capacity (S) of a pipeline (“static slack” [26]) is given by the stage

static capacity (s = 1 for full-buffer and s = ½ for half-buffer stages) times the number

of stages (N) in the pipeline, as shown in the equation below.

S = s.N (5)

 63

Reducing the capacity of a pipeline may cause deadlock of the system, if the

capacity of the pipeline is not greater than the number of tokens it must contain.

Increasing the capacity of the pipeline does cannot introduce errors in a large class of

asynchronous systems called “capacity elastic” (“slack elastic”). This class, however,

does not include most systems that perform some type of arbitration. In particular,

when arbiters exist, care must be taken to ensure that adding pipeline stages does not

introduce deadlock.

We can add capacity to a pipeline by changing the individual stages capacity

(change s from ½ to 1), which can be done in the QDI templates, or by just adding

buffers to the pipeline. Since the STFB templates are already full-buffer (s = 1), we

can adjust the STFB pipeline capacity only by buffer insertion or removal.

For a given pipeline with N stages, we want to analyze the throughput (t) as a

function of the number of tokens in the pipeline (x), as shown below. Both t and x are

averages and it is assumed that the pipeline is running at steady state. This means that

the throughputs measured at the both ends of the pipeline are equal and approximately

constant over time.

t = f (x) (6)

The average forward latency (fw) of a stage in the pipeline can be measured in

seconds or number of transitions, and represents the time it takes for a token to move

forward through an empty pipeline stage. If the pipeline is empty and we introduce

one token in the pipeline (“token limited” or “forward latency limited” operation), it

 64

takes Fw (seconds or transitions) for it to arrive at the end of the pipeline, we can

compute the fw average of all the stages in the pipeline as:

N
Fwfw = (7)

The throughput of a “token limited” pipeline can be estimated by the number of

tokens in the pipeline (x) divided by the total forward latency (N.fw), as shown below.

fwN
xxt
.

)(= (8)

The average backward latency (bw) of a stage in the pipeline can also be

measured in seconds or number of transitions, and represents the time it takes for a

“bubble” (or “hole”) to move backward through a pipeline stage. Assuming that the

pipeline is full, if we introduce one bubble at the output of the pipeline (“bubble

limited” or “backward latency limited” operation), as the bubble moves backward, the

tokens move forward one stage at the time. It takes Bw (seconds or transitions) for it

to arrive at the beginning of the pipeline and we can compute the bw average of all the

stages in the pipeline as:

N
Bwbw = (9)

The throughput of a “bubble limited” pipeline can be estimated by the number of

bubbles in the pipeline, which is the static capacity minus the number of tokens in the

pipeline (S - x), divided by the total backward latency (N.bw), as shown below.

 65

bwN
xSxt

.
)(−= (10)

Notice that the throughput is zero if the pipeline is completely empty (x = 0) or

completely full (x = S). If we start with an empty pipeline and we increase x, t(x) will

also increases until the internal cycles of the stages or internal cycles in the pipeline

(non linear pipeline, i.e. with loops, forks and joins) limits the peak throughput (T). At

this point, x is called the “minimum dynamic capacity” (dmin) (“minimum dynamic

slack” [26]) and t = f (dmin) = T. If we keep increasing x, T will remain the same until

the backward latency start limiting the throughput. At this point, x is called the

“maximum dynamic capacity” (dmax) (“maximum dynamic slack” [26]) and, at this

point we still have: t = f (dmax) = T. If we keep increasing the pipeline occupancy x, the

throughput will decrease towards 0. The graph t = f (x) is a “trapezoid”.

However, for our templates used within linear pipelines, we have no internal

cycles that can limit the stage handshake, and there will be only one optimum number

of tokens in the pipeline that maximizes the throughput (one optimum x). Resulting:

dmin = dmax = d, which is simply called the “dynamic capacity” (d) (“dynamic slack”

[26]) of the pipeline, where t =f (d) = T. The graph t = f (x) is now a “triangle” as

shown in Figure 41.

The average cycle time (τ) of a pipeline can be obtained by the inverse of the peak

throughput (T), which happens when dmin ≤ x ≤ dmax. For an optimized homogeneous

linear pipeline, τ is also the stage cycle time, which can be extracted from the STG

 66

diagram of that stage, in terms of number of transitions, by counting the number of

transitions required by the stage and its neighbors to complete one cycle of operation.

Therefore, at the peak throughput (T) we have:

τ
1

..
minmax ===

−
= T

fwN
d

bwN
dSt (11)

We can, then rearrange (11) to the equations below:

min.
1

d
T

fwN
= and

max.
1

dS
T

bwN −
= (12)

Now, from equations (8), (10), (11) and (12) we can describe f (x) as:

min

)(
d

xTxf = for 0 ≤ x ≤ dmin

Txf =)(for dmin ≤ x ≤ dmax

max

)(
dS

xSTxf
−

−= for dmax ≤ x ≤ S

(13)

Notice that, the real throughput t ≤ f(x), since t = f(x) only for stead state

throughput.

Also, from equation (11), we can find the relations:

τ
fwNd .

min = and τ
bwNSd .

max −= (14)

If we analyze fw, bw and τ, as number of transitions, for just one pipeline stage (N

= 1), we will find the dynamic capacity of the STFB 6-transitions templates as dSTFB_6t

 67

= 2/6 = 1/3. This means that, to reach maximum throughput, we need just 3 stages for

every token. For the WCHB and the STFB 10-transitions templates we have: dWCHB_10t

= 2/10 = 1/5, which imply that we need 5 stages per token to reach maximum

throughput. For the QDI Pre-Charge Half-Buffer (PCHB) and Pre-Charge Full-Buffer

(PCFB) [26], we have dPCHB_14t = 2/14 = 1/7 and have dPCFB_12t = 2/12 = 1/6, requiring

seven and six stages per token respectively.

Figure 41 - Comparison of two 15-buffer pipelines: (top) throughput and (bottom) Eτ2
metric versus pipeline occupancy (x).

 68

Figure 41 shows the simulation results of two 15-buffer pipelines implemented

with WCHB and STFB buffer templates. The transistor sizing strategy for both

templates was the same used in our library and demonstration design: twice minimum

size strength for the N/P-stack and eight times the minimum size for the line drivers.

Different transistor sizing can lead to somewhat different results, but the presented

theory would still apply. Although, the theoretical up-slope of the triangle graph

(“token limited” region) should be the same for all pipeline with the same overall

forward latency (Fw), or pipelines with the same number of stages (N) and templates

with the same forward latency (fw = 2 for STFB, WCHB, PCHB and PCFB), and that

we could estimate the slope by T/d, which is 1/(N.fw), we can see that STFB

performance is higher since it has smaller forward latency in terms of time due to its

domino logic style N-stack. The down-slope of the triangle graph (“bubble limited”

region) is determined by the overall backward latency (Bw) and this line cross the x

axis where x = S. The Eτ2 graph also indicates that the better efficiency of STFB is

evident (by a factor of 10 at peak throughput). This metric allows us to say that the

STFB pipeline could match the WCHB speed (by lowering the power supply voltage)

and would require much less energy per token to perform the same job.

However, the theoretical model, described above, shows that the maximum

throughput (T) is equal to the inverse of the cycle time (1/τ). This clearly demonstrates

that the small cycle time of the STFB will offer higher throughput for the same

number of stages or equivalent throughput with much less stages (less area and

power).

 69

Therefore, to take advantage of the STFB templates, we need to select

applications that require steady state ultra-high throughput. This is a non-trivial task,

since it is usually very difficult to feed/read a pipeline so fast. Because of that, we

selected the 64-bit prefix adder with an input and output circuitry that allows it to run

at full throughput as described on Section 6. Since the STFB has twice and three times

the throughput of WCHB and PCHB respectively, we believe that STFB can be easily

used to implement shared resources, saving area and power, and to alleviate bottle-

necks on a mix-template design.

 70

6 THE EVALUATION AND DEMONSTRATION CHIP

6.1 Introduction

A test chip was designed to validate the design flow as well as the performance of

the STFB templates. The central block of the test chip is a 64-bit STFB prefix adder,

while the input and output circuitry were designed to feed the adder and sample the

results enabling the checking of its performance and correctness at full-throughput.

6.2 The Prefix adder

Given two n-bit numbers A and B in two’s complement binary form, the addition

operation, A+B, can be performed by computing [22][23]:

1

1

−

−

⊕=

+=

⊕=

=

jjj

jjjj

jjj

jjj

cps
cpgc

bap
bag

 nj <≤0

where, c-1 is the adder primary carry input, aj, bj and sj are bits of A, B and the addition

result S respectively, gj is the generate signal and pj is the propagate signal for the bits

at position j.

For an asynchronous 1-of-N implementation, aj, bj, cj and sj are dual-rail channels,

where, for example, a1j high means aj = 1, and a0j high means aj = 0. Also, we use the

kj, “kill” signal, to form a 1-of-3 channel (kj, pj, gj). The asynchronous equations

become:

 71

11

11

1

1

01101

11000

01101

11000

00

11

00

1001

11

−−

−−

−

−

+=

+=

+=

+=

+=

+=

=

+=

=

jjjjj

jjjjj

jjjjj

jjjjj

jjjj

jjjj

jjj

jjjjj

jjj

cLcLs
cLcLs

babaL
babaL

cpkc
cpgc

bak
babap

bag

 nj <≤0

where, L is the result of aj ⊕ bj (aj xor bj). This means that aj and bj need to be

duplicated since we need one pair for the carry computation and another for the final

sum.

Adapting from the usual synchronous definition [22][23][5], we define (Kj:j, Pj:j,

Gj:j) = (kj, pj, gj) (asynchronous 1-of-3 channel) and:

),,(...),,(),,(),,(111::: iiijjjjjjjijiji gpkoogpkogpkGPK −−−=

where, j > i and o is the fundamental carry operator adapted to the asynchronous

implementation as:

))(),(),((),,(),,(ijjijijjiiijjj gpgppkpkgpkogpk ++=

Therefore, at each bit position, the final dual-rail carry can be computed by:

1:0:0 11 −+= cPGc jjj 1:0:0 00 −+= cPKc jjj

where, c1-1 and c0-1 define the dual-rail adder primary carry input.

Adapting from [22], the asynchronous addition can be performed in the following

steps:

 72

Step 1 (1 stage deep)

Duplicate (a0j, a1j) and (b0j, b1j) ∀j 0 ≤ j < n

Step 2 (1 stage deep)

Compute:

jjjjj

jjjjj

jjj

jjjjj

jjj

babaL
babaL

bak
babap

bag

01101

11000

00

1001

11

+=

+=

=

+=

=

 nj <≤0

Step 3 (log2 n stages deep)

For x = 1, 2…log2 n compute:

111 2:12:12 11 −−− −+−+−
+= xxx jjjjjj cPGc

111 2:12:12 00 −−− −+−+− += xxx jjjjjj cPKc

∀j 1212 1 −<≤−− xx j

=
+−+−+−

),,(
:12:12:12 jjjjjj xxx GPK

),,(:12:12:12 111 jjjjjj xxx GPK +−+−+− −−−),,(111 2:122:122:12 −−− −+−−+−−+− xxxxxx jjjjjj GPKo

∀j njx <≤− 12

Step 4 (1 stage deep)

Compute:

 73

11

11

01101

11000

−−

−−

+=

+=

jjjjj

jjjjj

cLcLs
cLcLs

 nj <≤0

11:01:01

11:01:01

00
11

−−−−

−−−−

+=
+=

cPKc
cPGc

nnn

nnn

Figure 42 illustrates the above steps with an example, an 8-bit asynchronous

prefix adder, where, the thin arrows are 1-of-2 (dual-rail) channels and the thick

arrows are 1-of-3 channels.

Notice that some STFB pipeline stages must have two versions: one with unique

output channel and another with duplicated output channels. This is necessary because

we are using point-to-point single-track channels (there are no forks in the wires). The

pipeline stages used with their library name are as shown below:

In Figure 43 the STFB2 prefix is used for stages with only dual-rail channels, and

STFB3 is used for stages with at least one 1-of-3 channel. In particular, the

STFB3_AB_KPG stage implements the kpg part of step 2 (described above) and has

two dual-rail input channels (A and B) and one 1-of-3 output channel (KPG).

STFB3_AB_KPG2 implements the same functionality but has two 1-of-3 output

channels (KPG2). Similarly, cells STFB3_KPG2_KPG and STFB3_KPG2_KPG2

implement the kpg part of step 3 and have two 1-of-3 input channels and one or two 1-

of-3 output channels, respectively. In the same manner, the carry generation parts of

step 3 and 4 are implemented by the cells STFB3_KPGC_C and STFB3_KPGC_C2.

Finally, step 1 and the sum parts of steps 2 and 4 are implemented by STFB2_FORKs

 74

and STFB2_XOR2s. The buffers (STFB2_BUFFER) are used for capacity matching

(“slack” matching).

Figure 42. 8-bit asynchronous prefix adder.

Figure 43. Pipeline stages utilized in the adder.

STFB2_FORK (fork stage)

STFB2_BUFFER (buffer stage)

STFB2_XOR2 (2-input xor stage)

STFB3_AB_KPG and STFB3_AB_KPG2

STFB3_KPG2_KPG and STFB3_KPG2_KPG2

STFB3_KPGC_C and STFB3_KPGC_C2

 75

Figure 44. 8-bit async. prefix adder optimized.

Figure 44 shows an optimized version of the 8-bit prefix adder, where the carry

input (c-1) is forked at the first step allowing an early computation of s0 and improving

the layout by replacing the bottom fork. This fork was used previously to supply c-1 to

s0 and cn-1 (located in two opposite extremes of the adder), with a simple buffer. Also,

the xor stages of the first half of the adder, from s1 to s(n/2)-1, can be moved one step

earlier. These modifications saved (n/2)-2 buffers and simplified the layout.

In this small example, the 8-bit asynchronous prefix adder is six levels deep (2

+ log2 n + 1). The implemented 64-bit asynchronous prefix adder is, therefore, 9

levels deep. This means that, after 9 times the forward latency of the STFB templates

(9*2 = 18 transitions) the resulting 64-bit plus carry out are available. In addition,

since the cycle time of the STFB template is just 6 transitions, the 64-bit adder can

 76

have up to 3 additions simultaneously being processed (3 tokens in the pipeline) at

maximum throughput.

Figure 45 shows the implemented 64-bit STFB prefix adder schematic and some

input and output details. Notice that we opted to capture a “flat” schematic in order to

simplify the visualization of the connections and the reset tree distribution. The last

level of connections requires wires that are, at least, half of the adder long, and after

place & routing resulted in wires as long as 800 µm. These long wires and complex

STFB stages reduced the adder throughput when compared with a pipeline of just

buffers close together. Simulation results indicate that a ring of STFB buffers can run

above 2 GHz, while the 64-bit STFB prefix adder achieved 1.4 GHz under the same

conditions. Appendix B has the complete schematics of our demonstration chip.

 77

Figure 45. (a) 64-bit STFB Prefix Adder schematic, (b) input and (c) output details.

(a)

(b)

(c)

 78

6.3 The input circuitry

The input circuitry loads and continuously repeats a test pattern to be fed into the

adder. The INPUTGEN129BY9 block is composed of single-rail to single-track

converters, split circuits and 129 9-stage rings (two 64-bit numbers and carry in).

Figure 46 shows the input generator block, where eight bits of data and four bits

of address are converted from single-rail to single-track. The 4-bit address directs the

8-bit data to one out of 16 specific 9-stage ring groups that will be used to

continuously generate the 64-bit A and B operands. This addressing operation is

necessary due to pins limitations in the demonstration chip design. In addition, the

carry-in pattern is converted from single-rail to single-track and loaded in its specific

ring to supply C-1 to the adder. There are two load control lines (not shown), one for

the 12-bit data-address set and another for the carry in signal.

 79

Figure 46. INPUTGEN129BY9 block diagram.

Figure 47 shows the 9-stage ring diagram, where we used seven buffers, one fork,

one merge, one xor, and the controlled bit-generator (square with the letters BG).

Although the rings support up to seven tokens each, the maximum throughput of the

ring is achieved with 3 tokens.

Figure 47. 9-stage ring utilized in the input circuitry.

 80

After the tokens are loaded, the BG cell is enabled with the “GO” signal (not

shown). Since, now, the xor stage has one token in each input, it generates a token that

enters the fork stage, where one copy of the token is sent to the adder and another is

sent back into the ring. If BG is enabled to generate “zero” tokens, the tokens in the

ring simply circulate making copies of themselves. If BG is enabled to generate “one”

tokens, the tokens in the ring are inverted at every pass through the xor increasing the

number of scanned combinations. In this design we have three independent signals to

control the inversion of A, B and C-1.

6.4 The output circuitry

In order to test the adder running at full throughput, we implemented a

programmable output circuitry that samples the 65-bit result (64-bit sum and one bit

carry out), forwarding to the output pins one out of n results (0 ≤ n ≤ 7840). The

SAMPLER65BY1000 circuit is implemented with three 30-stage rings each of them

connected to a 65-bit split structure. The 30-stage rings are similar to the 9-stage ring

in Figure 47, they simply have 27 buffers in the loop instead of just seven, and they

can be individually loaded with a sequence of tokens.

 81

Figure 48. SAMPLER65BY1000, MUX 64 to 8 and single-rail converters block
diagram.

Figure 48 illustrates the sampler circuit where the split stages (S), controlled by

the 30-stage rings, direct the input token to a bit-bucket (BB), where the token is

destroyed, or to the next split. The 65-bit output of the last split has the sampled result

that is going to be send to the output pins. The carry out is separated converted to

single-rail and sent to its exclusive pin. The 64-bit sum is sent to a MUX that routes to

the output one byte at the time, starting for the most significant one (big-ending).

Again, this routing procedure is necessary due to pins limitations in the demonstration

chip.

The 30-stage rings can run at full throughput if we load them with 10 tokens each.

This would also result in a sample rate of 1 out of 1000 results. For example, if we

load all three rings with “1000000000”, we would sample the first result, the 1001st,

the 2001st and so on. If we load the first ring with “0100000000” and the others with

“1000000000”, we would sample the second result, the 1002nd, the 2002nd and so on.

Therefore, with this sampler architecture, we can choose which results we want to see.

 82

Moreover, we can change the sample rate by loading the rings with different

number of tokes. We need to be careful, however, in order not to slow down the adder

if we want to check its performance at full throughput. If the first ring is loaded with

ten tokens, we can load the other two with 28 tokens, yielding a sampling rate up to

one out of 7840 results without limiting the adder throughput.

Notice that, like the input circuitry in section 6.3, all the output circuit is

implemented using STFB stages and, if the external test circuit is slow in consuming

the output results, the input circuit and the adder will slow down to accommodate the

consumer and no sampled data will be lost.

6.5 The chip layout

Figure 49 shows a picture of the laid-out 64-bit STFB asynchronous prefix adder

and its auxiliary test circuitry. Each block P&R was performed separately with an area

utilization of 70%, the three blocks where forced to have the same height (1.7 mm)

and the placement of the adder block pins matched their correspondents in the input

and sampler blocks. The total area is 4.1 mm2.

Notice that, by performing P&R on separated blocks, we significantly reduce the

probability of a very long wire that could compromise the performance and the

functionality of the design. In fact, post-layout we guaranteed no STFB signal wires

were longer than 1 mm. Also, as filler cells, a total of 1.6 nF in bypass capacitors were

added.

 83

Figure 49. The input, adder and sampler block layout with respective areas, transistor
counts and simulated current and throughput.

6.6 Power Distribution and EM

Figure 50 shows a post-layout Nanosim simulation result (transistor model TT,

25°C and VDD = 2.5V), where we can see the format of each block current. The

i(v129) and i(vdd) are the input and the adder block current respectively, and they are

almost constant around 1.3A each (running at full throughput: 1.4 GHz). The i(v65) is

the sampler block current, whose ripple depends on how far the token flows in the

split pipeline and varies from 0.2 to 0.6A (0.3A average). The overall current is

INPUTGEN129BY9 ADDER64 SAMPLER65BY1000

1.36 mm2
105k transistors

1.3 A @ 1.4 GHz

1.13 mm2
89k transistors

1.3 A @ 1.4 GHz

0.8 mm2
62k transistors

0.3 A @ 1.4 GHz

 84

relatively constant, when compared to synchronous designs, which significantly

reduces the need for on-chip bypass capacitors and offers very low Electro-Magnetic

Interference (EMI).

Figure 50. Typical simulation output.

As these designs consume significantly more current than their slower

synchronous counterparts, voltage drop (IR drop) and the electromigration over the

power lines become important factors. Fortunately, the router supports the insertion of

a robust power grid to mitigate these effects. Also, 14 pins where allocated to VDD and

14 to GND, 7 pairs placed on each side of the three blocks.

6.7 Simulation results

Table 2 shows the simulation results of the five simulated corners. In this table,

the conditions consist of the combination of the model library (NMOS and PMOS

models: T = typical, S = slow and F =fast), the simulation temperature, and the power

supply voltage. Iav is the average current of the three blocks when active. Latency is

the 64-bit adder propagation time, and Throughput is the number of additions

processed per second.

 85

Table 2. Results

Conditions Iav Latency Throughput

TT, 25°C, 2.5V 3.3 A 2.1 ns 1.47 GHz

SS, 100°C, 2.2V 1.8 A 3.3 ns 943 MHz

FF, 0°C, 2.7V 4.6 A 1.6 ns 1.95 GHz

SF, 25°C, 2.5V 3.2 A 2.2 ns 1.46 GHz

FS, 25°C, 2.5V 3.2 A 2.2 ns 1.46 GHz

6.8 Comparisons

Table 3 shows a comparison of some STFB pipeline stages with PCHB stages and

static standard cell CMOS gates (referred as “static”). The latency and cycle time are

written in terms of number of transitions. The static CMOS standard cell gates, used in

this comparison, were designed under the same standard cell specification utilized for

the STFB and PCHB pipeline stages. Also, they are composed of a 2X gate followed

by an 8X inverter in order to match driving strengths.

Table 3. STFB, PCHB and CMOS comparison.

Function Cell Latency Cycle
Time Area (µm2) Area ratio

STFB 2 6 415 4.5
PCHB 2 14 726 7.9 Buffer
static 2 - 92 1
STFB 2 6 472 4.6
PCHB 2 14 968 9.3 2-input

AND/OR static 2 - 104 1
STFB 2 6 472 2.6
PCHB 2 14 1048 5.7 2-input

XOR static 2 or 3 - 184 1

 86

For these basic functions, the area ratio indicates that the STFB stages are

approximately 50% smaller than the PCHB stages and about 5 times bigger than a

static CMOS implementation (not considering the latch/flip-flop and clock-tree

overhead required for synchronous designs). Also, excluding the reset wire utilized by

both the STFB and PCHB stages, the STFB dual-rail implementation uses 33% less

wires than PCHB and just twice the number of wires of the CMOS circuit.

6.9 Demonstration chip implementation and test

Figure 51 shows the fabricated demonstration chip (ASYNC1b) layout, where the

STFB blocks are placed on top under a power grid implemented with metal 5. Due to

the expected high current, 14 pins of VDD and 14 pins for GND where distributed on

both sides of the design. The second part of the chip is a completely independent

circuit implementation of the sequential decoder algorithm [35].

 87

Figure 51. ASYNC1b layout has 20.5 mm2 and 132 pins.

Figure 52 shows a picture of the implemented chip. Noticed that the STFB blocks

are completely covered by the alternated metal 5 power lines. The package utilized is a

ceramic 132 pin PGA (Pin Grid Array) where the STFB circuits are using 28 power

supply pins (14 VDD and 14 GND), 12 bi-directional pins, 13 input pins and 3 supply

pins for the pads (3.3V, 2.5V and VSS). The total STFB pins are 56, and the

remainders 72 are used by the QDI part of the ASINC1b chip.

STFB
blocks

7 VDD and
7 GND pins 7 VDD and

7 GND pins

QDI
blocks

 88

Figure 52. ASYNC1b demonstration chip (die photo).

The Figure 53 shows the demonstration chip on the evaluation board. The

evaluation board disables the QDI part of the chip and it uses a FPGA (not shown) to

setup and run the STFB part. The FPGA is a Xilinx XC2S100 Spartan-II on a Xess

XSA prototyping board. The software utilized to program the FPGA are the Xilinx

ISE version 6 and the Xess tools package. Once programmed, the FPGA loads the

STFB input block with the operands, sets the sample rate in the output block and runs

the ASYNC1b chip by acknowledging all the requests as they come out of the chip.

 89

Figure 53. Demonstration chip on the test board.

An oscilloscope (Tektronix TD210) is used to check the byte and carry

acknowledges as shown below. This allows an easy check of the chip throughput since

one carry out is outputted at every sampled result. One multimeter is used to measure

the temperature on top of the package while another displays the on-chip voltage. The

current is measured by the power supply (Agilent E3610A). A 24-channel logic

analyzer (Link Instruments LA-2124) is used to capture the waveforms, which allow

checking the initialization and operation of the demonstration chip. The ceramic

package thermal coefficient with no wind is 29oC/W [38]. With a fan blowing air close

to the chip, we estimated a thermal coefficient of ~20oC/W. This means that the die

temperature is ~20oC higher than the air temperature if the power dissipation is one

 90

watt and there is a fan blowing air over the package. Since we have a power

dissipation of more than 5W, the die temperature would be too high without the fan

and the fan is used to keep the package and die temperature in manageable ranges.

Figure 54 shows the test setup with the fan. Notice that the temperature on top of

the package is 40oC (the room temperature was around 23oC), the on-chip voltage at

2.5V and the VDD current at 2.26A. The estimated die temperature is around 130oC.

Figure 54. Test chip and equipment setup.

6.10 Test results

Figure 55 shows the measured waveforms of the chip number 3 (all 40 samples

delivered by MOSIS were numbered sequentially for tracking purposes). Notice that

 91

the channel 1 shows the carry out acknowledge produced by the FPGA at every

request from the test chip. The channel 1 frequency, 313 kHz, indicates that the 64-bit

adder is running at 1.25 GHz since the sample rate was set to 1:4000. The channel 2

signal shows the acknowledge of the result which is outputted one byte at the time

requesting eight consecutive acknowledges of 200ns each (5 MHz).

Figure 55. Chip#3 at 1.25GHz (2.5V on-chip, 2.26A, 40oC package, fan at 1.5”)

The sampler rings, as explained on Section 6.4, may be programmed with

different number of tokens in order to allow a different sample rate, making possible

to sample all the possible results. Figure 56 shows the loading phase of the chip after

the rising edge of the reset (NRst) signal. Notice that by loading the Ring0 with 11

tokens and the Ring1 and Ring2 with 19 tokens we have a sample rate of 1:3971.

 92

Also, since the input rings are much faster than the adder, we can load three carries,

three 64-bit operands for A and four 64-bit operands for B, resulting in 12

combinations as shown on Table 4, without reducing the adder throughput.

Figure 56. Logic Analyzer capture wave form of the loading sequence.

Figure 57 shows the operation of the demonstration chip. After the rising of the

“Go” signal, the input rings start feeding the adder continuously while the output rings

sample the results allowing the first result to go out, then the 3972nd , the 7943rd, and

Carry = 1, 0, 0 Ring0 = 11, Ring1 = Ring2 = 19

Loading three A’s Loading four B’s

 93

so on. Each 64-bit result is multiplexed to 8-bit output starting with the most

significant byte, which allows us to easily check the correctness of the output using

the logic analyzer.

Figure 57. Logic Analyzer capture wave form of the running mode.

Table 4 shows the test case 042-F0AF, where there are 3 operands for A and

Carry and 4 operands for B. Table 5 shows the sum and carry result sequence for this

test case with a sample rate of 1:3971. The demonstration chip results values and

sequence are correct as expected.

Sampled results

 94

Table 4. Example of loaded operands used for test: sequence 042-F0AF.

Table 5. Sequence of output results from 042-F0AF test case (sample 1:3971).

Table 6 shows some performance measurements with chip #3 for different supply

voltages. Notice that the voltage drop from the power supply to the voltage inside the

chip is significant due to the high level of current required. The “on-chip” voltage is

measured by two supply pins (one VDD and another GND, pins B01 and C03) that are

connected to a voltmeter instead of the power supply. This means that the entire chip

current is supplied through 13 pins of VDD and 13 pins of GND, which represents

about 170 mA per pin at full throughput (2.5V, 1.28 GHz). The “on-chip” voltage is a

good estimative of the adder supply voltage, however, due to the high current levels,

we estimate that the voltage on top of the adder to be around 0.1V below of the “on-

chip” value.

 95

Table 6. Measurements of chip #3 with fan at 1.5" distance.

Figure 58 shows the measurements in a graphic format and compare the results

with and without fan.

Figure 58. Graphics of chip #3 measurements.

The measurements of the chip operation without fan were performed without

waiting for the temperature to stabilize since the package temperature was raising fast

 96

and some irreversible damage could have been made to the chip if more time were

allowed. Notice that, the cooler operation yields higher throughput and is more

efficient (lower Eτ2) since the power dissipation is about the same. The junction

temperature was estimated based on the ambient temperature and assuming the

thermal coefficients of 20oC/W with fan and 29oC/W without the fan [38].

Comparing with simulation results, we can see that the performance is close but

below to the TT-2.5V-25oC simulation case. However, for the real chip test, we have

to consider that the die temperature is much higher and that the voltage on top of the

adder is smaller than 2.5V due to the voltage drop on the real power grid. Taking these

effects into account, the performance of the real design is as expected.

Thanks to Fulcrum Micro-Systems, we were able to further evaluate the

temperature influence on the circuit performance. Fulcrum’s precision forcing

temperature system is a machine that blows air at controlled temperature over the

device under test. We setup the air temperature to -25oC and we estimated the junction

temperature to be between 0 to 10oC.

Figure 59. Chip #4 (under -25oC air flow) compared with chip #3 results.

 97

Figure 59 shows the higher performance of the cooler chip, reaching 1.45 GHz.

Since the die temperature is close to the simulated at typical condition, the

performance also gets close. However, the voltage drop in the real power grid still

remains.

The “on-chip” voltage range of our test was limited by the operation of the chip.

Voltages above 2.6V and below 1.7V cause the chip to stop running when tested just

with the fan. The reason for the upper limit is likely to be on-chip noise inducing or

killing tokens, which causes a complete halt of the circuit. The lower limit is likely

due to the assumption that the three transitions active phase will be enough to

discharge the line (the charge operation has the staticizer and RCD feed-back to

compensate, this is not the case for the SCD). The lower supply voltage would make

the reset transistors weak and tokens would be left on the long channels clogging the

pipeline and halting the circuit.

The overall performance of the chip is very good and its operation is stable. The

tested samples were used continuously for several hours at full throughput without

presenting wrong operations or detectable performance variation.

 98

7 CONCLUSIONS

STFB templates are proposed for high-speed area-efficient asynchronous non-

linear pipeline design. A freely available STFB standard cell library using TSMC 0.25

µm technology was generated and posted with MOSIS Educational Program. A

complete STFB design with 260,000 transistors is successfully implemented and

tested reaching 1.45 GHz.

The STFB templates use 1-of-N data encoding single-rail hand-shaking to avoid

timing assumptions based on bundling constraints that are often hard to analyze, to

guarantee during design, and to verify after layout. The templates have higher

throughput than the fastest known QDI templates and have lower latency than the

most aggressive GasP templates. Consequently, for systems that are latency-critical,

STFB templates may yield a significant performance advantage.

Implementation issues and performance analysis methodology are presented. The

timing constraints and noise margin are discussed, and the performance of the STFB

templates is compared with QDI templates. The small cycle time of the STFB

templates is thoroughly analyzed. This small cycle time allows the STFB circuits to

operate at very high throughputs with small distances between consecutive data

tokens, resulting in smaller and faster circuits than their QDI alternatives. The energy

per operation is also advantageous as demonstrated by a comparison of Eτ2 metrics.

The demonstration design includes the input generating circuit, a 64-bit prefix

adder and a programmable position and rate output sampler circuit. All these circuits

were implemented using our STFB standard cell library in a conventional back-end

 99

flow, which resulted in a simple, fast and efficient design process that can be easily

understood by synchronous designers.

The demonstration design chip exploits the advantages of the small STFB cycle

time. The input circuit uses 129 9-stage rings, which are examples of high speed loops

processing multiple data tokens. The 64-bit prefix adder represents a high-complexity

design with large STFB stages operating with dual rail and 1-of-3 channels. The

sampler circuit uses multiple rings running at different rates. Also, all the support

logic to load the operands and unload the results is implemented with STFB stages.

As continuation of this work, changes can be made in the template in order to

improve the noise margins. In particular, if a smaller feature size process is targeted,

different transistor sizing and/or the use of the Static Single-Track SST protocol

should be explored. The 10-transitions STFB template may also be used to improve

reliability over process variations due to its self reset characteristics and time margins.

 100

REFERENCES

[1] M. Abramovici, M. A. Breuer and A. D. Friedman, Digital System Testing &
Testable Design. Wiley-IEEE Press, 1993.

[2] W. J. Bainbridge and S. B. Furber, “Delay Insensitive System-on-Chip
Interconnect using 1-of-4 Encoding”, 7th International Symposium on
Asynchronous Circuits and System, pp: 118 – 126, Salt Lake City, Utah, USA
2001.

[3] K. van Berkel, and A. Bink, “Single-Track Handshake Signaling with Application
to Micropipelines and Handshake Circuits”, Proc. ASYNC, pp: 122–133, 1996.

[4] K. Bernstein, K. M. Carrig, C. M. Durham, P. R. Hansen, D. Hogenmiller, E. J.
Nowak and N. J. Rohrer, High Speed CMOS Design Styles, Kluwer Academic
Publishers, Norwell, Massachusetts, USA 1998.

[5] R.P. Brent and H. T. Kung, “A regular layout for parallel adders”, IEEE Trans. on
Computers, C-31, pp: 260-264, March 1982.

[6] E. Brunvand, “Translating Concurrent Communicating Programs into
Asynchronous Circuits”, PhD Thesis Dissertation, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, USA 1991.

[7] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli, “Theory of
Latency-Insensitive Design”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 20, no. 9, pp.1059-1076, September 2001.

[8] L. P. Carloni and A. L. Sangiovanni-Vincentelli, “Coping with Latency on SoC
Design”, IEEE Micro Magazine, pp.24-35, September-October 2002.

[9] L. P. Carloni, K. L. McMillan, A. Saldanha and A. L. Sangiovanni-Vincentelli,
“A Methodology for Correct-by-Construction Latency Insensitive Design”,
Proceedings of the International Conference on Computer-Aided Design, 1999.

[10] M. D. Ciletti, Modeling, Synthesis and Rapid Prototyping with the Verilog HDL,
Prentice-Hall, Upper Saddle River, New Jersey, USA 1999.

[11] U. V. Cummings, A. M. Lines and A. J. Martin, “An Asynchronous Pipelined
Lattice Structure Filter.” Proc. of the International Symposium on Advanced
Research in Asynchronous Circuits and Systems, pp.126-133, November 1994.

[12] W. J. Dally and J. Poulton, Digital Systems Engineering, Cambridge Univ. Press,
Cambridge, UK, 1998.

 101

[13] A. Davis and S. M. Nowick, “An Introduction to Asynchronous Circuit Design”,
Technical Report UUCS-97-013, University of Utah, Salt Lake City, Utah, USA
Sept. 19, 1997.

[14] D. Duarte, V. Narayanan and M. J. Irwin. “Impact of technology scaling in the
clock system power,” Proceedings for IEEE Computer Society Annual
Symposium on VLSI – ISVLSI, pp. 59-64, 2002.

[15] M. Ferretti and P. A. Beerel, “Low-Swing Signaling Using Dynamic Diode
Connected Driver”, 27th European Solid-State Circuits Conference ESSCIRC,
Villach, Austria, September 2001.

[16] M. Ferretti and P. A. Beerel, “Low-Swing Signaling Using Dynamic Diode
Connected Driver”, Submitted to IEEE Transactions on VLSI System.

[17] M. Ferretti and P. A. Beerel, “Asynchronous 1-of-n Logic Using Single-Track
Protocol”, CENG Technical Report No. 01-03, Department of Electrical
Engineering – Systems, University of Southern California, Los Angeles,
California, USA, July 12th 2001.

[18] M. Ferretti and P. A. Beerel, “Single-Track Asynchronous Pipeline Templates
Using 1-of-N Encoding”, Design Automation & Test in Europe Conference
DATE, Paris, France, March 2002.

[19] M. Ferretti, R. O. Ozdag and P. A. Beerel, “High Performance Asynchronous
ASIC Back-End Design Flow Using Single-Track Full-Buffer Standard Cells”,
10th Symposium on Asynchronous Circuits ASYNC, Herssonissos, Crete, Greece,
April 2004.

[20] H. Gageldonk, D. Baumann, K. Berkel, D. Gloor, A. Peeters and G. Stegmann,
“An Asynchronous low-power 80c51 microcontroller”, Proceedings International
Symposium on Advanced Research on Asynchronous Circuits and System, pp: 96
– 107, 1998.

[21] S. Ghosh, Hardware Description Languages, IEEE Press Series on
Microelectronics Systems, Piscataway, New Jersey, USA 2000.

[22] A. Goldovsky, R. Kolagotla, C.J. Nicol and M. Besz, “A 1.0-nsec 32-bit Tree
Adder in 0.25-µm static CMOS”, Proc. 42nd IEEE Midwest Symp. on Circuits and
Systems, pp: 608 -612, vol. 2, 1999.

[23] A. Goldovsky, H.R. Srinivas, R. Kolagotla and R. Hengst, “A Folded 32-bit
Prefix Tree Adder in 0.16-µm static CMOS”, Proc. 43rd IEEE Midwest Symp. on
Circuits and Systems, pp: 368–373, Lansing MI, August 2000.

 102

[24] S. Hauck, “Asynchronous Design Methodologies: An Overview”, Proceedings of
the IEEE, Vol. 83, No. 1, pp. 69-93, January 1995.

[25] I. Koren, Computer Arithmetic Algorithms. A. K. Peters Ltd., 2001.

[26] A. M. Lines, “Pipelined Asynchronous Circuits”, Master Thesis, California
Institute of Technology, June 1998.

[27] R. Manohar, J. A. Tierno, “Asynchronous Parallel Prefix Computation”, IEEE
Transactions on Computers, pp: 1244 -1252, vol. 47, Nov. 1998.

[28] A. J. Martin, A. Lines, R. Manohar, M. Nyström, P. Penzes, R. Southworth, U.
Cummings, and T. K. Lee, “The Design of an Asynchronous MIPS R3000
Microprocessor.” Proceedings of ARVLSI, pp. 164-181, 1997.

[29] A. J. Martin, M. Nyström and C. G. Wong, “A 100-MIPS GaAs Asynchronous
Microprocessor.” IEEE Design & Test of Computers, Volume: 11, Issue: 2, pp.
43-49, 1994.

[30] A. J. Martin. Synthesis of asynchronous VLSI circuits. In J. Straunstrup, editor,
Formal Methods for VLSI Design, chapter 6, pp. 237–283. North-Holland, 1990.

[31] C. J. Myers, Asynchronous Circuit Design, John Wiley and Sons, July 2001.

[32] C. D. Nielsen. “Evaluation of Function Blocks for Asynchronous Design,”
Proceedings of ACM, pp:454-459, September 1994.

[33] L. S. Nielsen and J. Sparso, “Designing Asynchronous Circuits for Low Power:
An IFIR Filter Bank for Digital Hearing Aid,” Proceedings of the IEEE, vol. 87,
no. 2, pp. 268-281, February 1999.

[34] M. Nyström, “Asynchronous Pulse Logic”, PhD Thesis Dissertation, California
Institute of Technology, May 14, 2001.

[35] R. O. Ozdag and P. A. Beerel, “A Channel Based Asynchronous Low Power High
Performance Standard-Cell Based Sequential Decoder Implemented with QDI
Templates”, 10th Symposium on Asynchronous Circuits ASYNC, Herssonissos,
Crete, Greece, April 2004.

[36] J. Pangjun and S.S. Sapatnekar. “Low-Power Clock Distribution Using Multiple
Voltages and Reduced Swings,” IEEE Transaction on VLSI Systems, Vol. 10,
No. 3, pp:309-318, June 2002.

[37] A. Peeters and K. Berkel, “Synchronous Handshake Circuits”, 7th International
Symposium on Asynchronous Circuits and System, pp: 86 – 95, Salt Lake City,
Utah, USA 2001.

 103

[38] PGA132L Package Handbook supplied by MOSIS (pkg-pga132l-char.pdf),
May/14/1993

[39] J. M. Rabaey, Digital Integrated Circuits, Prentice Hall Electronics and VLSI
Series, New Jersey, USA 1996.

[40] S. Rotem, K. Stevens, R. Ginosar, P. Beerel, C. Myers, K. Yun, R. Kol, C. Dike,
M. Roncken, and B. Agapiev. “RAPPID: An asynchronous instruction length
decoder.” Proceedings for the International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pp. 60–70, April 1999.

[41] C. L. Seitz. “System timing,” in C. A. Mead and L.A. Conway, editors,
Introduction to VLSI Systems, chapter 7. Addison-Wesley, 1980.

[42] M. Singh and S. M. Nowick, “High-Throughput Asynchronous Pipelines for Fine-
Grain Dynamic Datapaths”, Proceedings of ASYNC 2000, pp: 198 – 209, 2000.

[43] M. Singh and S. M. Nowick, "MOUSETRAP: Ultra-High-Speed Transition-
Signaling Asynchronous Pipelines." ACM/IEEE International Workshop on
Timing Issues in the Specification and Synthesis of Digital Systems (TAU-2000),
Austin, TX, December 2000.

[44] M. Singh and S. M. Nowick, "MOUSETRAP: Ultra-High-Speed Transition-
Signaling Asynchronous Pipelines." Proceedings of the IEEE International
Conference on Computer Design (ICCD-01), Austin, TX, September 2001.

[45] K. Soumyanath, S. Borkar, C. Zhou, B. Bloechel, “Accurate On-Chip
Interconnect Evaluation: A Time Domain Technique”, Symposium on VLSI
Circuits Digest of Technical Papers, pp. 116-117, 1998.

[46] I. Sutherland, “Micropipelines”, Communications of the ACM, vol. 32, #6, pp:
720-738, June 1989.

[47] I. Sutherland and S. Fairbanks, “GasP: A Minimal FIFO Control”, Proceedings of
7th International Symposium on Asynchronous Circuits and System, pp: 46 – 53,
Salt Lake City, Utah, USA 2001.

[48] I. Sutherland, B. Sproull and D. Harris, Logical Effort, Morgan Kaufmann
Publishers, Inc., San Francisco, USA 1999.

[49] J. Teifel, D. Fang, D. Biermann, C. Kelly, R. Manohar, “Energy-Efficient
Pipelines”, 8th International Symposium on Asynchronous Circuits and System,
Manchester, UK, April 2002.

 104

[50] TSMC 0.25µm Logic 1P5M Salicide 2.5V, 2.5/3.3V Spice Models, Document
No. TA-1099-6001 (T-025-LO-SP-005) Revision 2.2, TSMC Taiwan
Semiconductor Manufacturing Co., Ltd., March 2001.

[51] TSMC 0.25µm Logic 1P5M Salicide 2.5/3.3V Design Rule, Document No. TA-
1099-4003 (T-025-LO-DR-001) Revision 2.2, TSMC Taiwan Semiconductor
Manufacturing Co., Ltd., October 2000.

[52] V. I. Varshavsky (editor), Self-Timed Control of Concurrent Processes : The
Design of Aperiodic Logical Circuits in Computers and Discrete Systems, Kluwer
Academic Publishers, Dordrecht, The Netherlands, January 1990.

[53] T. E. Williams, “Self-Timed Rings and Their Application to Division”, Technical
Report No. CSL-TR-91-482, Department of Electrical Engineering and Computer
Science, Stanford University, Stanford, California, USA 1991.

[54] T. E. Williams, “Performance of Iterative Computation in Self-Timed Rings”,
Journal of VLSI Signal Processing, vol. 7, pp. 17-31, 1994.

[55] K. Y. Yun and D. L. Dill, “Automatic Synthesis of Extended Burst-Mode
Circuits: Part I (Specification and Hazard-Free Implementations)”, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.
18, no. 2, pp. 101-117, Feb. 1999.

[56] K. Y. Yun and D. L. Dill, “Automatic Synthesis of Extended Burst-Mode
Circuits: Part II (Automatic Synthesis)”, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 18, no. 2, pp. 118-132, Feb. 1999.

[57] K. Y. Yun, P. A. Beerel, V. Vakilotojar, A. Dooply, and J. Arceo, “The Design
and Verification of a Low-Control-Overhead Asynchronous Differential Equation
Solver”, IEEE Transactions on VLSI Systems, vol. 6, no.4, pp. 643–655,
December 1998.

[58] H. Zhang, V. George and J. M. Rabaey, “Low-Swing On-Chip Signaling
Techniques: Effectiveness and Robustness”, IEEE Transactions on VLSI System.,
vol. 8.3, pp. 264-272, June 2000.

 105

APPENDIX A: STFB STANDARD CELL LIBRARY

This appendix is a copy of the freely available STFB standard cell library

documentation. It was re-formatted to fit inside the dissertation margins and the layout

pictures were removed due to non-disclosure issues.

You can find more information about the USC Asynchronous libraries at:

http://jungfrau.usc.edu/AsyncLib.htm

 106

University of Southern California

Department of Electrical Engineering Systems

Asynchronous CAD/VLSI Group

Asynchronous CMOS Single-Track
Full-Buffer Standard Cell Library

Designed for: TSMC 0.25 µµµµm CMOS Process

 107

TERMS AND CONDITIONS

It is granted the permission, without fee or written agreement, to use, copy,
modify and distribute this library and its documentation for non-commercial use,
including educational and research, as long as this paragraph, the copyright notice
below and the following three paragraphs appears in all copies.

Copyright © 2004 University of Southern California. All Rights Reserved.

The University of Southern California (USC) copyrights this standard cell library

and documentation. The library and documentation are supplied "as is", without any
warranty from USC on their functionality or correctness. This library and its
documentation were developed for research purposes and should be assumed to be
preliminary in all cases.

IN NO EVENT SHALL THE UNIVERSITY OF SOUTHERN CALIFORNIA

BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING BUT NOT
LIMITED TO LOST PROFITS, ARISING OUT OF THE USE OF THIS LIBRARY
AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF SOUTHERN
CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

THE UNIVERSITY OF SOUTHERN CALIFORNIA SPECIFICALLY
DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE LIBRARY PROVIDED HEREUNDER IS ON AN
"AS IS" BASIS, AND THE UNIVERSITY OF SOUTHERN CALIFORNIA HAS NO
OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
ENHANCEMENTS, OR MODIFICATIONS.

TRADEMARKS
MOSIS, ISI and USC are trademark from the University of Southern California

(Los Angeles, CA). TSMC is a trademark of Taiwan Semiconductor Manufacture Co.,
LTD. (Taiwan). Nanosim and Hspice are trademarks of Synopsys, Inc. (Mountain
View, CA). Cadence, Dracula, Verilog, Virtuoso, Envisia and Silicon Ensemble are
trademarks of Cadence Design Systems, Inc. (San Jose, CA). All other trademarks are
proprietary of their respective owners.

 108

Contents

Terms and conditions ..107

Trademarks..107

Revisions ...111

Introduction ...112

Standard Cell Specifications.. 112

Using the Cell Library ... 113

References...114

Sub-cells ..115

INV_14_06... 115

INV_28_12... 116

NAND2B_28_12 .. 117

NAND2B_56_24 .. 118

NAND3_28_12... 119

NOR2B_14_12... 120

NOR2B_14_12FORK .. 121

NOR2B_14_12OD ... 122

NOR3B_14_12... 123

NOR3B_14_12FORK .. 124

NOR3B_14_12OD ... 125

STFB2_CORE2I .. 126

STFB2_CORE2I4O.. 127

STFB2_CORE4I .. 128

STFB_POUT.. 129

STFB_POUTMERGE .. 130

 109

Support Cells..131

FILL Cell ..131

FILLCAP3 ..131

INV1X...132

INV3X...132

INV12X...133

NAND2X2...133

NAND3X2...134

NAND4X2...135

NOR2BX1 ...136

NOR3BX1 ...137

TRISTATE3X ..138

STFB standard cells...139

STFB2_BITGEN...139

STFB2_BITGENSINGLE ...140

STFB2_BUCKET..141

STFB2_BUFFER..142

STFB2_FORK ..143

STFB2_MERGE ...144

STFB2_SRST ..147

STFB2_STSRALIGN...149

STFB2_XOR2 ...150

STFB3_AB_KPG..151

STFB3_AB_KPG2..152

STFB3_KPG2_KPG...153

STFB3_KPG2_KPG2...154

STFB3_KPGC_C..155

 110

STFB3_KPGC_C... 156

STFB3_KPGC_C2... 157

STFB_CHINIT ... 158

STFB_NPULSE ... 159

 111

Asynchronous CMOS Single-Track
Full-Buffer Standard Cell Library

Designed for: TSMC 0.25 µµµµm Process

REVISIONS
Revision Date From Description

0.1 27/Oct/03 M. Ferretti Original
0.2 06/Nov/03 M. Ferretti Added introduction
0.3 24/Jun/04 M. Ferretti,

S. Awasthi,
P. Pankaj

Added sub-cell STFB_POUTMERGE and
cells STFB2_MERGE, STFB2_MERGENC
and STFB2_BITGENSINGLE.

 112

INTRODUCTION

This is the companion documentation of the Single-Track Full-Buffer library

presented in [2] and [4], designed for the TSMC 0.25 µm process, and made available
through [5].

Standard Cell Specifications
Standard-cell specifications are the physical constraints utilized during the custom

layout of the cells. For example, the cell height, power lines width, location of routing
grid, etc. These are the same parameters utilized for synchronous cell designs and are
necessary to make automated placement and routing (P&R) feasible.

Routing Grid
The routing grids are the positions available for the P&R tool to place the routing wires and

connections to the cell’s IO pins. The pins specifications need to be in the grid and on a metal shape
whose width is an even multiple of minor spacing grid steps (0.01 µm) to avoid off-grid error messages
in the ASIC P&R phase.

Also, to increase the number of routing positions available over the cell, the
routing grid is offset with respect to the cell border by half of a grid space. Since the
width and height of the cell are, respectively, multiples of the horizontal and vertical
grid spaces, there are half-grid offsets on all sides of the cell as shown in Figure 1.

Figure 1 - Diagram of the utilized cell grid (a), cell height, N-well and power lines
dimensions (b).

Cell height

Horizontal gridhg/2

Vertical grid

vg/2

Cell width = n*hg

N-well

VDD/GND M1

Cell

b d

VDD line

G li

(a) (b)

 113

Cell dimensions, Power lines and N-well
The cell height and width are multiples of the horizontal and vertical grids

respectively. The height of our cells is 12.8 µm, which corresponds to 16 horizontal
grid steps. The width of our cells varies from 0.9 to 78.3 µm (1 to 87 vertical grid
steps).

Power lines (VDD and GND) don’t need to be in the grid since they are connected by abutting the
cells and by a plan-power phase. Also, the N-well needs to be continuous throughout the cell, even
when it is not been used, to avoid DRC errors after placement.

Using the Cell Library
The cells in this library where designed to be used with Cadence™ tools. The

P&R tool utilized is Silicon Ensemble™.

Library Sections
The sub-cells, presented in Section 0, are used as building blocks of the more

complex STFB cells shown in Section 0. The sub-cells cannot be directly utilized for
P&R. However, they save time and reduce errors when designing the bigger STFB
cells.

The support cells, presented in Section 0, can be used as regular cells in the P&R
since they satisfy the standard cells specifications. They perform basic logic functions,
inverters, nand and nor gates, and there are two special cells: FILL and FILLCAP3.

Placement
Usually, to allow a good placement, the row utilization factor is set to be between

60 to 85% during the floor-planning step. This means that, after the placement of the
cells required in the application circuitry, there will be some empty space in each row.
By utilizing the FILLCAP3 as the first filler cell, we can add bypass capacitance
throughout the circuitry (approximately 55 fF per filler cell). Then, we can utilize the
FILL cell, as the second filler cell, to close all the remaining gaps and avoid any DRC
errors related to power lines and N-well continuity.

Figure 2 - Example of M5 and M4 stripes used for power distribution.

A’

A

B’

B

M5 VDD

M5 GND

A - A’

B - B’
M5 VDD

M5 GND

M5 VDD

M5 GND

M5
M4
M3
M2
M1

Circuit
block

Stacked vias
V12, V23 and V34

Via V45

 114

Power-planning
Metal 5 is usually the thickest metal layer and it is mainly utilized for power

distribution. During the power-planning phase, besides a conventional power ring
around the circuit block, spaced vertical M4 stripes can be utilized to connect the
VDD and GND lines while allowing enough space for M4 vertical routing wires.
Then, on top of the entire circuit, wide horizontal M5 stripes can be placed connecting
VDD and GND to the M4 stripes as shown in Figure 2. This is an efficient way to
distribute the power minimizing voltage drop (IR-drop) and Electro-Migration effects.

Routing
The preference routing directions are horizontal, for the metal layers M1, M3 and

M5, and vertical, for M2 and M4. Since the STFB cells, shown in Section 0, are
complex cells, M2 was utilized for horizontal connections inside the cell. This was a
compromise solution in order to keep M3 and M4 free for routing while using M1 and
M2 inside the cells. Notice that, M2 utilized inside the cell is placed in the horizontal
grid allowing an easy way to define most of the cell’s pins.

REFERENCES

[1] W. J. Dally and J. Poulton, Digital Systems Engineering, Cambridge Univ. Press,
Cambridge, UK, 1998

[2] M. Ferretti and P. A. Beerel, “Single-Track Asynchronous Pipeline Templates
Using 1-of-N Encoding”, Proceedings of DATE, pp: 1008–1015, Paris, France,
March 2002.

[3] J. M. Rabaey, Digital Integrated Circuits, Prentice Hall Electronics and VLSI
Series, New Jersey, USA 1996.

[4] M. Ferretti and P. A. Beerel, “High Performance Asynchronous ASIC Back-End
Design Flow Using Single-Track Full-Buffer Standard Cell”, Submitted to
ASYNC’2004.

[5] USC Asynchronous CAD Group Standard Cell Library,
http://jungfrau.usc.edu/AsyncLib.html, October 2003.

 115

SUB-CELLS
Sub-cells were utilized as building blocks for the remaining cells in this library.

STFB cells are usually designed as a group of sub-cells and some specific circuitry.

INV_14_06

Description
Name: INV_14_06
Function: Minimum size inverter sub-cell.
Dimensions: 12.8 x 1.98 µm
Logic equation: aout =
Truth table:

Schematic (b) and symbol (a)

a out
0 1
1 0

out a

Widths in µµµµm and all

lengths 0.24 µµµµm

1.4

0.6

outa
(a)

(b)

 116

INV_28_12

Description
Name: INV_28_12
Function: Twice minimum size inverter sub-cell.
Dimensions: 12.8 x 1.98 µm
Logic equation: aout =
Truth table:

Schematic (b) and symbol (a)

a out
0 1
1 0

out a
Widths in µµµµm and all

lengths 0.24 µµµµm

2.8

1.2

out a
(a)

(b)

 117

NAND2B_28_12

Description
Name: NAND2B_28_12
Function: Symmetrized 2-input twice minimum size NAND gate.
Dimensions: 12.8 x 4.56 µm
Logic equation: baout ⋅=
Truth table:

Schematic (b) and symbol (a)

a b out
0 x 1
x 0 1
1 1 0

outa
b

b

a

out

(a)

(b)
Widths in µµµµm and

all lengths 0.24 µµµµm

2.8 2.8

1.2 1.2

1.2
1.2

 118

NAND2B_56_24

Description
Name: NAND2B_56_24
Function: Symmetrized 2-input 4 times minimum size NAND
gate.
Dimensions: 12.8 x 4.56 µm
Logic equation: baout ⋅=
Truth table:

Schematic (b) and symbol (a)

a b out
0 x 1
x 0 1
1 1 0

out
a

b

b

a

out

(a)

(b)
Widths in µµµµm and

all lengths 0.24 µµµµm

5.6 5.6

2.4 2.4

2.4
2.4

 119

NAND3_28_12

Description
Name: NAND3_28_12
Function: 3-input 2 times minimum size NAND gate.
Dimensions: 12.8 x 3.93 µm
Logic equation: cbaout ⋅⋅=
Truth table:

Schematic (b) and symbol (a)

a b c out
0 x x 1
x 0 x 1
x x 0 1
1 1 1 0

out
a
b
c

b

a

out

(a)

(b)

2.8 2.8

3.6

3.6Widths in µµµµm and

all lengths 0.24 µµµµm

2.8

c
3.6

 120

NOR2B_14_12

Description
Name: NOR2B_14_12
Function: Symmetrized 2-input minimum size NOR gate.
Dimensions: 12.8 x 4.24 µm
Logic equation: baout +=
Truth table:

Schematic (b) and symbol (a)

a b out
1 x 0
x 1 0
0 0 1

b

a

(a) out

(b)

1.4

1.2 1.2

Widths in µµµµm and

all lengths 0.24 µµµµm

1.4

1.4
1.4

a
b out

 121

NOR2B_14_12FORK

Description
Name: NOR2B_14_12FORK
Function: Symmetrized 2-input minimum size NOR gate, prepared

to be used in a dual output channel cell.
Dimensions: 12.8 x 4.24 µm
Logic equation: baout +=
Truth table:

Schematic (b) and symbol (a)

* To be connected to GND when this sub-cell is used.

a b out
1 x 0
x 1 0
0 0 1

b

a

(a) out

(b)

1.4

1.2 1.2

Widths in µµµµm and

all lengths 0.24 µµµµm

1.4

1.4
1.4

a
b out

* *

 122

NOR2B_14_12OD

Description
Name: NOR2B_14_12
Function: Symmetrized 2-input minimum size NOR gate with

open-drain output.
Dimensions: 12.8 x 4.24 µm
Logic equation: baout +=
Truth table:

Schematic (b) and symbol (a)

a b out od
1 x 0 z
x 1 0 z
0 0 1 0

b

a

(a) out

(b)

1.4

1.2 1.2
Widths in µµµµm and

all lengths 0.24 µµµµm

1.4

1.4
1.4

a
b out 4.8

od

od

 123

NOR3B_14_12

Description
Name: NOR3B_14_12
Function: Symmetrized 3-input minimum size NOR gate.
Dimensions: 12.8 x 6.3 µm
Logic equation: cbaout ++=
Truth table:

Schematic (b) and symbol (a)

a b c out
1 x x 0
x 1 x 0
x x 1 0
0 0 0 1

b

a

(a)

out

(b)

2.1

1.2 1.2

2.1

2.1
2.1

a
b
c

out

Widths in µµµµm and
all lengths 0.24 µµµµm

2.1
2.1

1.2

c

 124

NOR3B_14_12FORK

Description
Name: NOR3B_14_12FORK
Function: Symmetrized 3-input minimum size NOR gate.
Dimensions: 12.8 x 5.52 µm
Logic equation: cbaout ++=
Truth table:

Schematic (b) and symbol (a)

* To be connected to GND when the sub-cell is used.

a b c out
1 x x 0
x 1 x 0
x x 1 0
0 0 0 1

b

a

(a)

out

(b)

2.1

1.2 1.2

2.1

2.1
2.1

a
b
c

out

Widths in µµµµm and
all lengths 0.24 µµµµm

2.1
2.1

1.2

c

* * *

 125

NOR3B_14_12OD

Description
Name: NOR3B_14_12OD
Function: Symmetrized 3-input minimum size NOR gate with

open drain output.
Dimensions: 12.8 x 5.52 µm
Logic equation: cbaout ++=
Truth table:

Schematic (b) and symbol (a)

a b c out od
1 x x 0 z
x 1 x 0 z
x x 1 0 z
0 0 0 1 0

b

a

(a)

out

(b)

2.1

1.2 1.2

2.1

2.1
2.1

a
b
c

out

Widths in µµµµm and
all lengths 0.24 µµµµm

2.1
2.1

1.2

c
4.8

odod

 126

STFB2_CORE2I

Description
Name: STFB2_CORE2I
Function: Core sub-cell for a STFB stage with 1-input and 1-

output dual-rail channels.
Dimensions: 12.8 x 29.61 µm

Schematic (b) and symbol (a)

(a)

(b)

5 5

a0 a1

B

Widths in µµµµm and
all lengths 0.24 µµµµm

C

B
S R

INV_14_06

B
S R R0

R1

S0

S1

5 5

a0 a1

S0
S1

A

NReset

NAND2B_28_12

NOR2B_14_12OD

STFB_POUT

STFB_POUT

S0
S1
a0
a1
C

R0
R1

NReset

 127

STFB2_CORE2I4O

Description
Name: STFB2_CORE2I4O
Function: Core sub-cell for a STFB stage with 1-input and 2-

output dual-rail channels.
Dimensions: 12.8 x 48.13 µm

Schematic (b) and symbol (a)

(a)

(b)

5 5

a0 a1

Ba

Widths in µµµµm and
all lengths 0.24 µµµµm

C

B
S R

INV_14_06

B
S R R0a

R1a

S0

S1

5 5

a0 a1

S0
S1

A

NReset

NAND2B_28_12

NOR2B_14_12FORK

STFB_POUT

STFB_POUT

S0
S1
a0
a1
C

R0a
R1a
R0b
R1b

 NReset

Bb

B
S R

B
S R R0b

R1b

S0

S1

NOR2B_14_12FORK

STFB_POUT

STFB_POUT

3.6 3.6

3.6
3.6

Ba

Bb

 128

STFB2_CORE4I

Description
Name: STFB2_CORE4I
Function: Core sub-cell for a STFB stage with 2-input and 1-

output dual-rail channels.
Dimensions: 12.8 x 31.58 µm

Schematic (b) and symbol (a)

(a)

(b)

5 5

a0 a1

B

Widths in µµµµm and
all lengths 0.24 µµµµm

C

B
S R

INV_28_12

B
S R R0

R1

S0

S1

5 5

a0 a1

S0
S1

A

NReset

NAND2B_56_24

NOR2B_14_12OD

STFB_POUT

STFB_POUT

S0
S1
a0
a1
b0
b1
C

R0
R1

NReset

5
5

b0 b1

5
5

b0 b1

 129

STFB_POUT

Description
Name: STFB_POUT
Function: Single-track output driver with staticizer.
Dimensions: 12.8 x 7.14 µm
Pins: “R” drives one of the 1-of-N wires in the output
channel.
 “S” is driven low by the N-stack driving “R” high.
 “B” is driven low when the output channel is “busy”.
Operation: The STFB_POUT sub-cell includes the staticizer

structure and three PMOS transistors utilized to restore
the state input (“S”) high. If the output channel is empty,
“R” is low, the “B” signal is high, and “NR” is high.
During this time, M7 alone fights leakage and holds “S”
high. At the same time, M2 and M3 hold “R” low. When
“S” is driven low, the output driver PMOS transistor M1
drives the output “R” high, which makes the minimum
size inverter drive “NR” low, deactivating M3 and
activating M4 and M5. The RCD (not shown) will also
make the “B” signal fall activating M6. M4 will hold the
line high while M5 and M6 drive “S” high, turning off
M1.

Schematic (b) and symbol (a)

S
R

B

M2

M1

M3

M4
M5M6 M7

NR

B
S R

(a)

(b)

0.6

Widths in µµµµm and all
lengths 0.24 µµµµm

2.8

0.610

1.2

1.2

1.4/0.6 0.3

 130

STFB_POUTMERGE

Description
Name: STFB_POUTMERGE
Function: Single-track double output driver with staticizer.
Dimensions: 12.8 x 11.18 µm
Pins: “R” drives one of the 1-of-N wires in the output
channel.
 “Sa and Sb” are driven low by the respective N-stack to

drive “R” high.
 “Ba and Bb” are driven low when the output channel is

“busy”.
Operation: Same as STFB_POUT sub-cell but with two

independent set of inputs (S,B), allowing the merge of
two states to one output channel.

Schematic (b) and symbol (a)

Sa
R

Ba

M2

M1

M3

M4
M5M6 M7

NR(a)

(b)

0.6

Widths in µµµµm and all
lengths 0.24 µµµµm

2.8

0.610

0.8

0.8

2.8/1.2 0.3

Ba
Sa
Bb
Sb

R

STFB_POUTMERGE

Sb
Bb

M11
M15M16 M17

0.6 2.8

10

0.3

M8
0.8

M12
0.8

0.8

M18
0.8

M13

Sb

Sa

 131

SUPPORT CELLS
These are the cells that were utilized as support circuitry to the STFB cells. They

are designed to be used in the automated P&R flow.

FILL Cell

Description
Name: FILL
Function: To avoid DRC errors, the filler cell allows a continuous

VDD, GND, N-well and implants.
Dimensions: 12.8 x 0.9 µm

FILLCAP3

Description
Name: FILLCAP3
Function: To reduce the power supply ripple, this cell inserts two

bypass capacitors implemented with transistors [1].
Also, to avoid DRC errors, it allows a continuous VDD,
GND, N-well and implants. The total capacitance per
cell is 55 fF.

Dimensions: 12.8 x 2.7 µm

Schematic

W = 3.87 µµµµm
 L = 0.98 µµµµm

W = 5.03 µµµµm
 L = 0.98 µµµµm

 132

INV1X

Description
Name: INV1X
Function: Minimum size inverter.
Dimensions: 12.8 x 2.7 µm
Logic equation: aout =
Truth table:

Schematic (b) and symbol (a)

INV3X

Description
Name: INV3X
Function: Three times minimum size inverter.
Dimensions: 12.8 x 2.7 µm
Logic equation: aout =
Truth table:

Schematic (b) and symbol (a)

a out
0 1
1 0

a out
0 1
1 0

out a

Widths in µµµµm and all
lengths 0.24 µµµµm

1.4

0.6

out a

out a

Widths in µµµµm and all
lengths 0.24 µµµµm

4.2

1.8

out a
(a)

(b)

(a)

(b)

 133

INV12X

Description
Name: INV12X
Function: 12 times minimum size inverter.
Dimensions: 12.8 x 6.3 µm
Logic equation: aout =
Truth table:

Schematic (b) and symbol (a)

NAND2X2

Description
Name: NAND2X2
Function: 2-input 2 times minimum size NAND gate.
Dimensions: 12.8 x 3.6 µm
Logic equation: baout ⋅=
Truth table:

Schematic (b) and symbol (a)

a out
0 1
1 0

a b out
0 x 1
x 0 1
1 1 0

outa

Widths in µµµµm and all
lengths 0.24 µµµµm

16.8

7.2

out a

outa
b

b

a

out

(a)

(b)

2.8 2.8

2.4

2.4

(a)

(b)

 134

NAND3X2

Description
Name: NAND3X2
Function: 3-input 2 times minimum size NAND gate.
Dimensions: 12.8 x 4.5 µm
Logic equation: cbaout ⋅⋅=
Truth table:

Schematic (b) and symbol (a)

a b c out
0 x x 1
x 0 x 1
x x 0 1
1 1 1 0

out
a
b
c

b

a

out

(a)

(b)

2.8 2.8

3.6

3.6Widths in µµµµm and
all lengths 0.24 µµµµm

2.8

c
3.6

 135

NAND4X2

Description
Name: NAND4X2
Function: 4-input 2 times minimum size NAND gate.
Dimensions: 12.8 x 5.4 µm
Logic equation: dcbaout ⋅⋅⋅=
Truth table:

Schematic (b) and symbol (a)

a b c d out
0 x x x 1
x 0 x x 1
x x 0 x 1
x x x 0 1
1 1 1 1 0

out
a
b
c
d

b

a

out

(a)

(b)

2.8 2.8

3.6

3.6Widths in µµµµm and
all lengths 0.24 µµµµm

2.8

c
3.6

2.8

d 3.6

 136

NOR2BX1

Description
Name: NOR2BX1
Function: Symmetrized 2-input minimum size NOR gate.
Dimensions: 12.8 x 4.5 µm
Logic equation: baout +=
Truth table:

Schematic (b) and symbol (a)

a b out
1 x 0
x 1 0
0 0 1

b

a

(a) out

(b)

1.4

1.2 1.2

Widths in µµµµm and
all lengths 0.24 µµµµm

1.4

1.4
1.4

a
b out

 137

NOR3BX1

Description
Name: NOR3BX1
Function: Symmetrized 3-input minimum size NOR gate.
Dimensions: 12.8 x 6.3 µm
Logic equation: cbaout ++=
Truth table:

Schematic (b) and symbol (a)

a b c out
1 x x 0
x 1 x 0
x x 1 0
0 0 0 1

b

a

(a)

out

(b)

2.1

1.2 1.2

2.1

2.1
2.1

a
b
c

out

Widths in µµµµm and
all lengths 0.24 µµµµm

2.1
2.1

1.2

c

 138

TRISTATE3X

Description
Name: TRISTATE3X
Function: 3 times minimum size tristate buffer.
Dimensions: 12.8 x 9.9 µm
Logic equation: If enabled (En = 1 and NEn = 0): out = a
 If disabled (En = 0 and NEn = 1): out = z
Truth table:

Schematic (b) and symbol (a)

En NEn a out
1 0 0 0
1 0 1 1
0 1 x z

out a

Widths in µµµµm and all
lengths 0.24 µµµµm

4.2

1.8

(a)

(b)

En

NEn

NAND2X2

NOR2BX1

En

NEn

out a

 139

STFB STANDARD CELLS
This are the STFB cells utilized for automatic P&R.

STFB2_BITGEN

Description
Name: STFB2_BITGEN
Function: Generates dual-rail single-track tokens.
Dimensions: 12.8 x 25.2 µm
Pins: D: single-rail data input.
 En: enable signal.
 R0-R1: output dual-rail single-track channel.
Operation: If En = 1, then the value of D is used to continuously

generate tokens of the same value.

Schematic (b) and symbol (a)

(a)

(b)

3.6

S1

B

Widths in µµµµm and
all lengths 0.24 µµµµm

C

B
S R

INV_14_06

B
S R R0

R1

S0

S1

3.6En

D

NOR2B_14_12OD

STFB_POUT

STFB_POUT

D
En

R0

3.6

S0

3.6

C

 140

STFB2_BITGENSINGLE

Description
Name: STFB2_BITGENSINGLE
Function: Generates one dual-rail single-track token at the falling

edge of the NEN signal.
Dimensions: 12.8 x 36 µm
Pins: D: single-rail data input.
 NEN: falling edge enable signal.
 R0-R1: output dual-rail single-track channel.
Operation: If NEN = ↓, then the value of D is used to generate a

single token of the same value as D. It is assumed that
the output channel is empty.

Schematic (b) and symbol (a)

(a)

(b)

3.6

S1

Widths in µµµµm and
all lengths 0.24 µµµµm

B
S R

INV_14_06

B
S R R0

R1

S0

S1

3.6NEN

D

STFB_POUT

STFB_POUTD
 NEN

R0

3.6

S0

3.6

INV_28_12

 in Npulse
INV_28_12

 141

STFB2_BUCKET

Description
Name: STFB2_BUCKET
Function: Consumes dual-rail single-track tokens.
Dimensions: 12.8 x 25.2 µm
Pins: a0-a1: dual-rail data input.
 NReset: active low reset.
Operation: If NReset = 0, then drives the dual-rail input (a0-a1)

low.
If NReset = 1, then consumes any dual-rail token that
arrives at the input (a0-a1).

Schematic (b) and symbol (a)

(a)

(b)

B

Widths in µµµµm and
all lengths 0.24 µµµµm

NOR2B_14_12

a0
a1 NReset

5 5

a0 a1

NReset
A

NAND2B_28_12

 142

STFB2_BUFFER

Description
Name: STFB2_BUFFER
Function: Copies the input token to the output, both dual-rail

single-track channels.
Dimensions: 12.8 x 32.4 µm
Pins: L0-L1: input dual-rail single-track channel.
 R0-R1: output dual-rail single-track channel.
 NReset: active low reset.
Operation (HSE): STFB2_BUFFER ≡ ∗ [[¬R∧ L→R↑]; L↓]

Schematic (b) and symbol (a)

(a)

(b)

2.4

S1

Widths in µµµµm and
all lengths 0.24 µµµµm

R0
R1

S0
S1
L0
L1
 C

L0 L1

L0
L1

R0
R1

S0

C

S0
S1
a0
a1
C

R0
R1

NReset

2.4

NReset

STFB2_CORE2I

NReset

 143

STFB2_FORK

Description
Name: STFB2_FORK
Function: Copies the input token to the two outputs, all dual-rail

single-track channels.
Dimensions: 12.8 x 50.4 µm
Pins: L0-L1: input dual-rail single-track channel.
 R0a-R1a: output dual-rail single-track channel.
 R0b-R1b: output dual-rail single-track channel.
 NReset: active low reset.
Operation (HSE): STFB2_FORK ≡ ∗ [[¬Ra∧¬ Rb∧ L→Ra↑, Rb↑]; L↓]

Schematic (b) and symbol (a)

(a)

(b)

2.4

S1

Widths in µµµµm and
all lengths 0.24 µµµµm

R0a
R1a
R0b
R1b

S0
S1
L0
L1
 C

L0 L1

L0
L1

R0a
R1a

R0b
R1b

S0

C

S0
S1
a0
a1
C

R0a
R1a
R0b
R1b

 NReset

2.4

NReset

STFB2_CORE2I4O

NReset

 144

STFB2_MERGE

Description
Name: STFB2_MERGE
Function: Based on the value of a control token, forward one of

the input tokens to the output.
Dimensions: 12.8 x 51.3 µm
Pins: a0-a1: input dual-rail single-track channel.
 b0-b1: input dual-rail single-track channel.
 c0-c1: input dual-rail single-track channel.
 R0-R1: output dual-rail single-track channel.
 NReset: active low reset.
Operation (HSE): STFB2_MERGE

 ≡ ∗ [[¬R∧ a∧ c0→R↑]; a↓; c0↓ || [¬R∧ b∧ c1→R↑]; b↓; c1↓]

Schematic (b) and symbol (a)

(a)

R0
R1

a0
a1

b0
b1

NReset

c0 c1

(b)

5 5

a0 a1 b0 b1 c0 c1
INV_28_12

5 5
S0a
S1a

Ac NReset

NAND2B_56_24

5

5

B

Ba
Sa
Bb
Sb

R R0
S0a

S0b

STFB_POUTMERGE

NOR2B_14_12OD

5 5
S0b
S1b

NAND2B_56_24

5

a0 a1

b0 b1

c0

c1

C

3.6

S1b

b0 b1

S0b

3.6

c1 3.6 3.6

3.6

S1a

a0 a1

S0a

C

3.6

c0 3.63.6

Widths in µµµµm and all lengths 0.24 µµµµm

Aa

Ab

5 5 5

Ba
Sa
Bb
Sb

R
S0a

S0b

STFB_POUTMERGE

R1

 145

STFB2_MERGENC

Description
Name: STFB2_MERGENC
Function: Forward any input tokens to the output. The input tokens

must be mutually exclusive.
Dimensions: 12.8 x 36 µm
Pins: a0-a1: input dual-rail single-track channel.
 b0-b1: input dual-rail single-track channel.
 R0-R1: output dual-rail single-track channel.
 NReset: active low reset.
Operation (HSE): STFB2_MERGENC ≡ ∗ [[¬R∧(a | b)→R↑]; a↓; b ↓]

Schematic (b) and symbol (a)

(a)

R0
R1

a0
a1

b0
b1

NReset

(b)

2.4

S1

b0 b1

S0

2.4 2.4

S1

a0 a1

S0

C

2.4

Widths in µµµµm and all lengths 0.24 µµµµm

R0
R1

S0

S1

a0

a1

STFB2_CORE4I

S0
S1
a0
a1
b0
b1
C

R0
R1

NReset

NReset

 146

STFB2_SPLIT

Description
Name: STFB2_SPLIT
Function: Copies the input token to the one of the outputs based on

a control token, all dual-rail single-track channels.
Dimensions: 12.8 x 63.9 µm
Pins: L0-L1: data input dual-rail single-track channel.

C0-C1: control input dual-rail single-track channel.
 R0a-R1a: output dual-rail single-track channel.
 R0b-R1b: output dual-rail single-track channel.
 NReset: active low reset.
Operation (HSE):

STFB2_SPLIT ≡ ∗ [[¬Ra∧ C0∧ L→Ra↑ | ¬Rb∧ C1∧ L→Rb↑]; L↓, C↓]

Schematic (b) and symbol (a)

 (b)

5 5

L0 L1
INV_28_12

5 5
S0a
S1a

Ac NReset

NAND2B_56_24

5
5

C0 C1

5

Ba

B R

B R R0a

R1a

S0a

S1a

NOR2B_14_12OD

STFB_POUT

STFB_POUT

Bb

B R

B R R0b

R1b

S0b

S1b

NOR2B_14_12OD

STFB_POUT

STFB_POUT

5 5
S0b
S1b

NAND2B_56_24

5

L0 L1

L0 L1

C0

C1

Ca

Cb

(a)

C0
L0
L1

R0a
R1a

R0b
R1b

NReset

C1
3.6

S1b

L0 L1

S0b

Cb

3.6

C1 3.6 3.6

3.6

S1a

L0 L1

S0a

Ca

3.6

C0 3.63.6

Widths in µµµµm and all lengths 0.24 µµµµm

Aa

Ab

 147

STFB2_SRST

Description
Name: STFB2_SRST
Function: Converts a single-rail value to a single-track token.
Dimensions: 12.8 x 30.6 µm
Pins: D: single-rail data input.

C: single-rail control input.
 R0-R1: output dual-rail single-track channel.
Operation: At positive edge of the control signal (C), the value of

the data (D) is converted to dual-rail single-track (R0-
R1).

Schematic (b) and symbol (a)

(b)

D

3x INV_14_06

3x NAND2B_28_12

C
R1

(a)

D
 C

R0
R1

Widths in µµµµm and
all lengths 0.24 µµµµm

R0

INV_28_12

10

10

INV_14_06

 148

STFB2_STSR

Description
Name: STFB2_STSR
Function: Converts a dual-rail single-track token to a single-rail

value.
Dimensions: 12.8 x 21.6 µm
Pins: L0-L1: dual-rail single-track data input.
 NReset: active low reset.

Q: single-rail data output.
NQ: complemented single-rail data output.
R0-R1: output dual-rail single-track channel.

Operation: When a token arrives in the dual-rail single-track
channel (L0-L1), its value is utilized to set the single-
rails outputs (Q and NQ) and the token is consumed.

Schematic (b) and symbol (a)

(b)

(a)

L0
L1

 Q

Widths in µµµµm and
all lengths 0.24 µµµµm

NReset

B

NOR2B_14_12

5 5

L0 L1

NReset
A

NAND2B_28_12

Q

NQ

2x NOR2B_14_12

 149

STFB2_STSRALIGN

Description
Name: STFB2_STSRALIGN
Function: Converts a dual-rail single-track token to a single-rail

value and waits for a command to consume the token.
Dimensions: 12.8 x 21.6 µm
Pins: L0-L1: dual-rail single-track data input.
 NReset: active low reset.

Q: single-rail data output.
NQ: complemented single-rail data output.
R0-R1: output dual-rail single-track channel.

Operation: When a token arrives in the dual-rail single-track
channel (L0-L1), its value is utilized to set the single-
rails outputs (Q and NQ) and the token is consumed.

Schematic (b) and symbol (a)

(b)

(a)

L0
L1
NAck

NQ
Empty

Widths in µµµµm and
all lengths 0.24 µµµµm

NReset

Empty

NOR2B_14_12

5 5

L0 L1

NReset A

NAND2B_28_12

NQ

2x NOR2B_14_12

 150

STFB2_XOR2

Description
Name: STFB2_XOR2
Function: Performs the exclusive-or operation on the input tokens

and generate an output token, all dual-rail single-track
channels.

Dimensions: 12.8 x 36.9 µm
Pins: a0-a1: “a” input dual-rail single-track channel.
 b0-b1: “b” input dual-rail single-track channel.

R0-R1: output dual-rail single-track channel.
 NReset: active low reset.
Operation (HSE): STFB2_XOR2 ≡ ∗ [[¬R∧ a∧ b→R↑]; a↓ b↓]

Schematic (b) and symbol (a)

(a)

(b)

3.6

S1

Widths in µµµµm and
all lengths 0.24 µµµµm

R0
R1

S0

S1

a0

a1

a0 a1

S0

C

3.6

STFB2_CORE4I

S0
S1
a0
a1
b0
b1
C

R0
R1

NReset

a0
a1
b0
b1

R0
R1

NReset

NReset

3.6

S1 S0

3.6 b0

3.6 3.6 3.6 3.6 b1 b1

 151

STFB3_AB_KPG

Description
Name: STFB2_AB_KPG
Function: Generates one 1-of-3 token form two dual-rail input

tokens.
Dimensions: 12.8 x 49.5 µm
Pins: a0-a1: “a” input dual-rail single-track channel.
 b0-b1: “b” input dual-rail single-track channel.

KPG: 1-of-3 single-track output channel.
 NReset: active low reset.
Operation: K = a0.b0; P = a1.b0 + a0.b1; G = a1.b1

Schematic (b) and symbol (a)

(a)

(b)

3.6

Sp

Widths in µµµµm and all lengths 0.24 µµµµm

a0 a1

Sk

C

3.6 3.6

SpSg

3.6 b0

3.6 3.6 3.63.6 b1 b1

5 5
NReset

Sk
Aa

NAND2B_56_24

5

B

B
S R

B
S R

Sk

NOR3B_14_12OD

STFB_POUT

STFB_POUT

5 5
Sp
Sg

Ab
NAND2B_56_24

5

a0 a1

a0 a1

b0

b1

C

5

b1

b0

5

B
S R

STFB_POUT

Sp

Sg

K

P

G

a0
a1
b0
b1

K
P
G

NReset

 152

STFB3_AB_KPG2

Description
Name: STFB2_AB_KPG2
Function: Generates two 1-of-3 token form two dual-rail input

tokens.
Dimensions: 12.8 x 77.4 µm
Pins: a0-a1: “a” input dual-rail single-track channel.
 b0-b1: “b” input dual-rail single-track channel.

KaPaGa: 1-of-3 single-track output channel.
 KbPbGb: 1-of-3 single-track output channel.

NReset: active low reset.
Operation: K = a0.b0; P = a1.b0 + a0.b1; G = a1.b1

Schematic (b) and symbol (a)

(a)

(b)

4.8

Sp

Widths in µµµµm and all lengths 0.24 µµµµm

a0 a1

Sk

C

4.8 4.8

SpSg

4.8 b0

4.8 4.8 4.84.8 b1 b1

5 5
NReset

Sk
Aa

NAND2B_56_24

5

Bb

B
S R

B
S R

Sk
STFB_POUT

STFB_POUT5 5
Sp
Sg

Ab
NAND2B_56_24

5

a0 a1

a0 a1

b0

b1

5

b1

b0

5

B
S R

STFB_POUT

Sp

Sg

Kb

Pb

Gb

a0
a1
b0
b1

Ka
Pa
Ga

NReset

Ba

B
S R

B
S R

Sk

NOR3B_14_12FORK

STFB_POUT

STFB_POUT

B
S R

STFB_POUT

Sp

Sg

Ka

Pa

Ga

Kb
Pb
Gb

4.8 4.8

4.8
4.8

Ba

Bb

NOR3B_14_12FORK

 153

STFB3_KPG2_KPG

Description
Name: STFB2_KPG2_KPG
Function: Generates one 1-of-3 token form two 1-of-3 input

tokens.
Dimensions: 12.8 x 49.5 µm
Pins: LkLpLg: “Left” input 1-of-3 single-track channel.
 RkRpRg: “Right” input 1-of-3 single-track channel.

KPG: 1-of-3 single-track output channel.
 NReset: active low reset.
Operation: K = Rk+Rp.Lk; P = Rp.Lp; G = Rg+Rp.Lg

Schematic (b) and symbol (a)

(a)

SpSk

C

Sg

3.6 Lk

B

B
S R

B R

Sk

NOR3B_14_12OD

STFB_POUT

STFB_POUT

C

B
S R

STFB_POUT

Sp

Sg

K

P

G

Lk
Lp
Lg
Rk
Rp
Rg

K
P
G

NReset

3.6 Lp 3.6Lg 3.6Rp

3.6 Rk 3.6Rg 3.6Lk 3.6 Lg 3.6Lp

Sk Sg

 154

STFB3_KPG2_KPG2

Description
Name: STFB2_KPG2_KPG
Function: Generates two 1-of-3 tokens form two 1-of-3 input
tokens.
Dimensions: 12.8 x 78.3 m
Pins: LkLpLg: "Left" input 1-of-3 single-track channel.
 RkRpRg: "Right" input 1-of-3 single-track channel.

KaPaGa: 1-of-3 single-track output channel.
 KbPbGb: 1-of-3 single-track output channel.
 NReset: active low reset.
Operation: K = Rk+Rp.Lk; P = Rp.Lp; G = Rg+Rp.Lg

(b)

Widths in µµµµm and all lengths 0.24 µµµµm

5 5
NReset

Sk
Aa

NAND2B_56_24

5

5 5
Sp
Sg

Ab
NAND2B_56_24

5

Lk Lp Lg Rk Rp Rg

5

5

5

5

5

5

Lk Lp Lg Rk Rp Rg

 155

Schematic (b) and symbol (a)

(a)

(b) Widths in µµµµm and all lengths 0.24 µµµµm

C

Bb

B
S R

B
S R

Sk
STFB_POUT

STFB_POUT

B
S R

STFB_POUT

Sp

Sg

Kb

Pb

Gb

Ka
Pa
Ga

NReset

Ba

B
S R

B
S R

Sk

NOR3B_14_12FORK

STFB_POUT

STFB_POUT

B
S R

STFB_POUT

Sp

Sg

Ka

Pa

Ga

Kb
Pb
Gb

4.8 4.8

4.8
4.8

Ba

Bb

NOR3B_14_12FORK

5 5
NReset

Sk
Aa

NAND2B_56_24

5

5 5
Sp
Sg

Ab
NAND2B_56_24

5

Lk Lp Lg Rk Rp Rg

5

5

5

5

5

5

Lk Lp Lg Rk Rp Rg

Lk
Lp
Lg
Rk
Rp
Rg

SpSk Sg

4.8 Lk 4.8 Lp 4.8Lg 4.8Rp

4.8 Rk 4.8Rg 4.8Lk 4.8 Lg 4.8Lp

Sk Sg

 156

STFB3_KPGC_C

Description
Name: STFB2_KPGC_C
Function: Generates one dual-rail token form one 1-of-3 and one

dual-rail input tokens.
Dimensions: 12.8 x 39.6 µm
Pins: C0-C1: “Carry” input dual-rail single-track channel.

KPG: “kpg” input 1-of-3 single-track channel.
 R0-R1: “Carry out” output dual-rail single-track
channel.
 NReset: active low reset.
Operation: R0 = K.(C0+C1)+P.C0; R1 = G.(C0+C1)+P.C1

Schematic (b) and symbol (a)

(a)

(b)

Widths in µµµµm and all lengths 0.24 µµµµm

K

C

S0

3.6

3.6 C0

C0
C1
K
P
G NReset

B

C

B
S R

B
S R R0

R1

S0

S1

NOR2B_14_12OD

STFB_POUT

STFB_POUT

5 5
NReset

5

5 5
S0
S1

A
NAND2B_56_24

5

K P G C0 C1

5

5

5

5

K P G C0 C1

INV_28_12

G

S1

3.6

3.6 C1

C0

S0

3.6

3.6P

C1

S1

3.6

3.6P

R0
R1

 157

STFB3_KPGC_C2

Description
Name: STFB2_AB_KPG2
Function: Generates two dual-rail token form one 1-of-3 and one

dual-rail input tokens.
Dimensions: 12.8 x 59.4 µm
Pins: C0-C1: “Carry” input dual-rail single-track channel.

KPG: “kpg” input 1-of-3 single-track channel.
 C0a-C1a: “Carry out” output dual-rail single-track
channel.
 C0b-C1b: “Carry out” output dual-rail single-track
channel.
 NReset: active low reset.
Operation: C0a/b = K.(C0+C1)+P.C0; C1a/b = G.(C0+C1)+P.C1

Schematic (b) and symbol (a)

C

4.8 4.8

4.8
4.8

Ba

Bb

K

S0

4.8

4.8C0

G

S1

4.8

4.8 C1

C0

S0

4.8

4.8P

C1

S1

4.8

4.8P

Ba

B
S R

B
S R C0a

C1a

S0

S1

NOR2B_14_12FORK

STFB_POUT

STFB_POUT

Bb

B
S R

B
S R C0b

C1b

S0

S1

NOR2B_14_12FORK

STFB_POUT

STFB_POUT

(a)

C0
C1
K
P
G NReset

C0a
C1a
C0b
C1b

 158

STFB_CHINIT

Description
Name: STFB_CHINIT
Function: Inserts a token in a 1-of-N single-track channel.
Dimensions: 12.8 x 14.4 µm
Pins: in: single-rail trigger input.

R: open-drain output to be connected to a wire in a
single-track channel.

Operation: At positive edge of the control signal (in), the open-
drain output (R) inserts a token in a 1-of-N single-track
channel.

Schematic (b) and symbol (a)

(b)Widths in µµµµm and all lengths 0.24 µµµµm

5 5
NReset

5

5 5
S0
S1

A
NAND2B_56_24

5

K P G C0 C1

5

5

5

5

K P G C0 C1

INV_28_12

(b)

3x INV_14_06

in
R

(a)

 in R
Widths in µµµµm and
all lengths 0.24 µµµµm

10

NAND2B_28_12

 159

STFB_NPULSE

Description
Name: STFB_NPULSE
Function: Generates a 3-transistion negative pulse.
Dimensions: 12.8 x 14.4 µm
Pins: in: single-rail trigger input.

Npulse: single-rail output.
Operation: At positive edge of the control signal (in), the single-rail

output (Npulse) stays low during 3-transitions (3 gate-
dalays).

Schematic (b) and symbol (a)

(b)

3x INV_14_06

in
Npulse

(a)

 in Npulse

NAND2B_28_12

 160

APPENDIX B: DEMONSTRATION CHIP SCHEMATICS

This appendix shows the schematics used to implement the demonstration chip
ASYNC1b. All levels are expanded down to basic cells shown in the appendix A.

Figure 1. (STFBCHIP) Top level schematic with pads for LVS of the STFB circuits.

...161

Figure 2. (STFBBLOCKS) Main STFB circuit blocks. ...161

Figure 3. (INPUTGEN129BY9) 129-bit input generating block.162

Figure 4. (STFB2_SPLIT11) 11-bit split..162

Figure 5. (STFB2_SPLIT10) 10-bit split..163

Figure 6. (STFB2_SPLIT9) 9-bit split..163

Figure 7. (STFB2_SPLIT8) 8-bit split..164

Figure 8. (STFB2_RING9) 9-stage ring. ..164

Figure 9. (ADDER64) 64-bit STFB prefix adder schematic (with input and output
details)...165

Figure 10. (SAMPLER65BY1000) Output sampler schematic..................................166

Figure 11. (STFB2_RING30) 30-stage STFB ring. ...166

Figure 12. (SAMPLER65) 65-bit split schematic and some details...........................167

Figure 13. (STFB_SAMPLER2) 2-bit sampler schematic. ..168

Figure 14. (STFB2_MUX64TO8) 3-bit counter implemented with self-initialized rings.
...168

Figure 15. (STFB2_MUX64TO8) 64 to 8-bit merge tree. ...169

Figure 16. (STFB2_MUX16TO8) 16 to 8-bit merge schematic.169

Figure 17. (STFB2_ST8SRALIGN) 8-bit single-track to single-rail conversion
schematic...170

 161

Figure 1. (STFBCHIP) Top level schematic with pads for LVS of the STFB circuits.

Figure 2. (STFBBLOCKS) Main STFB circuit blocks.

 162

Figure 3. (INPUTGEN129BY9) 129-bit input generating block.

Figure 4. (STFB2_SPLIT11) 11-bit split.

 163

Figure 5. (STFB2_SPLIT10) 10-bit split.

Figure 6. (STFB2_SPLIT9) 9-bit split.

 164

Figure 7. (STFB2_SPLIT8) 8-bit split.

Figure 8. (STFB2_RING9) 9-stage ring.

 165

Figure 9. (ADDER64) 64-bit STFB prefix adder schematic (with input and output details).

 166

Figure 10. (SAMPLER65BY1000) Output sampler schematic.

Figure 11. (STFB2_RING30) 30-stage STFB ring.

 167

Figure 12. (SAMPLER65) 65-bit split schematic and some details.

 168

Figure 13. (STFB_SAMPLER2) 2-bit sampler schematic.

Figure 14. (STFB2_MUX64TO8) 3-bit counter implemented with self-initialized rings.

 169

Figure 15. (STFB2_MUX64TO8) 64 to 8-bit merge tree.

Figure 16. (STFB2_MUX16TO8) 16 to 8-bit merge schematic.

 170

Figure 17. (STFB2_ST8SRALIGN) 8-bit single-track to single-rail conversion schematic.

