

CLUSTERING AND FANOUT OPTIMIZATIONS OF ASYNCHRONOUS

CIRCUITS

by

Georgios D. Dimou

 A Dissertation Presented to the

FACULTY OF THE GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA

In Partial Fulfillment of the
Requirements for the Degree
DOCTOR OF PHILOSOPHY

(ELECTRICAL ENGINEERING)

May 2009

Copyright 2009 Georgios D. Dimou

 ii

Dedication
To my family

 iii

Acknowledgements
I would like to thank my advisor Professor Peter A. Beerel for his valuable

guidance and support though the entire course of this work. I would also like to thank

Professors Massoud Pedram and Ken Alexander for taking the time to be part of my

defense committee.

I would also like to thank TrellisWare Technologies Inc. for their support and

flexibility they have provided me with throughout my employment with them, which

allowed me to complete this effort.

Additionally I would like to thank Fulcrum Microsystems for providing

assistance in this effort and specifically Andrew Lines for his input and the

discussions that we had during the meetings between our USC team and Fulcrum

Microsystems.

I would also like to specifically acknowledge my friend and colleague Sotirios

Zogopoulos for proof reading my work and for the exchange of ideas that we had in

the process as well as Mallika Prakash, Arash Saifhashemi and Pankaj Golani for

their help in developing parts of the flow that the testing platform for this thesis was

built on. I would also like to acknowledge Nam-Hoon Kim for the code-base that he

developed, which I was able to build upon in order to test this work.

I would also like to thank my girlfriend Kristen Grande for her emotional

support through the years.

Finally and most importantly I would like to thank my parents Dimitrios and

Evanthia-Maria Dimou for enabling me and supporting me throughout my education

 iv

that lead up to this thesis and for being there for me any time I needed help or

advice. Without them this work would have never been possible.

 v

Table of Contents

Dedication... ii

Acknowledgements.. iii

List of Tables .. vii

List of Figures .. viii

Abstract ..x

Chapter 1 Introduction ...1
1.1 Contributions ...3
1.2 Outline...5

Chapter 2 Background...7
2.1 Introduction..7
2.2 Handshaking protocols ..7
2.3 Data Encoding...11
2.4 Timing Assumptions ..13
2.5 Asynchronous Design Styles..15

2.5.1 PCFB and PCHB..16
2.5.2 Mousetrap..18
2.5.3 MLD...20
2.5.4 STFB and SSTFB ..23

2.6 Asynchronous Circuit Synthesis...25
2.6.1 Introduction ..25
2.6.2 High-Level Synthesis..25
2.6.3 HDL-Based Synthesis ..27

2.6.3.1 De-Synchronization...28
2.6.3.2 Phased Logic ..29
2.6.3.3 Null-Convention Logic ...30

2.6.4 Challenges in RTL-Based Synthesis...31
2.7 General Design Considerations ...32

2.7.1 Local and Global Cycle Time..32
2.7.2 Handling Forks and Joins ...34
2.7.3 Fanout Optimization ...35
2.7.4 Clustering...35

Chapter 3 Clustering..37
3.1 Definitions..37
3.2 Clustering Criteria..45

3.2.1 Ensuring liveness ...46
3.2.2 Maintaining Performance..54
3.2.3 Modified Floyd-Warshall for finding distances ...60

3.3 Experimental Results...65

Chapter 4 Slack Matching and Fanout Considerations ...70
4.1 Introduction..70
4.2 Slack Matching Fanout Tree Improvements ...72
4.3 Experiment Setup ..76
4.4 Experimental Results...77

 vi

4.5 Other considerations..80

Chapter 5 An Asynchronous ASIC Flow...82
5.1 Synthesis...83
5.2 The Clustering Program...84

5.2.1 Circuit Representation..85
5.2.2 Clustering...85
5.2.3 Fanout Fixes ..88
5.2.4 Final Optimizations...88
5.2.5 Library Conversion ...89
5.2.6 Verification...90

5.3 Simulation and Back-End Design...90

Chapter 6 Summary ..93
6.1 Advancements...93
6.2 Applications ...95
6.3 Open Issues ..96
6.4 Conclusions...97

References ...98

 vii

List of Tables

Table 1 Performance of the different circuits in terms of Local and Algorithmic
Cycle Time under different local move approval criteria. It is worth
noting that without the use of our proposed criteria more than half of the
circuits resulted in deadlock (marked DL). ...66

Table 2 Area summary for different examples using different local move
approval criteria. The left columns correspond to the logic area, which is
the area of the clustered gates before the introduction of slack
matching. The columns on the right correspond to the total circuit area
after slack matching...67

Table 3 Area increase for different examples using different local move approval
criteria On the columns on the left we see the area increase for the
clustered netlist before the addition of slack matching. On the columns
of the right we see the area increase for the final netlist after slack
matching,...68

Table 4 Slack matching results for the sharing and no-sharing versions of the
algorithm..78

Table 5 The area savings in terms of slack-matching buffer area and total circuit
area realized with the new LP formulation and sharing vs. the other
versions...79

 viii

List of Figures

Figure 1 Summary of asynchronous handshaking protocols based on the
messages that are exchanged between sender and receiver. Based on
this classification we identify 4-phase protocols (b), 2-phase protocols
(c) and single-track 2-phase protocols..9

Figure 2 An example of a 4-phase pull channel..10

Figure 3 An example of an enclosed interleaving of four channels with one
sender and three receivers...11

Figure 4 Abstract view of different channels that transmit k bits of data; (a) using
the bundled-data protocol, (b) a differential bus and (c) single track 1-
of-N communication. ..13

Figure 5 The PCHB template is shown in (a) and the PCFB template is shown
in (b)...17

Figure 6 The MOUSETRAP design style for a FIFO implementation....................19

Figure 7 An abstract view of a Multi-Level Domino Pipeline.22

Figure 8 An abstract view of a STFB and SSTFB communication channel is
shown in (a) and an example of two successive communications of a
1-of-4 such channel is shown in (b). ...24

Figure 9 Three different local move scenarios that have different impact on the

lgaτ of the circuit. The circuit for the three scenarios before the move

((a), (c), (e) respectively) and after ((b), (d), (f) respectively) showing
how the ACT could remain unaffected ((a),(b)), increase ((c),(d)), or
even get introduced ((e),(f))..44

Figure 10 An example where 0, >ijd does not guarantee that ()
ji vCTFOv ∈ .

Notice that 29,2 =d , but the path includes 5v is a TOKEN_BUFFER

thus ()29 vCTFOv ∉ . ..53

Figure 11 Pseudo-code of the first distance-update routine. This version was
found to be very fast in practice, but its performance is not bound.62

Figure 12 Pseudo-code of the second distance-update routine. This version can

be shown to have performance ()2BNΟ , where B is the average

branching factor at each node and N is the number of nodes in the
graph..64

 ix

Figure 13 This example illustrates the effects of improper slack matching in a
pipeline. The circuit shown above comprises pipeline stages that can
run at a 10-transition cycle, however due to the mismatch the circuit
cannot run faster than a 12 transition cycle. ...71

Figure 14 A case where the original slack-matching formulation yields sub-
optimal placement of slack buffers. The original circuit in (a) requires
on buffer stage. However the old formulation would decide to place the
buffers on the input of the gate assuming no sharing (b). The new
formulation models the sharing and places the buffer after the gate (c)..75

Figure 15 Overview of our ASIC flow. ..84

Figure 16 The clustering algorithm that ensures that LCT does not grow.87

Figure 17 A caption of a finalized placed and routed design after a successful
pass through our asynchronous ASIC flow...92

 x

Abstract
As semiconductor technology advances into smaller and smaller geometries,

new challenges arise. The increased circuit integration combined with larger

variability make it harder for designers to distribute a global clock and global

interconnect signals efficiently in their designs. To combat the effects designers use

more conservative models and more complicated tools that result in longer design

times and diminishing returns from the migration to the smaller geometries. Some of

these problems can be addressed by asynchronous circuits, but there exists no well-

defined method for automated asynchronous design. Some methods have been

proposed over the years, but they leverage off existing synchronous techniques too

much, resulting in circuits that are bound by the characteristics of their synchronous

counterparts. This thesis proposes a novel approach for generating such circuits,

from any arbitrary HDL representation of a circuit by automatically clustering the

synthesized gates into pipeline stages that are then slack-matched to meet

performance goals while minimizing area. The method thus provides a form of

automatic pipelining in which the throughput of the overall design is not limited to the

clock frequency or the level of pipelining in the original RTL specification.

Consequently, the performance can generally maintain or exceed the performance of

the original circuit. The method is design-style agnostic and is thus applicable to

many asynchronous design styles.

The contributions of the thesis are two-fold. First, we define a model and

theoretical infrastructure that guides clustering to avoid the introduction of deadlocks

and achieve a target circuit performance. This provides a framework for proper

clustering that can enable the unhindered exploration of area minimization algorithms

 xi

in the future and lead to optimized competitive designs. Secondly, we propose

optimizations to existing slack matching models that take advantage of fanout

optimizations of buffer trees that improve the quality of the results.

 1

Chapter 1 Introduction

Synchronous design has dominated the VLSI and ASIC design market for many

years. Recently the design challenges of designing circuits with a global clock has been

rising, as the industry moves to smaller geometries that allow for very large circuits to be

placed on a single die. In particular, as wiring delays become more and more dominant,

the task of distributing a clock across a large design and dealing with clock delay and

skew across the entire die is becoming a growing problem. The usual trend of clock

frequencies in commercial chips increasing every year has stopped and even though

manufacturers are moving to smaller geometries clock frequencies have remained

constant for some time.

At the same time, higher chip integration is also introducing problems in terms of

power consumption, much of which is coming from the clock distribution circuits.

Processor manufacturers are resorting to more complex implementations of clocking

strategies involving clock gating, software-controlled clock frequencies and voltages

across the chip, such as PowerNow! of AMD [2] and Intel’s Enhanced SpeedStep

Technology [1]. Both technologies are used to reduce power consumption when the

processors are moderately used or idle.

Such problems are inherently solved in asynchronous circuits. The elimination of

the global clock removes all the complex timing requirements associated with its

distribution. It also allows the designer to remove timing margins built into the logic to

accommodate clock variations, and use this time for processing. Power in asynchronous

circuits is also only consumed during processing as the control circuits are data-driven.

On top of these benefits additional area becomes available on the die due to the

 2

elimination of the clock generation and distribution network. Several asynchronous

design styles have been developed that span a variety of application domains, from low

power to high-performance.

Although asynchronous logic is incredibly appealing, it has yet to be adapted

widely by the semiconductor industry. Until recently asynchronous design was

synonymous to custom design, since no automated flow existed for the generation of

asynchronous circuits. For the majority of the commercial world, where ASIC flows are

the typical approach for chip design, this is a major drawback, since most companies

lack the infrastructure and the expertise to support such efforts. The cost and the time-

to-market for such efforts are usually prohibitive for companies that do not specialize in

the area of custom VLSI design. On top of that, critical issues such as verification and

testing, which is normally done by commercial tools is not supported for the majority of

design styles that are proposed in the asynchronous logic research community.

The advantages of asynchronous design, combined with the lack of a formal

automated flow for the generation of such circuits are the key drivers behind this work.

The goal is to examine existing asynchronous design styles and identify key problems

that are unique to asynchronous design. We want to characterize those problems and

formulate their solutions, so that a tool can be generated to address those

asynchronous-specific issues. Having performed that step, we can then leverage off

commercial tools and solutions used in current synchronous design flows, and complete

a full set of tools and procedures that would allow a designer to generate an

asynchronous design from behavioral RTL code. It is our belief that the existence of

such a flow would open the way for a wider adaptation of asynchronous logic and a

realization of its benefits in the commercial world.

 3

1.1 Contributions

The main focus of this thesis is in the area of automated pipelining of

asynchronous circuits. The method proposed here involves starting from a gate-level

representation of a circuit, in which each gate represents a pipeline stage, and merging

two pipeline stages at a time to generate larger pipeline stages. This method allows us

to generate a pipelined circuit from an arbitrary netlist that can take advantage of

performance and design features of various asynchronous design templates. In order for

this process to be meaningful these merging transformations have to be designed based

on two important criteria. First the transformations have to be guaranteed not to cause a

circuit to become non-functional. Secondly the clustering transformation ensures that

after slack matching the target circuit performance can be achieved.

We model the circuit as a directed graph to abstract the implementation details of

the circuit. Clustering is then the iterative merging of nodes of the graph. Based on this

model this thesis includes the following contributions:

• Demonstrates criteria that help detect and prevent merges that could

generate a transformed graph that cause deadlock. The deadlock-free

maintenance criterion is expressed in two different ways for practical

reasons. The first expression uses a breadth-first search in the graph

while the other depends on the existence of all pair-wise distances in the

graph, which is a computationally intensive process. Both have the same

worst-case complexity, but the search-based one has better average-

case performance and in practice is proven to be much faster. However

 4

the distance-based algorithm has the advantage that it can be seamlessly

combined with criteria that help ensure target performance.

• Proposes additional criteria that help detect and prevent graph

transformations that could introduce logic structures that would reduce

the performance of the circuit beyond the target performance that is

required for a particular design. This means that while clustering these

criteria will prevent the artificial lengthening of the critical paths of the

design beyond the point where it is impossible to satisfy the cycle time or

the end-to-end latency constraints for the design.

In the process of developing this main framework, other contributions were made

that will have an impact on the general asynchronous design process and in particular in

the area of RTL-based (ASIC) flow.

• Developed local update for the all pair-wise distance array that is

generated by a modified Floyd-Warshall algorithm so that the array can

be updated with our clustering transformations with minimal local updates

reducing complexity significantly.

• Developed practical improvement to the Slack Matching formulation

originally presented in [5] to incorporate additional information for

potential buffer sharing and thus improved the end result.

In order to test and verify all the ideas that were developed as part of this thesis a

software package was developed that enables an asynchronous ASIC flow. The

 5

software implements an end-to-end tool that reads a Verilog netlist and performs the

operations described in this thesis.

• Currently reads in Verilog netlists that are gate-level synthesized netlists

from any commercial software package. It recognizes the MLD and PCHB

design styles currently and can translate to fully function netlists for either

design styles.

• Performs clustering on a graph which is design-style-agnostic and can

use all different variants of the clustering as described in Chapter 3

and.Chapter 5.

• It also performs slack matching by utilizing external linear programming

solvers and fanout checking (and fixing if necessary) on the netlist to

guarantee that all design rules are followed.

• Emits Verilog netlists that can be used as input to the back-end tools

(applicable to any software package available) as well as testbenches for

both the original and final netlists and random vector generation code that

allows pre- and post-software behavioral verification.

1.2 Outline

In order to better describe the nature of the problems that will be discussed as

part of this work, Chapter 2 has been devoted to summarize the various existing

asynchronous design styles, as well as existing synthesis flows, their features and

weaknesses. Some key challenges and definitions are also defined here to present the

 6

general context for this research. Chapter 3 presents a thorough analysis of the

clustering theory for asynchronous circuits that was developed and how it can be used to

guarantee functionality and performance. Some interesting contributions to other flow

issues that are also involved in the end-to-end design process, namely slack matching

and fanout optimizations, are presented in Chapter 4. Chapter 5 presents the existing

version of our tool and flow, its features, capabilities and inefficiencies. Chapter 6

summarizes the conclusions of this work and identifies interesting problems for future

work in the area.

 7

Chapter 2 Background

2.1 Introduction

In synchronous circuits all the data is synchronized by the global clock. In

between combinational logic blocks latches or flip-flops are inserted that latch the data

once per period of the clock hence achieving the synchronization of data and control

signals among the different circuit elements. In asynchronous circuits this

synchronization is achieved through handshaking protocols that are implemented to

assist the various circuit elements with the exchange of data. There are many styles of

asynchronous design libraries and flows, and almost each one has a different

handshaking mechanism associated with it. Before attempting to go into detail

describing different asynchronous design styles it is useful to go through the various

classifications of asynchronous protocols and their properties so that it is easier to place

the different options as part of a bigger picture. The classification can be done in many

dimensions, namely based on the handshaking interface, data interface and the timing

requirements that have to be satisfied for correct operation of the circuit.

2.2 Handshaking protocols

The handshaking between two asynchronous units exchanging data often starts

with the unit where the data is originating from sending a request to the receiver.

Typically the request is sent when the data is ready and depending on the protocol this

could be part of the data or a separate control signal. The receiver has to then

acknowledge the receipt of the data. Then the transmitting module knows that the data

has been consumed and can reset its value, in order to be ready to process the next set

 8

of data. This Request-Acknowledgement exchange can be performed in several different

ways and handshaking protocols can be classified according to the nature of this

exchange.

First, we distinguish between protocols according to the number of phases

(transitions) that exist in the handshake. There are two distinct kinds of protocols, the 2-

phase and the 4-phase protocol. In the 4-phase protocol case the sender asserts its

request (REQ) to inform the receiving element that it holds valid data on its output. The

receiving element will then receive the data when it is ready to consume it and raise the

acknowledgment (ACK) signal when it has actually done so. The sender will then reset

its REQ signal and after that the receiver will lower its ACK signal. The second pair of

transitions could also be used to explicitly identify a data reset phase. The 2-phase

protocol only uses two active transitions to complete the communication handshake.

Therefore, all transitions of the REQ/ACK signals are used in the same way, whether

falling or rising. That means that during the first cycle the sender raises REQ and then

the receiver raises ACK to finish the handshake. Instead of resetting the signals before

the second communication, the protocol is implemented so that the sender lowers REQ

to start the next transfer, and then the receiver lowers ACK to acknowledge the data.

The request and acknowledgment signals could be individual signals or they could be

implemented across the same wire. The later is also known as single-track

communication, and could be implemented by having the sender assert the signal (REQ)

and the receiver de-asserting it. These three cases are summarized in Figure 1.

 9

Figure 1 Summary of asynchronous handshaking protocols based on the
messages that are exchanged between sender and receiver. Based
on this classification we identify 4-phase protocols (b), 2-phase
protocols (c) and single-track 2-phase protocols.

Another interesting point is that the basic protocols described above could be

modified by interleaving different edges to serve different purposes. The basic forms

described above are for point-to-point communications between two adjacent units and

the communication cycle is always initiated by the sender. When the sender initiates the

protocol it is considered a push channel, and they are common in pipelined circuits.

However, in other non-pipelined circuits the receiver signals that it is ready first before

the sender produces any data. This is known as a pull channel and the initial request is

Sender Receiver

REQ

ACK

(a)

REQ

ACK

Data

(b)

REQ

ACK

(c)

1st Data 2nd Data

REQ ACK

(d)

1st Data 2nd Data

REQ ACK

 10

sent by the receiver and in the reverse direction of the data flow. For example an

adaptation of the 4-phase protocol described previously for push channels can be used

for pull channel communications. The receiver asserts the REQ signal to indicate that it

is ready to accept data. When the sender has computed the data and put it on the

channel it asserts its ACK signal. The receiver then lowers its REQ signal as soon as it

has consumed the data. Finally the sender lowers its ACK signal after it has reset the

data and the channel is now ready for the next transmition. This is depicted in Figure 2.

Figure 2 An example of a 4-phase pull channel.

All the examples stated up to this point are examples of point-to-point

communications. This means that the sender sends a signal to indicate the presence of

data and releases the data when that gets acknowledged. Another quite interesting case

is called enclosed communication. It is defined as the case where the REQ signal is

asserted and then followed by an entire handshake from the receiver side (meaning the

ACK is both asserted and de-asserted), before the REQ signal gets de-asserted. This

type of behavior might not make a difference in a typical push pipelined channel,

however its usefulness becomes apparent when considering cases where we want to

perform sequential actions instead of concurrent actions. Assume that the sender wants

Sender Receiver

REQ

ACK

(a)

REQ

ACK

Data 0

(b)

 11

to generate data and then there are multiple receivers that are going to operate

sequential actions based on this data. The REQ signal can then be asserted to validate

the data on the sender side. Then multiple receivers can take turns operating on the

data and the REQ signals stays high validating its presence. When the last one of the

receivers is done processing the sender can lower the REQ signal and reset the data.

The signal transitions for such a scenario are shown in Figure 3. Additionally it can also

be the case that some or all of these processes operate on the data with some level of

concurrency as well.

Figure 3 An example of an enclosed interleaving of four channels with one
sender and three receivers.

2.3 Data Encoding

Another way of classifying asynchronous channels is based on the way that the

data is encoded on the channel. The way that is closest to typical synchronous designs

is called bundled data. In bundled data the data is presented in the form of a bus of

single rail wires from the sender to the receiver. This has the benefit that only one wire

per signal is only required and that the signals could be generated by single-rail

combinational blocks just like those used for synchronous design. However there is no

way to identify that the data is valid on the receiver end by just observing the data rails,

REQ

ACK0

Data 0

ACK1

ACK2

 12

hence the designer has to make sure that the data is all valid before the REQ signal

becomes visible to the receiver. For this reason the REQ path has to be delay matched

with the slowest combinational path between sender and receiver and this task is not

trivial. Post layout simulation is typically required to ensure the functionality of the circuit.

Another way to encode data on a channel is by making it dual-rail. If the dual-rail

signals are reset between transitions it is now easy to verify the presence of the data by

the data itself by making sure that at least one of the two wires representing the data has

been asserted. In this case an explicit REQ line is not necessary for the data, as a

simple OR of the two signals verifies that the data is present. Dual-rail signals can also

be grouped together in busses as in bundled data. If there is no explicit REQ like in the

bundled-data rails all the individual OR results from each signal has to be combined to

generate the global REQ signal for the bus. When one bit is transferred a single gate

delay is added to the critical path, but in the later case the impact of such a circuit to the

performance of the circuit could be significant since it could amount to several gate

delays.

Finally a more generalized for of dual-rail signaling is 1-of-N signaling. Here for

every n wires that are used one can transmit log(n) bits. Out of the n wires only one is

asserted at a time. This encoding has several benefits. Just like dual rail signaling there

is no need for an explicit REQ signal since the presence of data can be extracted from

the data itself (again assuming that the data is reset between transmitions). It has also

been shown in [17][18][20] that, with this type of data encoding, one could also omit the

acknowledgement signal as well. Moreover, there is less activity on the bus than in the

dual-rail case, since only one wire is allowed to switch during a transmition, which could

help reduce power consumption and crosstalk noise. However the width of the bus

 13

grows exponentially with the amount of bits to be encoded and therefore, this approach

could quickly become impractical for the implementation of wide buses. For such wide

data paths the signals have to be broken up into smaller groups. Popular solutions are 1-

of-2 and 1-of-4 encoding since they use only 2 wires per signal, but 1-of-8 is also

common due to better power efficiency.

Figure 4 Abstract view of different channels that transmit k bits of data; (a)
using the bundled-data protocol, (b) a differential bus and (c) single
track 1-of-N communication.

2.4 Timing Assumptions

One last classifying characteristic of asynchronous communication channels is

the type of timing assumptions that are required to hold for a particular protocol to

operate correctly. In terms of the actual design process, the fewer timing assumptions

Sender Receiver
REQ

ACK

Sender Receiver

ACK

Data

2k

Sender Receiver

k

Data

2k

(a)

(b)

(c)

 14

that exist in a design the better, since timing assumptions usually have to verified

through simulation that have to be performed both pre- and post-layout.

The first timing model is one that all delays both gate and wire are allowed to

assume any value, and the circuit is guaranteed to function properly. This model is

called delay insensitive (DI), and it is the most robust model for asynchronous circuits.

However, Martin [26] showed that no practical single-output gate implementation exists

that satisfies this constraint. Realistically this means that in order to build a DI circuit one

would have to use only multi-output gates, which is incredibly restrictive for typical circuit

designs. Alternatively one would have to use gates that cannot be designed according to

the DI timing assumptions and integrate them in the circuit using DI rules at the top level.

Martin in [27] also proposed an alternative to this strict constraint called Quasi

Delay Insensitive. This has the same delay assumptions as the DI except it requires that

every fork in the design is isochronic. The isochronic fork is a fork, for which the delays

to all destinations out of that fork are equal. This realistically is very hard to achieve due

to varying wire lengths and load at the destination during design, and due to varying

operating conditions (such as voltage and crosstalk noise) during actual operation of the

circuit. More realistically this assumption can be approximated by constraining the short

path departing from a fork to be faster than slowest reconvergent path to the gate driven

by the short path. This is a constraint that is much easier to meet and verify in practice.

In [3] the QDI concept is extended from short wire fork delays to delays through a small

number of gates that depart from a fork and then re-converge further down the data

path.

 15

Another category of circuits are Speed-Independent circuits (SI). In speed

independent circuits gates could have arbitrary delays, but wire delays are considered

negligible. This makes all forks isochronic, hence the QDI protocol requirement stands

by default. With process geometries constantly shrinking though, wire delays become

more and more dominant part of a path delay, and this assumption and the real delays

need to be determined post-layout and the functionality of the circuit has to be verified

again through simulation.

Scalable Delay Insensitive (SDI) is an approach that partitions the design in

smaller parts and attempts to bridge the gap between DI and SI through this approach.

Within each sub-module the design is performed by bounding the ratio of delays

between paths by a constant. It also defines a ratio related to the estimated and

observed data on the delays that is also lower and upper bound. The same constant is

used as a bound for both expressions. After each individual module is designed, the

interconnections at the top level are designed based on DI assumptions.

2.5 Asynchronous Design Styles

As one can see there are many design choices available, both in terms of the

handshaking protocol and data encoding. Each has different advantages that could be

exploited depending on the requirements of a project. Research teams have over time

defined many design styles that can be used for the implementation of asynchronous

circuits, each one having its own advantages and disadvantages. These styles are

collections of design libraries, protocol definitions and constraints that have been

designed and verified to produce functional designs. These basic cells in these libraries

can be used to produce the desired circuits, and this flow, at least theoretically, can be

 16

either manual though a custom VLSI approach or automated just like a synchronous

ASIC flow. In the process of defining the context of the problems that this work is

attempting to solve, it is important to go through a few popular and proven design styles

that have been developed over the years and proven their value for certain types of

design requirements.

2.5.1 PCFB and PCHB

The Pre-Charge Half Buffer (PCHB) and Pre-Charge Full Buffer (PCFB) were

presented in [7] and are two example of a QDI template. Both templates are similar, but

PCFB uses an extra internal state variable so that it is able to store one token per stage,

and that is why it is called a Full Buffer. On the other hand a PCHB is a half buffer

meaning that one token can exist in two adjacent pipeline stages. The templates are

designed for fine-grain-pipelining, which implies that each pipeline stage is one gate

deep. The data is encoded using 1-of-N encoding and thus there is no explicit request

line associated with the data. Each gate has an input completion detection unit and the

output also has an output completion detection unit. The two templates are shown in

Figure 5.

 17

Figure 5 The PCHB template is shown in (a) and the PCFB template is shown
in (b).

The function blocks are designed using dynamic logic (Domino logic [32] more

specifically) in order to reduce the size of the circuit. Another interesting property is that

the function block can actually evaluate even if not all inputs are present yet. If the

function allows it the function block can generate an output with a subset of the inputs

and data can propagate forward along the pipeline. However the C-element will not send

an acknowledgement to the left environment until all inputs arrive and the output has

been generated. That prevents premature acknowledgments from propagating

backwards to units that have not even produced data yet. The RCD is used to detect

that data has indeed been generated from the function block. In the PCHB when both

the LCD and RCD have detected valid data on both input and output the function block

gets disabled. When the next stage in the pipeline acknowledges the outputs of the

current stage then the function block will be pre-charged to be ready to receive the next

set of data.

F

C

LCD RCD

Lack
Rack

en

pc

pc

en

F

C

LCD RCD

Lack

Rack

en

pc

pc

en

C

(a) (b)

 18

The LCD and RCD operate on 1-of-n encoded channels. Their operation is

performed simply by performing an OR on the two wires. The data is reset to zero during

pre-charge, therefore, the presence of data is detected when one of the two wires

produces a logic 1. If multiple channels exist the results of the OR from each channel

have to be combined together through C-elements to produce the output of the

LCD/RCD. Even though this is a simple operation one has to remember that this a fine-

grain-pipeline design style. For multi-input gates the control logic quickly becomes a

large overhead and as a result these templates are not area efficient. Also even though

the cells use dynamic logic for smaller size and better performance, there are several

levels of control involved in the critical path. With PCHB being a half-buffer the cycle

time involves multiple levels of logic as well as a completion detection unit and a C-

element. Its cycle time varies depending on the functional block, but is generally

between 14 & 18 transitions. The PCFB is a full buffer version of PCHB. It has the same

cycle time as PCHB, so its only benefit would be slack capacity. For this reason the

PCFB is not as widely used as the PCHB design style. Even though this yields good

overall performance, there are design styles available that have much smaller cycle

times.

2.5.2 Mousetrap

MOUSETRAP is a recently proposed design style [38] that seems very

interesting due to its versatility and speed. It is a bundled-data protocol, with 2-phase

control and could be used for both very fine-grain and coarser pipeline design. It has a

very small cycle time of 5 transitions for a FIFO design and although the cycle time

would increase with merges, fork and logic added to it, it still has the potential for very

 19

high throughput implementations. A basic diagram of a FIFO pipeline designed with this

design style is shown in Figure 6.

Figure 6 The MOUSETRAP design style for a FIFO implementation.

The most interesting feature of this type of circuit is the simplicity of its control.

The same feature is to a large extent responsible also for its small cycle time. It

essentially consists of a single XNOR gate per pipeline stage. The data is accompanied

by a request that has alternating values for successive tokens. The data and the request

are both latched at every stage with latches that are controlled by the local control

(XNOR). The latches are initially transparent waiting for data to arrive. When data goes

through, since the requests of successive token have alternating values, when the

request goes through the latch it will change the value of the XNOR output and the latch

is made opaque. When the next stage has also fired and the data has been latched

there the XNOR will change value again and the latch is made transparent again and

new data may arrive. If the design is not just a FIFO, then logic is added on the data

path between the latches. In that case since the data is single-rail bundled data, the

REQREQ

Data

REQ REQ REQ

Data Data Data Data

 20

request has to be delay-matched with the slowest combinational path in order to avoid

errors in the interface. When the request goes through is will go through the XNOR and

close the latch, so the timing has to be designed so that the data will definitely be

through the latch before that happens.

One big advantage of this design style is that the data path can be designed from

standard gates that can be found in any synchronous library. That means that no custom

asynchronous cell library design is necessary to support the protocol and also that it

might be easier to use existing tools for an automated synthesis flow. However, this style

requires the use of delay-matched request lines and has one timing assumption that

needs to be verified for every pipeline stage. These generally require more cumbersome

verification both pre- and post-layout. The idea has been presented for FIFOs, however

it could be extended to more complex pipelines with forks, joins and cycles. In those

cases the fact that successive tokens require requests with alternating values becomes

a restriction that needs to be designed with care. Also in the case of merges and even

more specifically conditional merges it is our assessment that more complex cells with

memory of the previous state are required to handle such a pipeline.

2.5.3 MLD

Multi-Level Domino is another design style that also used bundles of wires,

however here the data is encoded using differential encoding. The data path is

constructed out of domino-logic gates in order to be more area efficient as well as faster.

This also allows the circuit to generate a request to the next stage based on the data

itself. A completion detection unit exists for each output and all the validity signals are

then combined through an AND gate tree to generate the valid flag for the entire pipeline

stage. The style is targeted more towards medium-grain pipelining and several layers of

 21

logic and many data paths in parallel are typically used in a single pipeline stage. This

yields a small overhead from the addition of the pipeline stage control units and hence

an area efficient design. Several variations of this design style have been proposed over

the years in like PS0 [39] [42], and LDA [7], others using 2-phase and others using 4-

phase handshaking. Even though there are differences between the variants in terms of

the handshaking mechanism of the controllers and the generation of control signals,

abstractly the general form of these styles can be illustrated in Figure 7.

The cycle of a pipeline stage starts with the dynamic logic gates receiving data

from the previous stage and evaluating their outputs. When the data propagates to the

last stage of gates in the pipeline stage the outputs for the stage are generated and the

dual-rail signals are used to validate that all outputs are present. The valid signal is

generated for the entire stage and is used as a request to the next stage. It could also be

used internally in the stage for isolating the outputs and initiating an early pre-charge of

the logic before the final stage. When the next stage acknowledges the data, the stage

resets its outputs to all zero so that the valid signal is forced low. The data path is

connected normally just as in the case of a synchronous netlist. Any forking or merging

between stages is handled by the controller circuits. That can be accomplished by

inserting C-elements for the requests of signals reaching a merge and the

acknowledgment signals departing a fork. The introduction of such elements might

impact the cycle time of a stage, but since the data path is several stage long, this extra

delay can be offset by reducing the amount of logic levels in a particular stage.

 22

Controller

Comp

Detect

Controller

Comp

Detect

en go en go

Pipeline Stage Domino

Logic

Pipeline Stage Domino

Logic

Bit 0

Bit N

Bit 0

Bit K

Bit 0

Bit L

valid K valid 0 valid L valid 0

Figure 7 An abstract view of a Multi-Level Domino Pipeline.

The generation of the request from the data alleviates the need for delay lines

that are required in single-rail data paths such as MOUSETRAP. It also simplifies the

timing verification required for the designs. On the other hand since dual-rail dynamic

gates are not available commercially this style requires that libraries are generated

specifically for this application and this increases the design time and makes automated

synthesis harder since commercial synthesis tools are not currently capable of handling

dual-rail signaling. Another interesting point of the design style is that since the

handshaking mechanism involves the data path gates (though the generation of the valid

signal) it is not allowed to have route-through signals in a pipeline stage, since that

would cause problems with the handshaking protocol and timing. Therefore this design

style also requires the addition of buffers for all such signals.

 23

2.5.4 STFB and SSTFB

Single-Track Full Buffer is a design style proposed in [18][7] for fine-grain

pipeline design. It uses 1-of-N encoding for the data and also 2-phase single-track

handshaking between gates that is embedded in the data. It has been shown to yield

very high throughput designs. There are several features of this design style that

contribute to its high performance capabilities. Firstly the gates use dynamic logic

internally for higher performance and reduced area. Secondly the gates have extremely

small forward latency of 2 transitions and a total cycle time of 6 transitions. That is

accomplished by embedding the control signals as part of the data path and the use of

2-phase handshaking.

In STFB the sender will receive data and evaluate its output and then

immediately tri-state its output. The receiver detects the presence of data and evaluates

only when all the data has been received. This is done by properly designing the stacks

of NMOS transistors so that all paths to ground use all inputs. When the receiver

evaluates its outputs it will actively drive the wires low and then tri-state the inputs. This

signals the sender that the data has been consumed and it can evaluate the next set of

data. The data is encoded in a 1-of-N fashion therefore for each communication only one

wire in the set will transition. This wire is therefore used simultaneously for the data,

request and acknowledgment signaling between the two cells. Figure 8 shows an

abstract view of such a communication channel as well as a timing diagram of two

successive token transfers on a 1-of-4 channel of this type.

 24

Figure 8 An abstract view of a STFB and SSTFB communication channel is
shown in (a) and an example of two successive communications of
a 1-of-4 such channel is shown in (b).

A problem with this template is that the data wires are not actively driven at all

times. There are times that both transmitter and receiver will be in tri-state mode, hence

the data becomes more susceptible to noise and leakage. Statisizers could be used to

help alleviate this problem. An improvement for this protocol was recently published in

[18] called the Static STFB, where the data is actively driven at all times. Here once the

receiver detects the presence of data it actively holds the values present on the channel

until it consumes it.

The high speed capabilities of this design style come at the expense of increased

area, as expected from a fine-grain pipeline. The circuitry required on both ends of the

channel, which is used for detecting, driving and resetting the data is not large, but

substantial compared to the logic associated with the actual logic function of each gate.

Another problem with this design styles is that since both ends of the channel actively

drive the data lines at some time, the data communication has to be implemented with

point-to-point communications, meaning that a gate cannot drive more than one more

gate. Forks have to be implemented in special fork cells that are specifically designed for

Sender Receiver
Data

(a)

(b)

Data 0

Data 1

Data 2

Data 3

 25

that purpose and which further increase the amount of logic required for implementation

by adding gates that one would not usually need when using a different template.

2.6 Asynchronous Circuit Synthesis

2.6.1 Introduction

The lack of a comprehensive ASIC design flow for asynchronous circuits, like the

one that exists for synchronous circuits, is probably the single most important reason for

the limited adoption of asynchronous technology by the semiconductor industry. Several

approaches have been proposed so far, but none of them has been able to address all

the issues associated with asynchronous design. There are two major categories of

design methodologies among the proposed work. One is attempting to define the

problems according to an asynchronous specification that incorporates the exact

description of all the operations and their relations. This approach is referred to as High-

Level Synthesis and has the potential of creating circuits that are most optimally

designed to match the given specifications. The other approach is to leverage off of tools

that already exist in the market for synchronous flows and use those for the majority of

the tasks associated with the design. That allows for faster turnaround times, since most

tools already exist. The concept there is to synthesize synchronous netlists and then

convert the results to an asynchronous design style.

2.6.2 High-Level Synthesis

Several approaches have been developed over the years for characterizing

asynchronous circuits and then generating synthesized netlists based on the

specification. These approaches defined languages able to handle the concepts

necessary for the interpretations of asynchronous communications and the design

 26

process starts from specifications written in this language. Languages like CSP were

defined to be able to define the problems in the form that is unique to asynchronous

design. CSP defines a design in the form of concurrent hardware processes, and also

the way that the processes communicate. Different variant have been defined, such as

CHP that also have support for automated synthesis to a certain extent [28].

Phillips developed Tangram [21][7] which is a description language for

asynchronous processes. Syntax based translation is used to convert the processes into

circuits. The first step is to map the processes into some fixed handshake types of

functional blocks that are predefined and classified according to their handshaking

properties. These are called handshake circuits and are not mapped to any specific

library. Then the netlist is broken up into combinational logic, registers and

asynchronous elements and in the last step the combinational logic is taken into a

commercial synthesis tool and synthesized using synchronous libraries.

Bardsley et. al proposed another language called Balsa and subsequent

research has added onto this framework for top level synthesis [3][4][7]. This also starts

from a new programming language that is made explicitly to understand asynchronous-

specific commands and details. Balsa follows the synthesis approach of Tangram

although there some differences in terms of the format and the features offered.

Incremental synthesis is supported and the intermediate handshake circuits follow the

original specification architecture. A new description format is used to describe the

handshake circuits and the final mapping translates every part of the circuit into standard

cell components of given libraries.

 27

This approach in general is very promising, however it starts from a high level of

abstraction that requires the use of a new language and also good understanding of

asynchronous processes and interfaces. At the same time it requires more complete tool

suites that will be used to bring the designs to the physical implementation level.

Simulation and development tools are needed to assist with the design process, which

are at a big disadvantage compared to their synchronous counterparts that have been in

development for more than two decades. Even if that was not the case companies and

engineers would be very reluctant to invest in new tools that have not been proven in the

field already. Existing designs would also have to be recoded to be adapted to the new

flow.

On the other hand there are several existing designs in HDL languages that are

extremely useful and interesting and also a large number of designers that are able to

code, partition and optimize designs using current synchronous flows. For asynchronous

design to gain leverage in the market it is imperative that flows based on RTL level

synthesis using conventional HDL and industry-accepted tools are available. In fact it is

my belief that for a good designer that is used to a particular flow and its capabilities the

results from the two approaches are going to be similar.

2.6.3 HDL-Based Synthesis

This type of synthesis starts from conventional HDL and uses tools that are well

established in the industry for the implementation of synchronous circuits. Some of these

approaches can use existing code that has already been coded for synchronous circuits

and others require certain coding details that assist the translation process. Overall most

of these approaches can be seen as synchronous translations, and especially for legacy

circuits there is a possibility that they cannot take advantage of all benefits and features

 28

associated with asynchronous design. For example since timing information for the

different processes is not available, trades between concurrency and sequencing,

especially in terms of resource sharing are not possible unless the designer has already

taken these into consideration when coding at the HDL level.

2.6.3.1 De-Synchronization

De-synchronization [8][11][13][14] is a method for directly translating

synchronous netlists into asynchronous netlists with local handshaking between cells.

Synthesis is performed from regular HDL with a regular synchronous flow. The netlist

that is produced is then parsed and in the first step the flip-flops in the design are all

replaced by pairs of latches. After that is done the clock circuitry is removed from the

netlist and replaced by local controllers that implement local handshaking.

Consequently, there is combinational logic that is followed by an odd pair of latches that

is immediately followed by an even pair of latches with no logic in between. When the

control is connected together delay matched lines have to be inserted in parallel with the

combinational logic, namely between the even latch controllers and the odd latch

controllers. The delay lines are used to match the worst-case delay of the combinational

logic, and this is necessary since the data path is designed out of regular single-rail logic

gates that come from the synchronous synthesis library.

The benefit of this approach is that commercially-available standard cell libraries

and standard ASIC tools are used for the synthesis. Therefore no new libraries are

necessary and the only tool that is required is the parser that does the flip-flop

replacement and control instantiation. Another big benefit is that the circuit can easily be

proven to be equivalent to its synchronous counterpart given that all timing constraints

between the controllers are correctly verified. The correctness of the circuit is

 29

mathematically proven without any exhaustive analysis of the circuit. However, the final

asynchronous circuit is so close to the originally synthesized netlist that no significant

performance or area benefits are realized with this flow. The power associated with the

clock distribution circuit is removed, which is a big benefit, but the circuit is constrained

in terms of its capabilities from the synchronous specification.

2.6.3.2 Phased Logic

Phased Logic is another approach in the quest of automated HDL based

synthesis, originally described in [22]. The flow was adapted and optimizations for both

ASIC and FPGAs [40][34][35][36][37]. The flow begins with a synchronous HDL design.

The design is synthesized using commercial tools and the netlist is then manipulated

with custom tools to produce the final netlist. The gates are replaced by their equivalent

counterparts that use two wires instead of one per signal. Each gate also has an internal

state that it uses to handshake with neighboring cells.

The two wires are not used to generate dual-rail data, but instead are used to

define not only the data, but also the state of the originating gate. This helps distinguish

“odd” data from “even” data and the gates are now capable to distinguish when the data

is valid and when not. When a gate is in a particular state – odd or even – it is ready to

fire when all inputs have the same state as the gate. As soon as it fires the gate changes

its state and waits for tokens with the same state value. It sends the output data with the

original state of the gate that produced it so that the gates further down the pipeline can

fire. Flip-flops are converted to buffers, but are initialized with a token upon reset. An

innovation in this flow is that the circuit is analyzed to verify that the netlist initial

conditions guarantee a netlist that is live and safe. This is guaranteed by making sure

that all cycles have at least one token, by inserting buffers for flip-flop-to-flip-flop paths

 30

and making sure that each signal is part of a directed circuit that has one token. Dead

gates are removed and if there are any liveness or safeness problems are resolved by

adding additional logic. Other optimizations are available, such as slack-buffer insertion

and use of units that can evaluate early, however parts of this flow are done manually

with external files that include this information.

This is an integrated flow that has been used to generate circuits and proven its

value. It has the benefit of an FPGA prototyping flow and it is continuously appended

with tools that make it close to commercial standards (such as the PLFire schematic

viewer [15]). However it requires custom gate design and also some inputs from the user

for a successful conversion. For example slack-matching is done by manually specifying

files that include the position and the number of buffers to be inserted.

2.6.3.3 Null-Convention Logic

Theseus Logic proposed Null Convention Logic (NCL) [15] for the

implementation of asynchronous circuits. Later efforts have enhanced the flow and also

proposed programmable solutions for implementing this kind of circuits [22][28][30].

Reconfigurable solutions have also been proposed for the particular design style and

flow. NCL starts from conventional HDL, but the code has to be written strictly in RTL

form (no behavioral register inference) and the register acknowledgment and request

signals have to be specified. It then gets synthesized into an intermediate library called

3NCL. This library is still a single-rail library but with the addition of an extra possible

value (the NULL value) for all wires. This preserves single-rail simulation and design

capabilities, while emulating the final dual-rail gates. The final library is a full dual-rail

library, but since the control is written around the fact that data will assume the value of

NULL in a handshake cycle this is necessary for simulation. After this stage of

 31

verification a second run of synthesis is performed to translate the 3NCL gates into

2NCL gates that are the true dual-rail gates that will be used for the physical design

process. In order to assure DI behavior only a limited variety of gates are used (2-input

NAND, NOR, XOR)

Generally this is a complete flow, but still requires some input from the designer

(register handshakes and placement). It uses existing synchronous tools for the majority

of the design flow and achieves results that are close to manual designs. It also closely

follows the original synchronous specification and does not optimize the design

specifically to match the asynchronous library capabilities.

2.6.4 Challenges in RTL-Based Synthesis

A lot of different approaches have been proposed to achieve automated ASIC

flows that start from HDL and result in finalized circuits using as much of the existing

synchronous ASIC toolset as possible. All these flows focus on getting a design through

the flow, but none address all the optimization issues that are specific to asynchronous

design. Although useful, they fail to address issues that prevent the generation of circuits

that can be superior to their synchronous counterparts.

The flows presented above depend on the synchronous netlist for the definition

of the pipeline stages. This is not taking advantage of key features of asynchronous

design styles and thus cannot yield more than incremental improvements. Moreover

none of these methods have any good way of guaranteeing performance constraints,

which is a basic requirement for any commercial design. Slack is not considered except

for the case of Phased Logic, and even there this is done manually from externally

defined input files that are user-specified.

 32

A finer and more design-style aware pipelining mechanism can yield better

results and this is the driving force behind our clustering approach. Tailoring the circuit

pipeline to the performance requirements and the chosen design template improves the

quality of results. With a framework for correctness and performance maintenance this

leads to a more powerful method that has potential to yield results that are more

competitive than the ones provided by existing flows.

2.7 General Design Considerations

2.7.1 Local and Global Cycle Time

In the absence of a global clock, asynchronous circuit performance is

characterized using different metrics. When characterizing an asynchronous pipeline

stage (could be as small as a single cell/gate for micro-pipelines) there are two important

metrics to characterize performance. The first one is forward latency (FL) and is

measured as the time between the arrival of a new token, when the pipeline stage is

idle, and the production of valid outputs for the next stage. This is a metric that is only

dependant on the internal design of the pipeline stage. The second metric is called the

local cycle time (LCT), and it is defined as the time between the arrival of a token and

the time that the unit has reset itself back to the idle state and is ready to receive the

next token. This number is generally affected by the next pipeline stages as well since

the handshaking on the right side of the stage defines the time at which the stage can

reset its output and proceed to get ready to accept new data. Both metrics are calculated

during the design phase in terms of transitions, meaning the number of signal transitions

that have to take place for the pipeline stage to move from one state to the next. Even

 33

though this is not directly translated into actual time, it is a useful first tool for tradeoff

studies, design style comparison and performance estimation.

Once the local cycle time and forward latency is known there are several

methods to do a more thorough analysis and find the performance of the entire circuit,

and potentially identify the bottlenecks in the system. This is generally a very labor-

intensive process that cannot be performed without a tool designed for this purpose, but

the basic ideas can be intuitively described using the defined metrics of forward latency

and local cycle time. The performance of a circuit is defined as the global cycle time

(GCT) of the circuit and it is essentially the metric that defines how many transitions it

takes the circuit to process a token on average. Ideally the global cycle time is equal to

the maximum of the local cycle time and the algorithmic cycle time (ACT). The

algorithmic cycle time is the maximum for all cycles of the sum of the forward latencies

of all the pipeline stages in the cycle divided by the number of tokens (data) that are in

the cycle at any time. This is the maximum performance target for a design and the

global cycle time cannot be improved beyond this point. However, the design might have

a cycle time that is higher than this value, depending on the topology and the number of

tokens in the design.

The reason that this might happen is that the performance is defined not only by

how fast data can propagate down the pipeline, but how fast the pipeline resets to

accept new tokens. The backward latency (BL) of a pipeline stage is defined as the

difference between the local cycle time and the forward latency and it can be perceived

as the time it takes for a bubble – or empty position in the pipeline – to propagate

backwards in the pipeline. Alternatively, the backward latency can also be defined as the

 34

time it takes a node to complete the handshaking with its neighboring cells and reset

itself so that the next token can go through.

The forward and backward latency combined define the performance of a local

pipeline stage. However the alignment of the data in the forward direction as well as the

alignment of the bubbles in the backward direction is important to guarantee that a given

global cycle time is achievable even if both the ACT and LCTs are all smaller than the

requested global cycle time. This concept of alignment between the handshakes of the

various stages is called Slack Matching and due to its importance it will be discussed in

further detail in Chapter 4.

2.7.2 Handling Forks and Joins

Now that there is a notion of performance defined for the circuit and the pipeline

stages individually, it is easier to show what the problems are when defining an

asynchronous pipeline. The first issue that every designer is faced with when designing

an asynchronous circuit is dealing with forks and merges in the data path. Due to the

fact that the handshaking signals required for synchronization propagate along with the

data, extra gates usually have to be added to make sure that the request and/or

acknowledgement signals get combined so that the correctness of the protocol is

maintained. If care is not taken it is easy to have the system fail because of a deadlock

at a join, due to improper acknowledgement (or request) along one of the two merging

paths. These additional gates usually are on the critical path and have to be taken into

consideration in order to avoid impeding performance. Also paths going through forks

and joins are also likely to be parts of cycles or re-convergent paths and the cycle time

analysis has to be performed to verify that the design performance is not reduced.

 35

2.7.3 Fanout Optimization

Another aspect of forks is the handling of fanout. In synchronous design buffers

can be added to high-fanout nets to improve performance without altering the basic

functionality of the circuit. In asynchronous circuits, however there are cases where a

high-fanout node has to be buffered, and the buffer that will be added alters the timing

and structure of the circuit in such a way that affects the global cycle time. Even worse,

in cases like SSTFB dedicated cells have to be inserted to handle nodes with fanout

grater than one, and all these cells have to be included in the design in a way that does

not cause performance degradation. This might imply modifying the shape of the fanout

tree, or adding buffers in paths parallel to the one being altered. Generally this is a labor

intensive process that currently needs to be undertaken manually during the design

process.

2.7.4 Clustering

In design styles that are targeted towards coarse-pipelines such as MLD or even

finer-grain pipelines such as MOUSETRAP, another problem arises that related to the

placement of the gates within the different pipeline stages. The more logic one places in

a stage the smaller the control overhead for the circuit. In the case of MLD for example,

though, the wider the pipeline the slower the completion detection and therefore the

circuit itself. The same is true for the number of logic levels within each stage. For

MOUSETRAP the larger the grouping the slower the design, since the requests (and

hence the cycle time of a pipeline stage) are dictated by the longest combinational path

in the pipeline stage. Generally one can trade the clustering – or the distribution of gates

within pipeline stages – on both dimensions, both in terms of depth and width, in order to

achieve better performance. It is also obvious that the grouping can further affect

 36

performance, since one grouping could require less forks and joins to be inserted in the

circuit than another. Generally this is another set of tradeoffs that are currently

performed manually and it is up to a good designer to achieve a good distribution that

boosts performance and reduces area.

 37

Chapter 3 Clustering

Before going through the entire design flow and the tasks performed by both the

commercial and customized pieces of software that comprise it, it is interesting to focus

on the problem of clustering. This problem is common for all the different design styles,

and it is equally important for all of them. The clustering of the gates inside larger

pipeline stages allows the circuit to reduce the control overhead and make the different

design styles competitive to not only each other, but also their synchronous

counterparts.

The goal of this chapter is to formally define the problem and its solution and to

lay the foundation for a successful application of clustering on any circuit. In particular,

this chapter develops criteria that guarantees that clustering preserves the functionality

of the circuit and does not introduce structures that make the circuit unable to meet its

performance requirements.

3.1 Definitions

Circuits usually are designed subject to performance constraints that are derived

from system requirements. Even though it is interesting to find the “fastest” a circuit can

run or the “smallest” it can be made, practically it is not very useful, since the circuit

requirements are always defined by system parameters that are not dictated by the

circuit capabilities, but by the overall system function. Therefore we plan to define our

problem in such a way that it can address a variety of design requirements.

The first step is to abstract the circuit into a more generic structure so that we

can formulate our problem mathematically. This structure is a weighted directed

 38

graph ()mhEVG ,,,= , where V is the set of nodes in the netlist.

TBCLPOPIV ∪∪∪= , where PI is the set of primary inputs, PO is the set of primary

outputs, CL is the set of combinational gates and TB is the set of flip-flops or

TOKEN_BUFFERS. All four set TBCLPOPI ,,, are mutually disjoint sets. E is the set of

directed edges)(VxVE ⊆ . We will use the notation),(, jiji vve = for an edge in E to

simplify our notation for a directed edge that starts from node iv and ends in node jv .

We also require that E does not contain any self-loops iie , . We also will define a

function +ℜ→Eh : that is used to map an edge onto a positive real number that

represents the forward latency of the edge. We also define function { }1,0: →Em , such

that

()


 ∈

=
otherwise

TBv
em

i

ji
,0

,1
, (1).

We define a path jip , as a sequence of edges in E , the first edge in the

sequence starting from node iv , and the last edge in the sequence ending in node jv

and such that for all other edges in the sequence, their starting point is the ending point

of the previous edge in the path and their ending point is the starting point of the next

edge in the path. We also assume in this document that a path goes through each node

once (simple path). We will also define a cycle as a path iip , that starts and terminates

at the same node iv . We also define GP as the set of all paths that exist in the G .

Another important input will be a target performance metric, which is defined in

terms of the target cycle time (TCT) of the circuit and will be defined as goalτ . We also

 39

define the algorithmic cycle time (ACT or lgaτ) of the circuit, which is the lower bound of

goalτ beyond which goalτ is no longer achievable. Thus lgagoal ττ ≥ . Having defined a

path the algorithmic cycle time is defined as:

goal

pe

kj

pe

kj

PpVv
a

iikj

iikj

Giii em

eh

ττ ≤
















=
∑

∑

∈

∈

∈∃∈

,,

,,

,)(

)(

max
,

,

:
lg (2).

We also define the weight of an edge () () () goaljijijiji emeheww τ*,,,, −== . We

have the following convention:

() () ()
()
()




∈<−

∪∈>
=−=

TBveh

CLPIveh
emehew

igoalji

iji

goaljijiji ,0

,0
*

,

,

,,, τ
τ (3).

We also need to define the weight of a path – as an extension of the edge weight

– that is the sum of the weights of all edges in the path sequence, so

() ()∑
∈

=
jipe

jiji ewpw
,

,, .We also define the length of a path as the number of edges in the

sequence of the path. So () jiji ppL ,, = .

We also define a distance between two nodes iv and jv as the maximum weight

of all valid paths from iv to jv , or as ∞− if no paths exist from iv to jv , which we

denote as
(){ }







∞−

∈∃
= ∈∀

otherwise

Ppifpw
d

Gjiji
Gp

ji
ji

,

,max ,,

,
, (4).

 40

We also define the transitive fanout (TFO) and combinational transitive fanout

(CTFO) as well as transitive fanin (TFI) and combinational transitive fanin (CTFI) as

follows:

() }:{ , Gjiji PpvvTFO ∈∃= ,

() }:{ , Gjiij PpvvTFI ∈∃= , (5)

() }::{ ,,, TBvpePpvvCTFO kjilkGjiji ∈∈¬∃∧∈∃= , and

() }::{ ,,, TBvpePpvvCTFI kijlkGijjj ∈∈¬∃∧∈∃= .

So essentially the ()ivCTFO (and equivalently the ()ivCTFI) is the set of all

nodes that are reachable from iv (or equivalently for CTFI that can reach node iv)

through a path that does not go through a TOKEN_BUFFER node.

We also have to formally define the local move operation before we begin our

discussion of the clustering algorithm. A local move is a function on the graph

()mhEVG ,,,= that produces a new modified graph ()mhEVG ,,',''= . It essentially

takes two nodes Vvv ji ∈, and replaces them in 'V with a unified new node '' Vv k ∈

that contains the contents of both nodes (in circuit terms that would be the instances and

wires internal to the pipeline stages that correspond to the original nodes iv and jv) .

The rest of the nodes of V are preserved in 'V . Mathematically:

{ } { }kji vvvVV ',' +−= (6)

 41

If both Eee ijji ∈∃∧∃ ,, the move is not allowed because this case would

generate a self-loop in the graph (a cycle of length 1). Otherwise, when combining nodes

iv and jv into the new node kv' , the edges in the set 'E are generated as follows:

• EeEe jmim ∈∃∨∈∃ ,, with jmim ≠≠ , then ', Ee km ∈∃ .

• EeEe mjmi ∈∃∨∈∃ ,, with jmim ≠≠ , then ', Ee mk ∈∃ . (7)

• Ee lm ∈∃ , with jmim ≠≠ , and jlil ≠≠ , then ', Ee lm ∈∃ .

So the new node kv' has the combined fanin and fanout of iv and jv , except for

any edges between the two that get absorbed in the new node and are removed from

the top-level graph. In other words, nodes Vvv ji ∈, are replaced by a single node

'' Vv k ∈ , and Vvv ji ∈, are also replaced by '' Vv k ∈ in all directed pairs (edges) in 'E .

An important observation is that if either edge jie , or ije , exist in E a

corresponding edge does not exist in 'E , which prevents the generation of a self-loop.

So assuming that the initial netlist has no self-loops, no new ones can be created during

the execution of local moves.

If an edge Ee ji ∈, gets absorbed, then Ee im ∈∀ , , ', Ee km ∈ it is true that

() () ()kmjiim ewewew ,,, '≥+ . This means that an absorbed edge can increase the weights

of all incoming edges to the new node '' Vv k ∈ that before the execution of the move we

incoming edges to iv , but at most by ()jiew , . If Ee ji ∉, then the local move does not

change the weights of any edges. It is also important to note that such a move is only

 42

allowed when () 0, >jiew . This is due to the fact that () 0, <jiew implies from definition

(3) that TBvi ∈ . A move that absorbs a token buffer is not allowed because of the

special functionality that token buffers serve in the circuit guaranteeing liveness around

loops.

Finally it is important to note the following relationships, since they are very

useful in understanding the effects of clustering on the connectivity of the graph model of

the circuit. They represent the relationship between the TFI, TFO, CTFI and CTFO of the

old nodes Vvv ji ∈, and the new merged node '' Vv ∈ after the execution of a local

move. These relationships can be easily derived from the definition of 'E that was

presented previously.

() () (){ } { }jiji vvvTFIvTFIvTFI ,' −∪=

() () (){ } { }jiji vvvTFOvTFOvTFO ,' −∪= (8)

() () (){ } { }jiji vvvCTFIvCTFIvCTFI ,' −∪=

() () (){ } { }jiji vvvCTFOvCTFOvCTFO ,' −∪=

 43

v
4

v
3

v
2

v
1

Algorithmic Cycle

v'
2

v
3

v
1

Algorithmic Cycle

(a) (b)

v4

v
3

v
2

v
1

Algorithmic Cycle

v
3

v
1

v'2

Algorithmic Cycle

(c) (d)

v
5

TOKEN_BUFFER

v
6

v
4

v'
2

v
3v

1

(e)

 44

v5

TOKEN_BUFFER

v4

v'
2

v3

v'
1

 (f)

Figure 9 Three different local move scenarios that have different impact on

the lgaτ of the circuit. The circuit for the three scenarios before the

move ((a), (c), (e) respectively) and after ((b), (d), (f) respectively)
showing how the ACT could remain unaffected ((a),(b)), increase
((c),(d)), or even get introduced ((e),(f)).

Some examples of possible moves are shown in Figure 9. It is interesting to see

the different scenarios and the effects that they could have either on the weight function

()jiew , and/or on the algorithmic cycle of the circuit:

• In the first scenario, which is depicted in Figure 9 (a) and (b) we can see an

example of two nodes merging that are part of parallel paths and hence the

execution of the move does not affect the ACT of the circuit, since the levels

of logic in the nodes that are part of the path that defines the ACT are

unaffected.

 45

• In the second scenario, which is depicted in Figure 9 (c) and (d) there is an

edge connecting the two nodes which gets absorbed. In this case the new

logic will artificially inflate the ACT since a new level of logic is added in a

node that is part of the critical path. Even though the levels do not really

change in terms of the actual data path, this node will now have a delayed

handshaking sequence due to the new logic, which affects the critical path. It

should be noted here that additional merging with v3 could remove this effect

assuming this move was possible.

• In the third scenario, which is depicted in Figure 9 (e) and (f) there was no

cycle in the portion of the circuit that is depicted. However after merging the

two nodes v1 and v6 there is now a new cycle in the design. This cycle is

again not introduced in the logic, since the circuitry is not modified by

clustering, but introduced in terms of the control handshakes between the

different nodes of the graph.

Having defined the general mathematical framework it is now time to look into a

more formal representation of the clustering. In the following section we will define our

present goals from the clustering and some key theorems that are necessary for the

clustering to provide a functional solution that meets the user performance requirements.

3.2 Clustering Criteria

Clustering is a sequence of local moves that serve the purpose of minimizing

control area. We have chosen to define local moves as the merging of two nodes, since

all merges can be broken down into this basic two-way merge, and the two-way merge is

 46

easier to characterize and study. Since every pipeline cluster will ultimately need to have

its own control unit as well as left and right C-element trees for multiple fanins and

fanouts, every local move results in a drop in total area.

The ultimate goal is to find the clustering of the circuit into pipeline stages that

achieves the minimum overall area while hitting a target performance. However

practically this means that this has to take into consideration not only the clustering

process, but also the effects of slack matching and fanout optimization. In general since

this is a new area of research we found that before even considering different

optimization algorithms and approaches, there were more fundamental problems that

need to be addressed before area optimality. As we will show in Section 5.2.2 we chose

a heuristic algorithm using a steepest descent approach and local constraints for the

area optimizations. The focus of this work was maintaining correctness and performance

during clustering. Having this foundation will allow us to further explore the optimization

process in the future.

3.2.1 Ensuring liveness

The handshaking nature of asynchronous circuits requires that one constraint is

satisfied to ensure the circuit is live [14] (also referred to as liveness of a circuit).

Informally a circuit is live, if every cycle in the circuit should have at least one data

TOKEN. This is guaranteed during the design process, by ensuring in every cycle in the

design at least one TOKEN_BUFFER cell. A TOKEN_BUFFER is a special gate in the

netlist that upon reset (or startup) will get initialized with a token (data). All other gates in

the netlist are empty during initialization.

 47

Based on the definitions in Section 3.1 the liveness criteria can be formalized in

the context of our proposed graph model. A graph ()mhEVG ,,,= is live if every cycle

iip , includes at least an edge e that starts at a node TBv ∈ . Based on our convention,

equivalently the graph is live if every cycle iip , includes at least an edge 0)(: <ewe .

However, with arbitrary clustering it is easy to see how a cycle can get created

that generates a new cycle that violates this principle. So our first task is to make sure

that clustering does not destroy the liveness of a circuit and that we find a criterion that

allows us to prevent all moves that could cause that from ever being executed.

Several of our proofs are based on the modified graph

{ }()mheeEVG ijji ,,,,* ,,−= , which does not include the two special edges that have the

possibility of being absorbed during a local move. The reason for this is that those are

the only two edges in the graph that are treated differently than others and by

considering the modified graph that does not include them we can generalize our theory

without having to consider the multitude of special cases. An important first conclusion is

that in such a modified graph cannot include any paths between the two merging nodes

that is of length 1. This is used in the proofs that follow.

Lemma 1: Let a local move merge two nodes Vvv ji ∈, in graph ()mhEVG ,,,= into

node '' Vv k ∈ in the graph ()mhEVG ,,',''= . In the modified graph

{ }()mheeEVG ijji ,,,,* ,,−= if *, Gnl Pp ∈∃ and () ()jninjlil =∨=∧=∨= then

1, >nlp .

 48

Proof: Let us assume that *, Gnl Pp ∈∃ . If () ()jninjlil =∨=∧=∨= and 1, =nlp .

Then we will show that this statement cannot be true through contradiction. Indeed the

possible cases are as follows:

1. ()inl == ⇒ { } Giiii Pep ∈= ,, which contradicts our convention that Ee ii ∉,

2. ()jnl == ⇒ { } Gjjjj Pep ∈= ,, which contradicts our convention that Ee jj ∉,

3. ()jnil =∧= ⇒ { } *,, Gjiji Pep ∈= which contradicts our proposition that

{ }ijjiji eeEe ,,, ,−∉

4. ()injl =∧= ⇒ { } *,, Gijij Pep ∈= which contradicts our proposition that

{ }ijjiij eeEe ,,, ,−∉

Since all possible combinations contradict our original convention or proposition it is

proven 1, >nlp .�

Now we would like to show that every path that exists in the modified original

graph { }()mheeEVG ijji ,,,,* ,,−= also exists in the resulting graph after the move. This

is an important conclusion since it helps us to easily qualify and evaluate the results of a

possible move and its consequences in terms of the connectivity of the graph.

Lemma 2: Let a local move merge two nodes Vvv ji ∈, in graph ()mhEVG ,,,= into

node '' Vv k ∈ in the graph ()mhEVG ,,',''= . In the modified graph

{ }()mheeEVG ijji ,,,,* ,,−= if *, Gnl Pp ∈∃ then ', Gqo Pp ∈∃ such that

Case 1: If () ()jninjlil ≠∧≠∧≠∧≠ then lo = and nq =

Case 2: If () ()jninjlil ≠∧≠∧=∧= then ko = and nq =

Case 3: If () ()jninjlil =∧=∧≠∧≠ then lo = and kq =

 49

Case 4: If () ()jninjlil =∧=∧=∧= then ko = and kq =

Proof: First we are going to prove all the cases for the special case that a path

*, Gnl Pp ∈ does not go though nodes Vvv ji ∈, , unless ji vv , are one of the endpoints of

the path.

Case 1: () ()jninjlil ≠∧≠∧≠∧≠ Assume that () nlpvve ,21, ∈=∀ it is true that

ivv ≠1 , ivv ≠2 , jvv ≠1 , jvv ≠2 , meaning the path does not include any edge

that includes any of the merging nodes. Then based on the definition of the

local move nlpe ,2,1 ∈∀ and '2,1 Ee ∈∃ therefore ', Gnl Pp ∈∃ .

Case 2: () ()jninjlil ≠∨≠∧=∨= () nlpvve ,21, ∈=∀ ivv ≠2 , jvv ≠2 , then Vvr ∈∃

such that { }nrrlnl pep ,,, ,= , and from the definition of the local move if

jlilEe rl =∨=∈∃ :, ⇒ ', Ee rk ∈∃ . So if *, Gnl Pp ∈∃ and

() ()jninjlil ≠∨≠∧=∨= then { } ',,, , Gnrrknk Ppep ∈=∃ .

Case 3: () ()jninjlil =∨=∧≠∨≠ and () nlpvve ,21, ∈=∀ ivv ≠1 , jvv ≠1 , then

Vvr ∈∃ such that { }nrrlnl epp ,,, ,= , and from the definition of the local move if

jninEe nr =∨=∈∃ :, ⇒ ', Ee kr ∈∃ . So if *, Gnl Pp ∈∃ and

() ()jninjlil =∨=∧≠∨≠ then { } ',,, , Gkrrlkl Pepp ∈=∃

Case 4: Now if we assume that () ()jninjlil =∨=∧=∨= and the path does not

include nodes ji vv , on any edge other than its starting and ending point. Using

Lemma 1 1, >nlp , therefore we can write that { }nrrlnl ppp ,,, ,= for some node

 50

rv along the path. But if ',, * Grkrl PpGp ∈∃⇒∈∃ , and

',, * Gkrnr PpGp ∈∃⇒∈∃ , so { } ',,, , Gkrrkkk Pppp ∈=∃ .

We have now proven all four cases for paths that do not go through nodes Vvv ji ∈, .

We need to also show that all cases also stand when the path does go through nodes

Vvv ji ∈, .

Next we cover the case where *, Gnl Pp ∈∃ that goes through node

() ()ji vvvvv =∨= 111 : and ml vvvv ≠∧≠ 11 . But then we can write that

{ }nlnl ppp ,11,, ,= . Using the conclusions of Cases 1-4 above on the sub-paths nl pp ,11, ,

and for any value of nl, we know that if ',1, GkoGl PpPp ∈∃⇒∈∃ and if

',,1 GnkGn PpPp ∈∃⇒∈∃ . This implies { } ',,, , Gnkklnl Pppp ∈= . So the relationships in

Cases 1-4 stand also when the path goes through the nodes Vvv ji ∈, �

With Lemma 2 we have shown that the new graph ()mhEVG ,,',''= after the

local move maintains all the connectivity as that in the modified initial graph

{ }()mheeEVG ijji ,,,,* ,,−= . However, the initial graph ()mhEVG ,,,= is our real initial

graph and therefore, it is useful to also show that the connectivity in G is maintained in

'G even if the two special edges ijji ee ,, , where part of some original path.

Lemma 3: Let a local move merge two nodes Vvv ji ∈, in graph ()mhEVG ,,,= into

node '' Vv k ∈ in the graph ()mhEVG ,,',''= . If Gnl Pp ∈∃ , and { }jinl ep ,, ≠ , { }ijnl ep ,, ≠

then ', Gqo Pp ∈∃ such that

Case 1: If () ()jninjlil ≠∧≠∧≠∧≠ then lo = and nq =

 51

Case 2: If () ()jninjlil ≠∧≠∧=∧= then ko = and nq =

Case 3: If () ()jninjlil =∧=∧≠∧≠ then lo = and kq =

Case 4: If () ()jninjlil =∧=∧=∧= then ko = and kq =

Proof: Lemma 2 proves the proposition for nlijnljiGnl pepePp ,,,,, : ∉∧∉∈∀ . So we

need to prove the proposition for nlijnljiGnl pepePp ,,,,, : ∈∨∈∈∀ . Let us assume that

{ }njjiilnlGnl peppPp ,,,,, ,,: =∈∃ . Even though in ', Ee ji ∉ it is true that if Gil Pp ∈∃ , then

', Gkl Pp ∈∃ and if Gnj Pp ∈∃ , then ', Gnk Pp ∈∃ therefore { }nkklnlGnl pppPp ,,,', ,: =∈∃ .�

The three lemmas show that except for the single-edge path that connects the

two merging nodes, the new graph 'G includes all other paths that existed in G . This is

a very useful conclusion that will be used to show the necessary conditions that need to

be satisfied to maintain both liveness and performance on the new graph.

Theorem 1: Let a local move merge two nodes Vvv ji ∈, in graph ()mhEVG ,,,= into

node '' Vv k ∈ in the graph ()mhEVG ,,',''= . The graph 'G is non-live iff in the modified

graph { }()mheeEVG ijji ,,,,* ,,−= , ()ji vCTFOv ∈ or ()ij vCTFOv ∈ .

Proof:

(←) Assume in *G it is true that ()ij vCTFOv ∈ . Then from Lemma 1,

1: ,*, >∈∃ jiGji pPp . Consequently () jmim vvvCTFOv ≠∈∃ : and jmmi pp ,, ,∃ in *G that

only traverse combinational nodes. And from Lemma 2 it is also true that kmmk pp ,, ,∃ , so

there exists a combinational cycle, therefore the graph 'G is not live. Similarly we can

show the same if we assume that ()ji vCTFOv ∈ , which proves the one side of the

proposition.

 52

(→) Now let us assume that 'G is not live (but G was) and that '' Vv k ∈ is part of a

combinational cycle that was generated during the local move. We will assume that

()ji vCTFOv ∉ and ()ij vCTFOv ∉ and show that we reach a contradiction.

From the definition of the local move guarantees the absence of self-loops on nodes

so 'Vvm ∈∃ for which kmmk pp ,, ,∃ in 'GP and ()mk vCTFOv ∈' and ()km vCTFOv '∈ . But if

kmmk pp ,, ,∃ in 'GP it is true due to Lemma 2 that nmml pp ,, ,∃ in *GP such that either:

• il = and jn = ⇒ ()ij vCTFOv ∈ , which contradicts our assumptions or

• jl = and in = ⇒ ()ji vCTFOv ∈ , which contradicts our assumptions or

• inl == ⇒ *G not live ⇒ G not live, which contradicts our assumptions or

• jnl == ⇒ *G not live ⇒ G not live, which contradicts our assumptions.

Therefore all possible cases contradict our assumption, therefore if 'G is not live, it must

be that ()ji vCTFOv ∈ or ()ij vCTFOv ∈ , therefore our proposition stands. �

Theorem 2: Let a local move merge two nodes Vvv ji ∈, in graph ()mhEVG ,,,= into

node '' Vv k ∈ in the graph ()mhEVG ,,',''= . Graph 'G will be live if in the modified graph

{ }()mheeEVG ijji ,,,,* ,,−= , 0, ≤jid and 0, ≤ijd

Proof: From Theorem 1, we know that the new graph will not be live iff ()ij vCTFOv ∈

or ()ji vCTFOv ∈ . But if ()ij vCTFOv ∈ ⇒ () jiji peewp ,, 0: ∈∀>∃ by the definition of

CTFO . And from the definition of jid , it is clear that 0, >jid . So if

()ij vCTFOv ∈ ⇒ 0, >jid and similarly if ()ji vCTFOv ∈ ⇒ 0, >ijd . Therefore if

0, ≤jid and 0, ≤ijd , then ()ji vCTFOv ∉ and ()ij vCTFOv ∉ , so the resulting graph will

be live due to Theorem 1, which completes the proof. �

 53

However it should be noted that the reverse argument is not always true,

meaning that 0, >ijd does not guarantee that ()ji vCTFOv ∈ . For example, consider a

situation of a long path from a PI through a TOKEN_BUFFER to a PO. It might be

possible in that case to have a path for which 0, >jid , but which after the merge

includes a TOKEN_BUFFER in the cycle. Such an example if presented in Figure 10.

v
5

TOKEN_BUFFER

v
6

v
4

v
2

v
3v

1

v
7

v
8

v
9

v
5

TOKEN_BUFFER

v
6

v
4

v'
2

v
3v

1

v
7

v
8

2

2 2 2

2 -10 2 2

2 2 2 2 2 2

PO

PO

PI

PI

2

2

-10

2

Figure 10 An example where 0, >ijd does not guarantee that ()ji vCTFOv ∈ .

Notice that 29,2 =d , but the path includes 5v is a TOKEN_BUFFER

thus ()29 vCTFOv ∉ .

Therefore this criterion is weaker than the one presented in Theorem 1, in the

sense that it could exclude local moves that would not necessarily cause a non-live

graph. The value of Theorem 2 is that once we have obtained the distances for the

entire graph, the check can be implemented with a single lookup, while the operation of

finding the CTFO is much more computationally intensive. It is also much more effective

when combined with the performance criteria, which are discussed in the next section

and are also based on distances. For example if in we like to avoid creating an

algorithmic cycle that is longer than our target cycle time then this move should be

 54

avoided anyway. This will become more apparent in the following section, where the

performance criteria are described.

3.2.2 Maintaining Performance

The goal of our analysis here is to define some criteria so that our local move

operations can maintain the performance of the original circuit. There are two

performance measures that are interesting here and one could potentially choose to

even enforce them separately. The first one has to do with the TCT or goalτ . In essence

what that means is that the local move should not introduce any new cycles that could

make the ACT any larger than the TCT thus making the circuit slower than requested by

the user. The other one has to do with end to end latency. It is sometimes important that

the PI-to-PO latency in a circuit does not increase. In that case we should be preventing

any moves from being executed that could increase the latency from any PI to any PO in

the circuit. Another limiting factor for the performance is the LCT. This is taken care of by

local criteria that prevent moves from being executed that would slow down a channel to

the point that it hurts performance. These are not discussed in this section but rather in

the implementation section.

In order to prove our criteria we are first going to prove a Lemma that will help

make our further discussion simpler. In particular we want to show that there are certain

distance criteria that can be used to easily determine, whether the graph is satisfying the

performance target for the TCT or not. This allows us to evaluate the performance of the

graph (circuit) by marely evaluating the distances between the different nodes of the

graph.

Lemma 4: In a live graph G the lgaτ is satisfied iff Vvi ∈∀ it is true that 0, ≤iid .

 55

Proof: For all nodes that are not part of any cycle it is trivially proven since in that case

−∞=iid , . So we need to prove this for all nodes that are part of a cycle. So let’s assume

that the graph G is live and also meets the lgaτ . Then

















=≥
∑

∑

∈

∈

∈

iikj

iikj

i

pe

kj

pe

kj

Vv
agoal

em

eh

,,

,,

)(

)(

max
,

,

lgττ ,or 0
)(

)(

max

,,

,,

,

,

≤−
















∑

∑

∈

∈

∈
goal

pe

kj

pe

kj

Vv

iikj

iikj

i em

eh

τ , and since goalτ is a

positive constant this can also be transformed as:

0
)(

)(*)(

max

,,

,,,,

,

,,

≤














 −

∑

∑∑

∈

∈∈

∈

iikj

iikjiikj

i

pe

kj

pe

kj

pe

goalkj

Vv em

emeh τ

We can further write that:

(){ } []

[]












−=













−==

∑∑

∑

∈∈
∈

∈
∈∈

iikjiikj
i

iikj
iii

pe

kjgoal

pe

kj
Vv

pe

goalkjkj
Vv

ii
Gp

ii

emeh

emehpwd

,,,,

,,
,

)(*)(max

*)()(maxmax

,,

,,,,

τ

τ

And since ∑
∈ iikj pe

kjem
,,

)(, is the number of TOKEN_BUFFERS on that particular path and

therefore and the graph is live 1)(
,,

, ≥∑
∈ iikj pe

kjem , so:

0
)(

)(*)(

max

,,

,,,,

,

,,

, ≤














 −

≤
∑

∑∑

∈

∈∈

∈

iikj

iikjiikj

i

pe

kj

pe

kj

pe

goalkj

Vv
ii

em

emeh

d

τ

We can also trivially prove the reverse side of that relationship by contradiction. Assume

that the graph is live, Vvi ∈∀ it is true that 0, ≤iid , but the lgaτ is violated, therefore

 56

lgagoal ττ ≤ . Let us assume that the ACT is determined by a path iip , for node Vvi ∈ .

Then similarly to before we can write that:

() [] [] ∑∑∑
∈∈∈

−=−==
iikjiikjiikj pe

kjgoal

pe

kj

pe

goalkjkjiiii emehemehpwd
,,,,,,

)(*)(*)()(,,,,,, ττ

But 0, ≤iid so

[] 0)(*)(
,,,,

,, ≤− ∑∑
∈∈ iikjiikj pe

kjgoal

pe

kj emeh τ [] ∑∑
∈∈

≤⇔
iikjiikj pe

kjgoal

pe

kj emeh
,,,,

)(*)(,, τ

⇔

[]

goal

pe

kj

pe

kj

iikj

iikj

em

eh

τ≤
∑

∑

∈

∈

,,

,,

)(

)(

,

,

, since 1)(
,,

, ≥∑
∈ iikj pe

kjem

⇔ goala ττ ≤lg

Which contradicts the original assumption therefore the proposition stands. �

Lemma 5: Let a local move merge two nodes Vvv ji ∈, in graph ()mhEVG ,,,= into

node '' Vv k ∈ in the graph ()mhEVG ,,',''= . If G is live and the lgaτ and/or PI-to-PO

latency constraints are satisfied and a local move is executed, any violating path in

()mhEVG ,,',''= will go through the newly formed node kv' .

Proof: We can prove this through contradiction. Assume that we have a graph G where

the lgaτ and/or PI-to-PO latency constraints are satisfied. Assume that the new node is

'Vvk ∈ that is the merge of Vvv ji ∈, . Assume that there exists a path that violates

either the lgaτ or PI-to-PO latency constraints in *G that does not go through the new

node. However by the definition of the local move the edges into kv

are{ } { } { } { }ijjiinilkm eeEeEeEe ,,,,, ,' −∈∪∈=∈ which means that if the path does not go

through 'Vvk ∈ it cannot go through either Vvv ji ∈, . And since G and *G are

 57

identical for all nodes and edges it means that if this violating path exists in *G it existed

in G as well. Therefore G must have a violating path, which contradicts our assumption.

�

Theorem 3: Let a local move merge two nodes Vvv ji ∈, in graph ()mhEVG ,,,= into

node '' Vv k ∈ in the graph ()mhEVG ,,',''= . If G is live and the lgaτ constraints are

satisfied, the local move will not create a path violating the lgaτ constraint iff in the

modified graph { }()mheeEVG ijji ,,,,* ,,−= the following distance relationships are true

0, ≤+ ad ji , 0, ≤+ ad jj , 0, ≤+ bd ij and 0, ≤+ bd ii where ()



∈∃

∈¬∃
=

Eeifew

Eeif
a

ijij

ij

,,

,

,

,0

and ()



∈∃

∈¬∃
=

Eeifew

Eeif
b

jiji

ji

,,

,

,

,0

Proof:

Case 1: Let us first assume that Eee ijji ∉,, . . Then based on the definition of the local

move the weights of the edges of E are the same as those in 'E . From Lemmas 3, 4

and 5 we can write the following relationship for the new distances 'd in 'G and the old

ones d in G :













≤

≤

≤

≤

⇔≤

0

0

0

0

0'

,

,

,

,

,

ij

ji

jj

ii

kk

d

andd

andd

andd

d

In fact the first two relationships are true since iid , and jjd , must be smaller or equal to

0 since G satisfies the lgaτ .

 58

Case 2: Let us first assume that EeEe ijji ∈∧∉ ,, . Then kkkl pe ,,' ∈∃ for which we know

by definition that () () ()klijjl ewewew ,,, '≥+ . This implies that the path that defines kkd ,'

could be greater by ()
ijew , than the distance of the path it originated from if ije , was not

part of the original path of iit would otherwise be smaller or equal to it. This means that

we can write:

()
()













≤

≤+

≤+

≤

⇔≤

0

0

0

0

0'

,

,,

,,

,

,

ij

ijji

ijjj

ii

kk

d

andewd

andewd

andd

d

The reason why the ()
ijew , is not added to the other two paths is that since they end in

node
i

v it is impossible that they could be followed by ije , .

Case 3: Let us first assume that EeEe ijji ∉∧∈ ,, . Then kkkl pe ,,' ∈∃ for which we know

by definition that () () ()kljiil ewewew ,,, '≥+ . This implies that the path that defines kkd ,'

could be greater by ()
jiew , than the distance of the path it originated from if jie , was not

part of the original path or it would otherwise be smaller or equal to it. This means that

we can write:

()

()











≤+

≤

≤

≤+

⇔≤

0

0

0

0

0'

,,

,

,

,,

,

jiij

ji

jj

jiii

kk

ewd

d

d

ewd

d

The reason why the ()
jiew , is not added to the other two paths is that since they end in

node jv it is impossible that they could be followed by jie , .

 59

Theorem 4: Let a local move merge two nodes Vvv ji ∈, in graph ()mhEVG ,,,= into

node '' Vv
k
∈ in the graph ()mhEVG ,,',''= . If G and 'G are live and satisfy the goalτ

constraint, the move will not increase the latency of any path from PI to PO iff PIv
m

∈∀

and POv
l
∈∀ it is true that:

{ } { }
liljjmimlm ddddd ,,,,, ,max,max +≥

Proof: The latency between PIv
m

∈∀ and POv
l
∈∀ can be described by the distance

between
m

v and
l

v that is lmd , . The distance according to Lemma 5 will not increase if

the length of all paths through the new node
k

v' have length smaller or equal to lmd , .

We denote with d the distances of paths in
G

P and with 'd the paths in 'G
P . The length

of the longest path through
k

v' can be written as lkkm dd ,, '' + therefore we can write that

the statement will be true as long as lkkmlm ddd ,,, '' +≥ . For simplicity we are going to

break down the proof into three cases:

Case 1: If EeEe ijji ∉∧∉ ,, . Assume that the local move generates a path from node

m
v to node

l
v . But since EeEe ijji ∉∧∉ ,, based on the definition of the local move no

edge will change weight so },max{' ,,, jmimkm ddd = and similarly },max{' ,,, jlillk ddd = . In

other words the longest path from the input
m

v to the new node
k

v' is equal to the

longest path to either of the two nodes that the move merges. Similarly the longest path

from the new node
k

v' to the output
l

v is the longest path from either of the two nodes

that the move merges. So the longest path from input
m

v to output
l

v that goes through

 60

the new node
k

v' will have a length of { } { }
liljjmimlkkm dddddd ,,,,,, ,max,max'' +=+ . In

order for the latency not to increase from input
m

v to output
l

v we can therefore write:

{ } { }
liljjmimlkkmlmlm dddddddd ,,,,,,,, ,max,max''' +=+≥=

Case 2: If EeEe ijji ∉∧∈ ,, . In this case we know by definition that

() () ()kmjiim ewewew ,,, '≥+ and () 0, >jiew , so a path in the original graph from input
m

v

to node
i

v could get longer by ()
jiew , . However it is true that

()
jiimjiimjm ewdddd ,,,,, +≥+≥ . So the equation proven in Case 1 still holds, in fact we

can simplify it and write { }
liljjmlkkmlmlm ddddddd ,,,,,,, ,max''' +=+≥=

Case 3: If EeEe ijji ∈∧∉ ,, . Similarly due to symmetry with Case 2 the equation that

was proven in Case 1 holds and can be simplified and written as

{ }
liljimlkkmlmlm ddddddd ,,,,,,, ,max''' +=+≥= .

3.2.3 Modified Floyd-Warshall for finding distances

The Floyd-Warshall algorithm is used to find all pair-wise distances in the graph

so that the constraints set above can be checked quickly by a simple look-up. The

algorithm is originally designed to find all the minimum pair-wise distances in a graph

and cannot be used if there are any negative-weight cycles in the graph. This works well

for our case, because we need to find the maximum distances between all pairs of

nodes. And assuming that the lgaτ is met in the graph originally according to Lemma 4

Vv
i
∈∀ it is true that 0, ≤iid . Therefore there are no positive weight cycles in the

graph, which allows to replace all min operations in the original algorithm with max

operations, and still achieve convergence.

 61

The complexity of the algorithm is ()3
VΘ , so it is very expensive

computationally. Moreover, the complexity does not change no matter how many nodes

really need to be updated. After each local move is executed, the pairwise distances in

the graph change and an update is required. Running the entire Floyd-Warshall

algorithm was attempted, but it was quickly realized that this was impractical and so slow

that made the use of the distance-based algorithms impractical.

 A local update has been implemented that updates the array with simple

operations only around the neighborhood of the new node after each move so that the

Floyd-Warshall algorithm needs to run only once. However, the complexity of even one

execution of the algorithm is really prohibitive for circuits that include tens of thousands

of nodes. This is one of the reasons why when it comes to liveness two theorems were

developed. Theorem 1 only requires a local search and in very large netlists where

calculating all the distances is hard to do, one can choose to ignore performance in

order to obtain results quickly and still maintain a functional circuit in the end of the

operation, which however may or may not meet the performance requirements.

The local update that was developed to speed up the processing between move

executions is extremely fast, reducing the overhead of the Floyd-Warshall to practically

just the initial run that finds the initial distances. It takes advantage of the knowledge of

the graph interconnect as well as the nature of the move so that it can speed up the

processing and avoid updating any unnecessary values. The algorithm is shown in

Figure 11.

The update function for the distances (update_distance_from_node) has

complexity ()NBΟ , where B is the average branching factor at each node and N is

 62

the number of nodes in the graph. It is based on the realization that each path from a

node has to go through one of its fanout nodes, therefore all the distances from a given

node can be calculated using just the distances to its fanout nodes and the distance

vectors stored at each of the fanout nodes. This version of the algorithm was used

extensively in our implementation of the distance algorithm presented in 3.2.2 and in

practice it performs several times better than the Floyd-Warshall algorithm, however

theoretically its performance could not be proven to be any better than the ()3
NΟ that

the Floyd-Warshall algorithm achieves, since this algorithm will not prevent a node from

being visited several times.

Figure 11 Pseudo-code of the first distance-update routine. This version was
found to be very fast in practice, but its performance is not bound.

 63

A slightly modified version was then generated that has a performance that can

be bound by ()2
NBΟ , where B is the average branching factor at each node and N is

the number of nodes in the graph. The modified version is shown in Figure 12. This

algorithm takes advantage of the fact that the pair wise distances in the rest of the graph

did not change. So first the distances of the new node to all other nodes are reset and

an update is executed to calculate the distances from the new node to all other nodes

using just information from its fanout. Any path from the new node to any other node has

to go through its fanout so this operation is enough to give us the new distances. Then

the update is executed on the fanins of the new node, so that any new paths generated

by the new node are updated on its fanin. Since the distance from all other nodes to the

fanins of the new node did not change a final update on all nodes of the graph using

these three nodes is enough to update the entire graph. This last loop is the longest

operation in this update algorithm and is executed ()NBΟ times each containing

N updates so the total complexity of the update proposed is ()2
NBΟ . For the typical

circuits that we have studied it is true that the branching factor B is negligible in size

compared to the number of nodes N in the graph and thus for such graphs we can say

that the complexity of the update is of complexity approximately equal to ()2
VΟ .

This algorithm was designed, but not implemented. The previous version was

proven to be very fast in practice and the results were satisfactory, so this new algorithm

was not deemed necessary. Thus no run-time comparisons were generated to compare

the two.

 64

Figure 12 Pseudo-code of the second distance-update routine.

This version can be shown to have performance ()2BNΟ , where B is

the average branching factor at each node and N is the number of
nodes in the graph.

 65

3.3 Experimental Results

Both aspects of the clustering theory were tested using our software platform and

ASIC flow that will be discussed in Chapter 5. In all cases we use the same clustering

core algorithm, which is a greedy, steepest descent algorithm that picks the local moves

that reduce the total area of the design the most. It stops when the algorithm determines

that there are no possible moves left that do not violate the rules defined in each case.

Since our slack matching and clustering rules also depend on the assumption that all

LCTs are smaller all equal to the lgaτ and hence not critical, another local check was

added that ensures that no moves are permitted that would grow an LCT beyond the

allowed TCT target. Depending on the design style selected, other minor local

constraints are also enforced to guarantee legal circuit implementations for the particular

design style, but these details are minor and are not going to be discussed here.

We use for testing various examples from the ISCAS benchmark set that

includes examples that are purely combinational (hence include no cycles) or mixed

sequential and combinational (include state elements and cycles). We also added a few

examples that are generally common in commercial circuit designs. We use four variants

of clustering for each of the netlists. The first one applies no rules to the greedy

clustering. The second one only applies the liveness rule described in Theorem 1. The

third one adds the TCT constraints of Theorem 3 and also uses the expressions in

Theorem 2 for liveness to reduce the computational complexity. Finally the last one adds

the criteria of Theorem 4 to control the PI-to-PO overall latency of the circuit. For the

examples we report the logic area after clustering, the total circuit area after slack

matching and the GCT as measured by our software after clustering and slack matching

is complete.

 66

 Local & Global Cycle Time (transitions)

Area

Guided
Liveness

Liveness
& TCT

Liveness,
TCT &

Latency

Design LCT ACT LCT ACT LCT ACT LCT ACT

 c3540 28 DL 32 32 34 34 30 30

 MAC16 28 68 32 32 34 34 28 28

 MAC32 32 72 32 32 32 32 32 32

 s1196 34 34 34 34 32 32 30 30

 s1238 28 DL 32 32 34 34 30 30

 s13207 28 DL 32 32 30 30 30 30

 s1423 28 DL 32 50 32 32 32 32

 s1488 30 30 30 30 32 32 28 28

 s15850 30 DL 38 64 34 34 34 34

 s27 26 26 26 26 24 26 24 26

 s298 26 26 26 26 26 26 26 26

 s344 26 26 26 26 28 28 26 26

 s349 26 26 26 26 26 26 26 26

 s382 26 DL 26 26 26 26 26 26

 s386 28 28 28 28 26 26 26 26

 s400 26 DL 26 26 26 26 26 26

 s420 26 26 26 26 26 26 26 26

 s444 26 DL 30 30 26 26 26 26

 s510 28 28 28 28 28 28 28 28

 s526 26 DL 32 32 28 28 30 30

 s5378 32 32 32 32 32 32 30 30

 s641 26 DL 32 32 28 28 26 26

 s713 26 DL 32 32 32 32 26 26

 s820 28 DL 32 32 30 30 28 28

 s832 32 32 32 32 32 32 28 28

 s838 26 DL 32 32 30 30 26 26

 s9234 32 32 32 32 32 32 26 26

 s953 28 DL 32 32 32 32 26 26

 SISO 34 DL 36 76 46 46 30 34

Table 1 Performance of the different circuits in terms of Local and Algorithmic
Cycle Time under different local move approval criteria. It is worth
noting that without the use of our proposed criteria more than half of
the circuits resulted in deadlock (marked DL).

Table 1 shows that 15 of 29 designs (51.7%) resulted in deadlock and were not

functional after clustering. So it is clear that it is very important to be able to maintain the

liveness of the circuit throughout these transformations, since the likelihood of destroying

its functionality is very high. It is also important to note that a non-live circuit will also fail

 67

slack matching due to infeasible constraints, therefore in most cases the area guided

results are skewed since there were no slack buffers added. Since such results are not

meaningful area comparisons for the area-guided approach are not further analyzed.

 Logic Area (µm
2
) Total Area (µm

2
)

Design Liveness
Liveness
& TCT

Liveness,
TCT &

Latency
Liveness

Liveness
& TCT

Liveness,
TCT &

Latency

 c3540 53906.7 55238.4 67044.1 95369.5 92305.2 89650.9

 MAC16 73659 79578 123170 218770 220988 209570

 MAC32 61990.7 70978.2 84036.9 111006 140453 118325

 s1196 22883.9 24017.5 27561 41813.6 45172.8 42873.4

 s1238 24158.6 24916.1 28344.4 51539.3 54246 44670.5

 s13207 132051 134391 144565 265536 273949 254701

 s1423 26546.64 28230.9 31879.8 33606.1 59998.5 58762.9

 s1488 29227.4 30055.7 31940.4 80592.8 80444.2 71767.3

 s15850 117041.6 182966 182966 150210 297931 297931

 s27 387.072 728.066 705.026 1013.76 1041.41 1018.37

 s298 5170.18 5276.16 5234.69 8787.46 8865.79 8603.14

 s344 5852.18 6165.54 6690.8 11796.5 12192.8 11699.7

 s349 5824.5 6128.6 6667.8 12215.8 11828.7 11621.4

 s382 6981.09 7326.7 7787.53 12575.2 13261.8 12722.7

 s386 6420.66 6494.43 6570.98 11858.1 11259.1 12630.5

 s400 7068.65 7455.76 7847.39 11994.6 12432.4 11713.5

 s420 7225.34 7414.25 8262.14 15091.2 15390.7 14114.3

 s444 6469.61 6907.43 7828.96 11649 12073 11593.7

 s510 11920.9 12354 12570.7 31085.6 30034.9 27795.5

 s526 8068.6 8193 9202.22 16132.6 16372.2 15699.5

 s5378 61099.2 63975.6 68370.9 127436 129294 121197

 s641 7326.73 7294.5 9400.3 15777.8 14667.3 14008.3

 s713 7308.3 7345.12 9321.96 17459.7 14418.4 14008.3

 s820 14742.8 15249.6 15931.6 33202.4 33225.4 29654.2

 s832 13916.2 14303.3 15727.1 28781.6 30795.3 26993.7

 s838 15694.9 15819.3 16985.1 34260.5 36159 29205.5

 s9234 46361.1 48940.4 51255.4 79276 95743.9 91948.6

 s953 18312.2 18266.1 20312.09 33039.4 34956.3 29707.8

 SISO 22939.8 43118 100449.6 22939.8 167119 114762

Table 2 Area summary for different examples using different local move
approval criteria. The left columns correspond to the logic area, which
is the area of the clustered gates before the introduction of slack
matching. The columns on the right correspond to the total circuit area
after slack matching.

 68

 % Logic Area Increase % Total Area Increase

Design Liveness
Liveness
& TCT

Liveness,
TCT &

Latency
Liveness

Liveness
& TCT

Liveness,
TCT &

Latency

 c3540 0.0% 2.5% 24.4% 0.0% -3.2% -6.0%

 MAC16 0.0% 8.0% 67.2% 0.0% 1.0% -4.2%

 MAC32 0.0% 14.5% 35.6% 0.0% 26.5% 6.6%

 s1196 0.0% 5.0% 20.4% 0.0% 8.0% 2.5%

 s1238 0.0% 3.1% 17.3% 0.0% 5.3% -13.3%

 s13207 0.0% 1.8% 9.5% 0.0% 3.2% -4.1%

 s1423 0.0% 6.3% 20.1% 0.0% 78.5% 74.9%

 s1488 0.0% 2.8% 9.3% 0.0% -0.2% -11.0%

 s15850 0.0% 56.3% 56.3% 0.0% 98.3% 98.3%

 s27 0.0% 88.1% 82.1% 0.0% 2.7% 0.5%

 s298 0.0% 2.0% 1.2% 0.0% 0.9% -2.1%

 s344 0.0% 5.4% 14.3% 0.0% 3.4% -0.8%

 s349 0.0% 5.2% 14.5% 0.0% -3.2% -4.9%

 s382 0.0% 5.0% 11.6% 0.0% 5.5% 1.2%

 s386 0.0% 1.1% 2.3% 0.0% -5.1% 6.5%

 s400 0.0% 5.5% 11.0% 0.0% 3.6% -2.3%

 s420 0.0% 2.6% 14.3% 0.0% 2.0% -6.5%

 s444 0.0% 6.8% 21.0% 0.0% 3.6% -0.5%

 s510 0.0% 3.6% 5.5% 0.0% -3.4% -10.6%

 s526 0.0% 1.5% 14.0% 0.0% 1.5% -2.7%

 s5378 0.0% 4.7% 11.9% 0.0% 1.5% -4.9%

 s641 0.0% -0.4% 28.3% 0.0% -7.0% -11.2%

 s713 0.0% 0.5% 27.6% 0.0% -17.4% -19.8%

 s820 0.0% 3.4% 8.1% 0.0% 0.1% -10.7%

 s832 0.0% 2.8% 13.0% 0.0% 7.0% -6.2%

 s838 0.0% 0.8% 8.2% 0.0% 5.5% -14.8%

 s9234 0.0% 5.6% 10.6% 0.0% 20.8% 16.0%

 s953 0.0% -0.3% 10.9% 0.0% 5.8% -10.1%

 SISO 0.0% 88.0% 337.9% 0.0% 628.5% 400.3%

Average 0.0% 11.5% 31.3% 0.0% 30.1% 15.9%

Average excluding SISO,s1423,s15850 0.0% 2.6% -4.4%

Table 3 Area increase for different examples using different local move
approval criteria On the columns on the left we see the area increase for
the clustered netlist before the addition of slack matching. On the
columns of the right we see the area increase for the final netlist after
slack matching,

From the Table 2 and Table 3 we can see that the simpler CTFO criterion-based

algorithm performs the most amount of clustering, as expected, due to fewer constraints.

The logic area for this algorithm is the smallest of the three variants analyzed. The

 69

addition of the ACT maintenance criteria poses extra constraints, yielding clustered

netlists that have 11.5% more area. There is a total area increase on average of 30.1%

once the slack matching is factored in. However if we exclude the three examples where

CTFO yielded extremely large GCT essentially requiring no slack matching (SISO,

s15850 and s1423) the average increase in total area is only 2.6%. Adding the latency

constraints further constrains clustering, and one can see that the clustered area

increase is now 31.3%. The slack matching cost drops though, since the latency

constraints were intended to force better alignment of paths and reduce slack matching

as well as maintaining latency. On average after slack-matching, this algorithm suffers a

15.9% area increase. In fact, if we again exclude the 3 examples that the liveness-only

algorithm yielded excessive GCT on, this third algorithm is actually 4.4% better on

average than the liveness-only one on total area. If one also factors in the fact that the

latency-aware algorithm beat the others almost uniformly on the final GCT it is clear that

it is the best one of the three.

Intuitively this is expected as this additional criterion is likely to force better

alignment of nearby pipeline stages and prevent merging of stages that are further apart

from each other. In general given that this algorithm is able to maintain performance and

liveness. However it should be pointed out that this algorithm requires all pairwise

distances in the circuit, which is a computationally expensive operation. On the other

hand the liveness-only one has small complexity and thus may be more practical for

larger circuits.

 70

Chapter 4 Slack Matching and Fanout
Considerations

4.1 Introduction

This section will discuss the concept of slack matching and improvements that

have been made to existing algorithms. Although describing the entire theory behind

slack matching as well as its modeling and formulation is beyond the scope of this work,

it is useful to show the basic principle behind its use and motivation through an example.

This allows the reader to understand the general context of the optimizations described

here, without getting into some of the more intricate details of the process.

Slack matching can be thought as the process of properly aligning the timing of

the handshakes between the pipeline stages in the design, so that a circuit can

maximize its performance. If a stage generates data late, forcing another stage to wait

then the receiving stage will have to stall its other inputs as it cannot process without all

its inputs being present. This forward latency matching is straightforward and analogous

to the latency matching that is frequently performed in synchronous circuits. In

asynchronous circuits, though, it is also true that there is a backward latency, that

defines the time it takes a stage to reset itself and get ready to receive data again. This

forces an alignment constraint for the backward latencies as well, which is harder to

visualize and which is realized in re-convergent paths. In both cases the mismatches

can be handled by adding additional pipeline stages called slack buffers. The slack cells

commonly are faster than regular logic cells and that allows them to be able to address

larger mismatches than a common cell due to their excess slack which is defined that

the difference between the circuit GCT and the cell LCT.

 71

Tok

Buf

l0 = 2

τ0 =10

l
1
 = 2

τ1 =10

l
2
 = 2

τ2 =10

l
3
 = 2

τ3 =10

l4 = 2
τ
4

=10

l
5
 = 2

τ
5

=10Token arrives at t = 0
Token arrives at t = 10

(stalled by 4 w hile
output channel resets)

Token arrives at t = 24
Token arrives at t = 34

(stalled by 4 w hile
output channel resets)

Token arrives at t = 6

Token arrives at t =16
Token arrives at t = 30

(starved by 4)
Token arrives at t = 40

Token arrives at t = 2
(stalled by 4 w hile

w aiting for other input)
Token arrives at t = 16
Token arrives at t = 26

(stalled by 4 w hile
w aiting for other input)

Token arrives at t = 40

Token arrives at t = 2

Token arrives at t = 12
Token arrives at t = 26

(starved by 4)
Token arrives at t = 36

Token arrives at t = 4

Token arrives at t = 14
Token arrives at t = 28

(starved by 4)
Token arrives at t = 38

Token arrives at t = 0

Token arrives at t = 10
Token arrives at t = 24

(starved by 4)
Token arrives at t = 34

Token arrives at t = 8

Token arrives at t =18
(stalled by 4 w hile output

channel rests)
Token arrives at t = 32

Token arrives at t = 42
(stalled by 4 w hile output

channel rests)

Figure 13 This example illustrates the effects of improper slack matching in a
pipeline. The circuit shown above comprises pipeline stages that
can run at a 10-transition cycle, however due to the mismatch the
circuit cannot run faster than a 12 transition cycle.

The above intuitive explanation is illustrated in Figure 13. Notice that all pipeline

stages can run at a cycle time of 10- transition delays. This should enable the circuit to

also run at that speed, but due to improper slack matching it can not go faster than an

average cycle of 12 transitions. One can start tracing the causes of this slow down by

looking at the arrival times of the data at the different stages assuming that data is

launched at time t = 0. Notice that the token from the top branch arrives at stage 4 at

time t = 2. However the other branch is not ready causing it to wait for 4 transitions. This

is the first stall and is happening due to the top path being too fast. Now stage 5 can only

start resetting at time t = 6 when the data is used by stage 4, so it cannot accept data

until t = 14. This in turn causes a stall between stages 0 and 5. The stalls inevitably keep

 72

propagating backwards, and on average it turns out that the circuit can never exceed 12

transitions per cycle performance on average.

The slack matching problem is commonly modeled using a Petri net model

commonly referred to as the Full-Buffer Channel Net model proposed in [5]. As the name

suggests the underlying assumption is that the stages are full-buffer stages, although in

practice it has been shown to work well even for half-buffer cells. The problem can be

presented as MILP problem, but due to complexity it has been also approximated in [5]

with an LP. This section is devoted on optimizations that can be performed on this

original formulation.

4.2 Slack Matching Fanout Tree Improvements

Slack matching adds buffers on the connections between pipeline stages to

enhance the performance of the circuit. In reality slack matching creates a small buffer

tree at the output of a cluster that ensures the alignment of the data at the leaf cells of

the tree at the desired times. The cost of slack matching is high in many asynchronous

circuit templates that could account to up to 33% of the total circuit area. Therefore it is

worth investigating improvements to the existing models and methods, which could be

used to reduce the area overhead that makes this process so costly.

Slack matching is done using the Full-Buffer-Channel-Net (FBCN) model as

presented in [5]. In the FBCN model slack matching is done on channels. Channels are

point-to-point edges in the graph and are used to describe abstractly a connection

between two pipeline clusters or nodes in the graph. So if a connection between the two

 73

exists, irrespective of how many physical wires it includes a single channel is created.

The formulation is fairly straight forward:

() Vvvfhsfewaa jislackslackjijijiij ∈∀+∗+++= ,,)(,,,

Goal Function is to Minimize ∑ jis ,

In this equation, ji aa , represent the arrival time at node Vvv ji ∈, . jif , is the free

slack of the channels and is equal to the difference between the TCT and the LCT for

the particular channel. jis , represents the number of slack cells that need to be

introduced on the channel so that the circuit is slack-matched.
slack

h is the forward

latency of a slack cell, which is a constant that is known at design time and
slack

f is the

free slack of the slack cell, which is also constant and corresponds to the difference

between the TCT and the LCT if the slack cell is inserted and depending on the

complexity of the circuit can either be precisely calculated or estimated. This is because

depending on the design style the LCT of the slack cell could depend on the fanin and/or

fanout and/or width of the bus that is routed through it, none of which parameters are

known in advance and they actually depend on the solution of the arrival time problem.

This model is fairly accurate for simple pipelines and it has been proven to work

well in most cases. However, this formulation does not account for hardware

optimizations that could be made and could make this model more accurate. In most

design styles, it is possible that several channels leave a particular cluster for several

different destinations. However all these channels could be the same wire actually

forking to many targets in the netlist. So in this case it is possible to actually share any

slack buffers that need to be placed for channels from the same source. The original

 74

formulation does not explore this possibility and could think that several buffers are

needed in a location that one buffer could be used for all the channels that run in

parallel.

In most cases – assuming that we merge the buffers after slack matching

anyway – this inaccuracy actually just results in the LP program overestimating the

number of buffers needed. However, this problem could be further exaggerated in some

cases if the LP formulation concludes that buffers are better placed in a different

location. For example if a 2-input cluster has 3 fanout channels due to a wire feeding into

3 other clusters the original formulation would make the LP solver conclude that it is

better to place buffers before the cluster than after it, and ultimately use 2 slack buffers

instead of 1. This is shown in Figure 14.

A modification was made to the goal function of the LP problem to reflect this

inaccuracy from the goal function. The formulation of the arrival times remains identical,

but an additional set of parameters is required to be stored and used for evaluation

along with some extra constraints that are however linear in terms of the problem size

(number of nodes). So again:

() Vvvfhsfewaa jislackslackjijijiij ∈∀+∗+++= ,,)(,,,

But also we add the extra parameters
i

z and respective constraints such as

iji zs ≤,

Goal Function is to Minimize ∑ iz

 75

And since the minimization of the sums of
i

z is the goal function it will be true

that { }
ji

j
iiji szzs ,, max=⇔≤ . With this formulation, the linear program solver will

attempt to find the best solution assuming that it can use a line of buffers that can be

shared among all the outgoing channels. This is accurate for cases that slack buffers

can support arbitrary fanout and the only cases where it is problematic is situations

where a particular design styles poses a hard limit on the fanout of every gate/node. In

those cases it might be necessary to have buffer trees rather than buffer lines for slack

and in that case our formulation is inaccurate and also optimistic.

(a)

(b)

(c)

Figure 14 A case where the original slack-matching formulation yields sub-
optimal placement of slack buffers. The original circuit in (a)
requires on buffer stage. However the old formulation would decide
to place the buffers on the input of the gate assuming no sharing (b).
The new formulation models the sharing and places the buffer after
the gate (c).

 76

4.3 Experiment Setup

In order to test the improvements that can be accomplished by the sharing of the

buffers an experiment was setup that focuses on the case of PCHB pipelines. The

experiment involved slack matching a netlist that was using the PCHB design style. The

formulation was based on the LP approximation described in [5] with the use of a ceiling

function. That is the amount of slack per channel is formulated and solved as a real

number and the result of the LP problem is rounded up to give the actual number of

buffer stages that will be instantiated. This was done because the MILP formulation that

is actually accurate, where the slack variables are actually described and solved as

integer parameters, is too slow and not practical as also observed in [5] and only very

few extremely small examples could be tested.

The objective of our tests was to show the benefits of the buffer-sharing concept

while slack matching and characterize the improvements that can be realized. The

results are subject to the LP approximation inaccuracy, but have practical value since

this approximation allows us to test on larger circuits with tens of thousands of gates,

which are closer to real life examples that this method could be applicable to. There are

a couple of additional constraints to the PCHB template that was used that slightly affect

the accuracy of the results. Those include maximum fanout constraints on gates and an

additional requirement that Primary Inputs (PIs) should only fanout to a single gate.

When either constraint is violated additional buffers need to be added to yield a

functional circuit. Our software was designed to yield functional circuits that can be

simulated in Verilog for correctness, therefore those constraints needed to be enforced

in order to be able to verify the functionality and performance of the final netlists.

 77

4.4 Experimental Results

For the sake of our experiments we have used 26 examples from the standard

ISCAS benchmark circuits as well are 3 of our own examples that represent different

sized mathematical operations (2 Multiply Accumulate Units) and a SISO module (Soft-

In-Soft-Out used in Error Correcting Decoders in Telecommunication Systems). The

results are summarized in Table 4.

 78

 Orig. LP - No Sharing Orig. LP - Sharing New LP - Sharing

Example Insts
Buffer
Area

Total Area
Buffer
Area

Total
Area

Buffer
Area

Total
Area

 c3540 731 6804.17 27225 5235.15 25474.9 3982.69 24121.5

 MAC16 1604 11344 48254.1 9893.84 47153.7 8519.73 45508.6

 MAC32 1092 8584.7 32071.7 6780.67 30150.1 5696.87 29015.2

 s1196 387 4357.32 14964.5 3472.59 13929.1 3388.26 13763.2

 s1238 409 4866.05 16109.1 3852.75 14918.9 3693.77 14450.2

 s13207 1738 14034.1 52840.9 12908.9 51906.4 8720.18 47919.5

 s1423 443 2134.43 12430.5 1835.83 12138.9 1581.47 11901.1

 s1488 455 2842.21 14061.8 2021.07 13535.1 1679.62 13275.2

 s15850 2229 12408.4 64173.8 11310.8 63170.2 8967.63 60804.9

 s27 9 99.5328 299.981 99.5328 299.981 77.4144 277.862

 s298 76 597.197 2144.1 503.194 2050.1 470.016 2012.77

 s344 82 796.262 2641.77 707.789 2589.24 508.723 2322.43

 s349 80 608.256 2430.26 594.432 2437.17 519.782 2368.05

 s382 101 829.44 3035.75 707.789 2903.04 663.552 2827.01

 s386 89 619.315 2683.24 505.958 2528.41 450.662 2470.35

 s400 102 785.203 3002.57 693.965 2907.19 637.286 2822.86

 s420 99 1396.22 3533.41 1238.63 3341.26 663.552 2786.92

 s444 99 763.085 3015.01 713.318 2956.95 677.376 2894.75

 s510 172 1205.45 5374.77 879.206 5213.03 666.317 5011.2

 s526 125 873.677 3581.8 821.146 3532.03 837.734 3543.09

 s5378 960 7633.61 28001.9 6571.93 27002.4 4813.52 25161.1

 s641 135 2092.95 5059.58 1889.74 4788.63 731.29 3642.62

 s713 134 2012.77 4954.52 1891.12 4776.19 641.434 3508.53

 s820 219 1504.05 6947.94 1241.4 6852.56 740.966 6245.68

 s832 213 1492.99 6672.84 1222.04 6498.66 803.174 6097.77

 s838 208 2233.96 6903.71 2054.25 6711.55 1194.39 5847.55

 s9234 632 3859.66 18323.7 3157.4 17592.4 2742.68 17403

 s953 281 1957.48 9277.29 1515.11 8760.27 1338.16 8555.67

 SISO 1300 1470.87 28431.8 1426.64 28391.7 1166.75 28126.3

Table 4 Slack matching results for the sharing and no-sharing versions of the
algorithm

 79

 Area Savings

Example

Buffer
vs. Orig.
LP - No

Sh.

Buffer
vs.

Orig.
LP -

Sharing

Total
vs.

Orig.
LP - No

Sh.

Total
vs.

Orig.
LP -

Sharing

 c3540 41.47% 23.92% 11.40% 5.31%

 MAC16 24.90% 13.89% 5.69% 3.49%

 MAC32 33.64% 15.98% 9.53% 3.76%

 s1196 22.24% 2.43% 8.03% 1.19%

 s1238 24.09% 4.13% 10.30% 3.14%

 s13207 37.86% 32.45% 9.31% 7.68%

 s1423 25.91% 13.86% 4.26% 1.96%

 s1488 40.90% 16.89% 5.59% 1.92%

 s15850 27.73% 20.72% 5.25% 3.74%

 s27 22.22% 22.22% 7.37% 7.37%

 s298 21.30% 6.59% 6.13% 1.82%

 s344 36.11% 28.13% 12.09% 10.30%

 s349 14.55% 12.56% 2.56% 2.84%

 s382 20.00% 6.25% 6.88% 2.62%

 s386 27.23% 10.93% 7.93% 2.30%

 s400 18.84% 8.17% 5.99% 2.90%

 s420 52.48% 46.43% 21.13% 16.59%

 s444 11.23% 5.04% 3.99% 2.10%

 s510 44.72% 24.21% 6.76% 3.87%

 s526 4.11% -2.02% 1.08% -0.31%

 s5378 36.94% 26.76% 10.15% 6.82%

 s641 65.06% 61.30% 28.01% 23.93%

 s713 68.13% 66.08% 29.19% 26.54%

 s820 50.74% 40.31% 10.11% 8.86%

 s832 46.20% 34.28% 8.62% 6.17%

 s838 46.53% 41.86% 15.30% 12.87%

 s9234 28.94% 13.13% 5.02% 1.08%

 s953 31.64% 11.68% 7.78% 2.34%

 SISO 20.68% 18.22% 1.07% 0.93%

Average 32.63% 21.60% 9.19% 6.00%

Table 5 The area savings in terms of slack-matching buffer area and total circuit
area realized with the new LP formulation and sharing vs. the other
versions.

The results show that the proposed sharing algorithm and the new formulation

achieve significant savings over the previous formulation with no sharing as well as over

the previous formulation with sharing allowed. There is only one example that the new

algorithm did worse compared to the original formulation with sharing. In this particular

 80

case the new formulation did worse by just one buffer. This can be attributed to the fact

that in both cases the formulations are approximate, in the sense that the results are

rounded up to instantiate an integer number of buffers, and in this context an difference

of one buffer can be considered a reasonable approximation error.

Overall the sharing of existing buffers seems to achieve average buffer area

savings of approximately 32.63% vs. the original LP formulation and no sharing and

21.6% vs. the original LP formulation with sharing. In terms of the total circuit area the

savings are approximately 9.19% and 6% respectively on average.

4.5 Other considerations

The new formulation as well as the sharing of buffers have area benefits that are

clear from all our experiments. However it is interesting to note a couple of other issues

that require careful consideration when choosing which variant to use. Firstly, the new

formulation requires additional variables as many as the nodes in the circuit and

additional constraints as many as the channels in the circuit, thus making the linear

formulation more complex. This results in more memory usage and larger runtime. As

the circuits grow in size the new formulation becomes more and more expensive and

ultimately impractical. The older formulation can generally tackle larger problems in the

same amount of time and thus could be preferential for larger netlists.

Another interesting observation is that the sharing assumes that arrival times of

shared buffers can satisfy all leaf nodes attached to them. However this is not always

true and as a result sometimes it results in additional buffers being added on a

subsequent pass. Without sharing, the arrival times have no such assumptions and thus

 81

convergence is achieved usually faster. Both formulations are approximate due to the

rounding, so addition of buffers in subsequent paths is always possible, but without

sharing it is more rare. This is important when runtime is critical and an additional path

might require a very large amount of time that is prohibitive for a given design.

 82

Chapter 5 An Asynchronous ASIC Flow

It is easier to understand the context of this work and the general motivation

behind it as part of the entire flow. In this chapter we are going to describe a new flow

that has been developed to enable an ASIC design flow for the asynchronous design

styles. It will show the commercial tools used and all the customized tools generated and

how this flow works from end to end. This is will give the reader a perspective as to what

is the value of our work and what its position is relative to the rest of the flow.

Our goal is to generate the framework to enable an asynchronous ASIC flow that

will enable engineers to design circuits using asynchronous design styles with the same

ease and efficiency as they do for synchronous designs currently. To achieve this we

have generated a tool flow that resembles the standard synchronous ASIC flow and in

fact reuses most of the existing parts and standard commercial tools. The designer

starts with standard HDL input and uses commercial synthesis engines to generate a

synthesized image of the logic. We have then designed a tool that takes the synthesized

netlist and applies all the design transformation and optimizations that are unique to

asynchronous design. After our customized tool is done it generates a netlist back into a

standard format so that it can be imported into a standard back-end flow. That enables

us to use standard Place and Route, verification and simulation tools that are well known

in the industry.

We have also focused throughout this work on the goal of guaranteeing

performance. There are three limiting factors for the performance of an asynchronous

circuit. The first one is algorithmic loops that were addressed through the distance-based

clustering criteria presented in Section 3.2.2. The second one is unbalanced paths and

 83

misaligned data in the pipeline, which is a problem solved through slack matching that

was discussed extensively in Chapter 4. The third limiting factor is the LCT of a channel,

which could make a local handshake the critical path of a circuit. This is addressed in

this chapter in Section 5.2.2, where we describe the Clustering algorithm that is

implemented as part of this flow.

5.1 Synthesis

The first process in the flow is synthesis. This is done in commercial synthesis

tools to convert the design to a synchronous Verilog netlist. The initial synchronous

specification is done from a behavioral HDL or RTL HDL, which could be defined in any

language that is supported by the commercial synthesis tools. A second input to the tool

is the library information. The library information is really an “image” library that abstracts

the asynchronous gate details for the synthesis tool (such as whether they are dual-rail

or single-rail, their handshaking ports and protocols, etc.), but includes all the information

that is useful for it to do a proper design (such as timing, power, area, etc.).

The benefit of this flow instead of trying to generate a new tool is that we can

leverage off tools that have been refined through years of research to perform good

optimizations, and include predefined and optimized design components such as adders

and multipliers that can be used in the data path. So by placing appropriate constraints

one could use ripple-carry or carry look-ahead adders to trade between latency and

area. Other tasks, such as buffer insertion and gate resizing could be performed as well,

by changing the input constraints for the design. In most cases relaxed constraints are

enough, since they yield the simplest data path, but if one wanted to shorten the data

 84

path due to a large algorithmic cycle time in the final design, modified constraints could

be used to force the compiler to generate a different netlist.

Figure 15 Overview of our ASIC flow.

5.2 The Clustering Program

Most asynchronous design styles allow for multiple gates to be placed within the

same pipeline stage. Generally that is done to reduce the area overhead associated with

the control logic that is used for handshaking between every pipeline stage and its

neighbors. The control logic is large and the more efficiently it gets shared among many

gates the smaller the penalty that one has to pay for the asynchronous design style

conversion. Depending on the design style the number of gates per pipeline cluster

Clustering Program

Clustering

Slack Matching

Template Conversion

HDL Input

Image Verilog Netlist

Mapped Verilog Netlist

Final Verilog Netlist GDSII

Back-End

Clustering Program

Synthesis

Image .lib

Target .lib

 85

varies widely, but it is believed that the same principles apply in all cases. Also most

asynchronous design styles share other design rules, such as limits on fanin/fanouts per

pipeline cluster and others. Finally all asynchronous circuits have to obey similar rules

about Local Cycle Time, Target Cycle Time and Algorithmic Cycle Time as discussed in

Section 2.7.1. And all of these parameters depend on the size and interconnect of the

different clusters in the final netlist. So the goal is to minimize the area of the final netlist

by grouping gates together as well as possible, but at the same time obeying all the

design constraints that are specific to a particular design style and also maintain the

functionality and the performance requirements that the designer specified when

defining the HDL description of the circuit.

5.2.1 Circuit Representation

Immediately after the original Verilog input file for the circuit is read, the netlist is

converted to a generic directed graph structure, with the instances and primary IO

converted into nodes and the wire interconnect represented by edges. The original

Verilog input file is converted into a generic graph structure that can be manipulate more

efficiently during the different optimization operations that are run during processing.

Initially the tool reads the entire netlist (flat netlist with no hierarchy) and creates a single

pipeline stage out of every gate in the original netlist. The goal of this is to give the tool

the most flexibility in terms of clustering, and also start with very simple pipeline clusters

that should generally meet any give performance targets more easily.

5.2.2 Clustering

Having formed the fundamental one-gate clusters the next step is to try and

group them in larger groups without violating the performance requirements of the

design and at the same time preserve the original functionality intended by the user. Our

 86

present algorithm does not try to find an optimal clustering solution. Instead it uses a

heuristic optimization based on area and performance criteria that implements a

steepest-descent-type of algorithm. The main focus of our work so far has been on

correctness of the emitted circuit as well as preservation of the performance

requirements. The runtime of the heuristic approach is also a big advantage since it

allows us to test larger circuits.

The clustering is done by merging two clusters into one (we refer to this as a

local move) and executing one such move at a time. During each iteration the software

looks at all possible moves that are available and executes the one that has the largest

performance benefit. It also estimates the area gains from the potential merging, and

uses the area benefits to break ties in the case that many moves have the same

performance improvements. The area metric is an area estimate of the control logic that

can be removed by executing the particular move. The performance metric is an error

metric associated with the Target Cycle Time of the circuit and the Local Cycle Time of

the individual channels. For each channel an error metric is calculated that is equal to

the amount that the LCT violates the GCT. For each move the performance metric is the

difference between the sum of errors for all channels before the move and after the

move. The largest the metric the more LCT improvements the move will achieve.

After each move the algorithm discards all moves that are no longer feasible and

generates new ones from the region of the circuit that was affected and then repeats the

process. This avoids costly recalculation of all move data at each step. The algorithm

does not select any move that would make the metric worse and thus in practice avoids

making LCT worse than the GCT and affecting the performance of the circuit, thus

addressing the last and final parameter that could affect performance.

 87

The moves are also checked for other local rules that are associated with

particular design restrictions for the design style that is being targeted and are not

related to either performance or correctness. For example TOKEN_BUFFER cells are

cells that for all templates are initialized during reset with particular data values, unlike

regular cells that do not hold data after reset. Those can only be placed in pipeline

stages that host similar types of cells. When the clustering algorithm cannot find any

candidate local moves to execute it stops. The algorithm is summarized in Figure 16.

Figure 16 The clustering algorithm that ensures that LCT does not grow.

 88

5.2.3 Fanout Fixes

The circuit is generated using synchronous tools and design libraries. There are

certain restrictions in some of the different design styles in terms of the number of fanout

gates that each gate will drive. Sometimes this is due to the particular protocol – for

example single-track 1-of-N channels (such as those in SSTFB) only support point-to-

point connections – or due to performance restrictions (fanout load of the gate or depth

of C-element trees required for merging ACK signals). When the given netlist does not

obey these restrictions the program has to intervene and correct these faults by

instantiating fanout trees for problematic signals using buffer cells, in a process that

bears a large amount of resemblance to the buffering and fanout optimization process of

the synchronous netlists, only with different criteria and decision metrics. This step is

executed if necessary before moving on to create a final netlist.

5.2.4 Final Optimizations

After clustering is done the software also performs slack matching on the netlist.

The concept of slack-matching is analyzed in detail in [5], and the tool uses a similar

formulation as described there to achieve the performance requested by the user. Some

modifications have been made to improve the results based on some practical

observations, which will be analyzed later in Chapter 4.

Other local optimizations are done in the netlist during this final stage to ensure

the best quality of results. Gate replication is used to reduce the levels of logic in certain

cases and buffers are inserted in some cases if it is deemed that the operation might

help performance. In general these are minor implementation details that help a practical

design, but are probably outside the scope of this work and will not be analyzed as part

of this document.

 89

5.2.5 Library Conversion

The next step is to generate a new netlist that instantiates the actual gates that

will be used for implementation from the selected asynchronous implementation design.

The program also needs to generate and instantiate all the additional control logic that is

necessary for the handshaking between the pipeline stages that were defined during

clustering and slack matching.

For the design styles that have been imported in the tool so far the final gates

that will be used are dual rail gates, even though for other design styles that is not the

case. All the nets in the original netlist are in this case converted into pairs of nets each

representing the true and false rails of the original single rail signal. The gates are also

converted to their dual rail counterparts and the wires are interconnected appropriately.

With a dual rail library inversions of inputs and outputs could be handled by swapping

the two wires attached to a gate. During this step all gates are converted to their non-

inverting counterparts, and the inversion of inputs and outputs takes place by inverting

the dual-rail wires. Even though the single rail library uses image gates that include all

permutations of possible inversions of inputs and outputs, the final library includes only

the non-inverted versions, reducing the amount of library cells that are required for a

complete library implementation. Special signals such as power, ground and a global

asynchronous reset are also generated. When all the gates have been converted the

completion detection trees are formed and the controllers for the pipeline stages are

instantiated. The merge and fork cells for the primary inputs and outputs are also

instantiated, and the handshaking signals for the left and right environment are added to

the top level module.

 90

5.2.6 Verification

The software package finally creates additional information that is required for

verification of the resulting design. A header file is written that contains some important

parameters for the design, such as the number of inputs, outputs and vectors that are

going to be used. Another file that contains a random number generator is also copied to

the design directory. Then the software will generate a testbench for the synchronous

netlist as well as a testbench for the asynchronous one. A script is also written out that

includes the commands needed for running the tests.

The script file commands will first call the random generator module and

generate an input file for both simulations that uses random data at all inputs. After this

the synchronous netlist is run given the input vectors and the output vectors are

recorded at every cycle and sent to a file. The script then executed the command to

simulate the asynchronous netlist with the same input file. The results of this run are

compared against the results of the synchronous netlist and if they match the testbench

will indicate that the test completed successfully. Otherwise it will indicate a failure. At

the same time the testbench samples the design outputs and average the number of

tokens received over time to calculate the global cycle time in the design.

5.3 Simulation and Back-End Design

The default simulation that our program performs is done in NC-Sim to verify that

the translation was successful. However since the netlist is in regular Verilog format,

further simulation in any commercial simulator is possible. The Verilog Netlist can also

be used as is by commercial back-end tools to perform place and route and verify the

performance of the circuit. Back-annotation could also be used for post-layout

 91

simulations if desired. However, the flow currently does not support ECO flows and post-

layout optimizations. Therefore if the netlist is not yielding the desired results and

changes are necessary, the design might have to be processed again from the

beginning. Alternatively hand-editing might be able to alleviate the problem if it is easy to

identify and fix. Post-layout analysis and ECO-type fixes to the netlist is an interesting

and potentially necessary future step.

The flow has been proven in practice to work and we have taken several

example designs through, including place & route to produce GDSII. The netlists started

from RTL-level code (Verilog) and taken through synthesis, our clustering and slack-

matching tool and then Place and Route through Cadence’s Encounter tool suite. The

results are encouraging showing functional netlists that can successfully place and route

and produce functional circuits that would be ready for fabrication. Obviously more is

necessary for this flow to reach the levels of sophistication that synchronous flows have

reached, but it is a proof of concept that an automated ASIC flow for performance-aware

asynchronous design is possible.

 92

Figure 17 A caption of a finalized placed and routed design after a successful
pass through our asynchronous ASIC flow.

 93

Chapter 6 Summary

6.1 Advancements

Asynchronous circuit design has been proposed many times, but has only been

adopted in very few isolated cases by the design community. The main reason for this,

in our view, is the lack of an automated set of tools that would allow a designer to

generate a circuit quickly from a behavioral Hardware Description Language (HDL), just

like the ASIC flow that has existed for years for synchronous circuits. As part of this

effort we created an automated flow that can automatically generate asynchronous

circuits from any HDL using a mixture of custom and existing industry tools.

Due to the fact that asynchronous circuits require a handshaking controller for

every pipeline stage, which is used to interface to adjacent pipeline stages, the logic

overhead of such circuits is large. By grouping the circuits appropriately one can reduce

this overhead and yield circuits that have competitive or even superior characteristics

that their synchronous counterparts. Without this grouping asynchronous circuits are

most likely going to be far less efficient in terms of throughput per area, even though

they might have a substantial absolute performance advantage over their synchronous

equivalents.

It is also important to note that asynchronous circuits are data driven in nature.

This allows clustering to redefine the pipeline stages irrespective of the pipeline stages

defined at the RTL without altering the behavior of the circuit. Thus clustering allows

automatic re-pipelining based on performance-driven criteria that can create a circuit that

meets the desired performance without changes to the RTL. This makes the design

 94

easier and saves designers time and effort that would otherwise be required in adjusting

their pipeline stages to meet the required performance.

As we were investigating the tradeoffs early on we discovered that arbitrary

clustering with only local constraints had a very high likelihood of yielding non-functional

circuits that would deadlock, and very frequently circuits that had performance that was

far worse than that of the initial circuit or the desired performance target. Consequently

this work was focused on guaranteeing that these two important criteria were maintained

by exploring the proper design criteria that would ensure functionality and performance

maintenance.

In Chapter 3 we proposed and proved several different criteria that allow us to

ensure that the functionality of a circuit is retained through clustering as well as other

additional ones that ensure that both algorithmic cycle time and end-to-end latency do

not deteriorate. This along with the directed graph model that is proposed is the most

important contribution of this thesis and it is an enabling factor for automated pipelining

of asynchronous circuits. Using the theory of Chapter 3 we can ensure that the circuits

will always work and meet performance goals desired by the designer.

Additionally, our algorithm relies heavily on maintaining a a record of all

distances from all the nodes to all the nodes of a graph. We have used the Floyd-

Warshall algorithm for deriving the initial distances, but as we modified the graph it was

quickly obvious that the algorithm was too complex (()3
VΘ) to be executed multiple

times for updating the distances after every change in clustering. Thus we proposed

different practical update algorithms that require far less computation and can be used in

practice. One of them was proven to have ()2
VΟ for circuits with limited fanout. This is

 95

an update algorithm that could be useful to a variety of applications that require the

maintenance of such an all-pair wise distance array.

Finally Chapter 4 focuses on implementation improvements to the slack matching

formulation that was earlier proposed in [5]. The improvements are based on a different

formulation for the Linear Program that can be used to solve the Slack Matching problem

for a circuit. Even though both methods discussed are approximations of the optimal

solution and the model proposed is only a small improvement over the original one the

section offers an approach that has practical value. The method discussed along with

the new model for sharing slack matching buffers between channels results in overall

saving of 13% in terms of total buffering area and approximately 3% in overall circuit

area.

6.2 Applications

In this thesis we have created a modeling framework that allows a designer to

perform this clustering of the logic gates into pipeline stages by modeling the logic onto

an implementation-agnostic graph. This allows us to cluster any arbitrary circuit from its

gate-level logic representation into pipeline stages of an asynchronous circuit of any

desired design style. Depending on the implementation style the clustering constraints

have to be modified to yield a functional circuit that abides by all design rules for the

particular style. Area models might also vary quite a bit. But the basic principles of our

proposed flow are applicable to all of them.

With the right formulation of the local constraints and appropriate performance

and area models for a particular design style one can use this work to design any type of

 96

asynchronous pipeline that one desires starting from a gate-level representation of the

desired circuit. That means that one could start from any regular HDL representation of a

circuit and use a conventional synthesis engine to convert it to gates. Then using this

model one could use it to create a pipelined circuit for any design style of their choice. It

is believed that this method, since it maintain the functionality and performance of the

original circuit, while optimizing its area by clustering, could be used as part of a much

broader ASIC flow that would be applicable to all types of asynchronous circuits.

6.3 Open Issues

The focus of this thesis was on maintaining correctness and performance

throughout our processing. For all our experiments we used a greedy method for

selecting our clustering moves one at a time. This is essentially a steepest-descent

method that is most likely far from optimal. Clustering is a hard problem and several

heuristic methods have been proposed to address it in different contexts. It is believed

that many such methods are also applicable here and it remains an open issue to find

practical and good methods for this particular application. Optimization techniques from

dynamic programming, simulated annealing, and other optimization techniques are all

thought to be applicable for this problem. It is our belief that there deserves to be follow-

up work that builds on this framework and will focus now on improving the area results

for such circuits, by attempting to find suitable area models and optimization techniques

that solve this problem in a good and practical fashion.

 97

6.4 Conclusions

This thesis proposed a method for modeling an arbitrary gate-level circuit using a

graph model and methods that allow us to perform area-reducing transformations to it,

which are modeled as clustering operations on the graph. The goal is to provide a

theoretical foundation for a method that could lead to a fully automated flow for

designing asynchronous circuits from an arbitrary gate-level representation that is

implementation-agnostic. The long term goal is to provide a framework for further

optimizations that could be done to generate asynchronous circuits in an ASIC-like flow

that can ultimately compete in performance, area and ease of design with their

synchronous counterparts, thus enabling designers to take advantage of asynchronous

design techniques in commercial applications. It is our belief that this work is a

significant step along a path that can ultimately lead to significant wider adoption of

asynchronous design technology.

 98

References
[1]. Enchanced Intel® SpeedStep® Technology.

http://download.intel.com/design/processor/datashts/31327801.pdf

[2]. AMD PowerNow!™ Technology.
http://www.amd.com/us-en/assets/content_type/DownloadableAssets/Power_Now2.pdf

[3]. A. Bardsley and D. A. Edwards, “The Balsa Asynchronous Circuit Synthesis System,” in
Proc. Forum on Design Languages, Sept. 2000.

[4]. A. Bardsley and D. A. Edwards, “Synthesizing an asynchronous DMA controller with
Balsa,” Journal of Systems Architecture, vol. 46, pp. 1309–1319, 2000.

[5]. P.A. Beerel, A. Lines,. M. Davies, N. H. Kim, “Slack matching asynchronous designs”,
IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC’06),
2006,

[6]. K. van Berkel, F. Huberts, A. Peeters. “Stretching Quasi Delay Insensitivity by Means of
Extended Isochronic Forks,” in Proc. Second working conference on Asynchronous
Design Methodologies, pp. 99–106, May, 1995.

[7]. K. van Berkel, J. Kessels, M. Roncken, R. Saeijs, and F. Schalij, “The VLSI-Programming
Language Tangram and Its Translation into Handshake Circuits,” in Proc. European
Conference on Design Automation (EDAC), 1991, pp. 384–389.

[8]. I. Blunno, J. Cortadella, A. Kondratyev, L. Lavagno, K. Lwin, and C. Sotiriou, “Handshake
Protocols for De-Synchronization,” in Proc. International Symposium on Advanced
Research in Asynchronous Circuits and Systems, Apr. 2004, pp. 149–158.

[9]. T. Chelcea , S. M. Nowick, “Resynthesis and peephole transformations for the
optimization of large-scale asynchronous systems,” Proceedings of the 39th conference
on Design automation, 2002,

[10]. T. Chelcea, A. Bardsley, D. Edwards, and S. M. Nowick, “A Burst-Mode Oriented Back-
End for the Balsa Synthesis System,” in Proc. Design, Automation and Test in Europe
(DATE), Mar. 2002, pp. 330–337.

[11]. C.S. Choy, J. Butas, J. Povazanic, C. F. Chan. “A new control circuit for asynchronous
micropipelines”, IEEE Transactions on Computers Volume 50, Issue 9, Sept. 2001
pp:992 – 997

[12]. J. Cortadella, A. Kondratyev, L. Lavagno and C. Sotiriou. “A Concurrent Model for De-
synchronization.” In Handouts of the International Workshop on Logic Synthesis, pp. 294-
301, 2003.

[13]. J. Cortadella, A. Kondratyev, L. Lavagno, K. Lwin, and C. Sotiriou, “From Synchronous to
Asynchronous: an Automatic Approach,” in Proc. of International, Design and Test in
Europe Conference and Exhibition, 2004.

[14]. J. Cortadella, A. Kondratyev, L. Lavagno, and C. Sotiriou, “De-synchronization: Synthesis
of Asynchronous Circuits from Synchronous Specification.” in IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems. Oct. 2006.

 99

[15]. K.M. Fant, S.A. Brandt, “NULL Convention Logic
TM

: a complete and consistent logic for
asynchronous digital circuit synthesis” Proceedings of International Conference on
Application Specific Systems, Architectures and Processors, Aug. 1996.

[16]. K. Fazel, R.B. Reese; M.A. Thornton, “PLFire: A Visualization Tool for Asynchronous
Phased Logic Designs”, Proc. of International, Design and Test in Europe Conference
and Exhibition, 2003.

[17]. M. Ferretti, “Single-Track Asynchronous Pipeline Template, PhD Thesis”, University of
Southern California, 2004.

[18]. M. Ferretti, P. A. Beerel, “Single-Track Asynchronous Pipeline Templates Using 1-of-N
Encoding”, IEEE Proceedings of the 2002 Design, Automation and Test in Europe
Conference and Exhibition (DATE.02)

[19]. S. B. Furber and J. Liu. “Dynamic logic in four-phase Micropipelines”. In Proc.
International Symposium on Advanced Research in Asynchronous Circuits and Systems.
IEEE Computer Society Press, March 1996.

[20]. P. Golani, P. A. Beerel, “High-Performance Noise-Robust Asynchronous Circuits,” IEEE
Computer Society Annual Symposium on Emerging VLSI Technologies and Architectures
(ISVLSI'06), 2006, pp. 173-178,.

[21]. J. Kessels and A. Peeters, “The Tangram Framework: Asynchronous Circuits for Low
Power,” in Proc. of Asia and South Pacific Design Automation Conference, Feb. 2001,
pp. 255–260.

[22]. A. Kondratyev and K. Lwin. “Design of asynchronous circuits by synchronous CAD tools.”
In IEEE Design and Test of Computers, vol. 19, no. 4, pp. 107-117, July/August 2002.

[23]. M. Ligthart, K. Fant, R. Smith, A. Taubin, and A. Kondratyev, “Asynchronous Design
Using Commercial HDL Synthesis Tools,” in Proc. International Symposium on Advanced
Research in Asynchronous Circuits and Systems, Apr. 2000, pp. 114–125.

[24]. D. H. Linder and J. C. Harden, “Phased Logic: Supporting the Synchronous Design
Paradigm with Delay-Insensitive Circuitry,” IEEE Transactions on Computers, vol. 45, no.
9, pp. 1031–1044, Sept. 1996.

[25]. A. M. Lines, “Asynchronous Pipelined Circuits”, Master’s Thesis, California Institute of
Technology 1995, Revised 1998.

[26]. A. J. Martin, “The Limitations to Delay-Insensitivity in Asynchronous Circuits.” Proc of
Sixth MIT Conference on Advanced Research in VLSI, ed. W. J. Dally, 263-278, MIT
Press, 1990.

[27]. A. J. Martin, “Compiling Communicating Process into Delay-Insensitive VLSI Circuits.”
Distributed Computing 1(4):226-234, 1986.

[28]. A. J. Martin. Programming in VLSI: From communicating processes to delay-insensitive
circuits. In C. A. R. Hoare, editor, Developments in Concurrency and Communication, UT
Year of Programming Series pages 1-64. Addison-Wesley, 1990.

[29]. S. Masteller, L. Sorenson, “Cycle decomposition in NCL”, IEEE Design & Test of
Computers, Volume 20, Issue 6, Nov.-Dec. 2003

 100

[30]. K. Meekins, D. Ferguson, M. Basta, “Delay insensitive NCL reconfigurable logic”, IEEE
Aerospace Conference Proceedings, Volume 4, 2002

[31]. T. Nanya, A. Takamura, M. Kuwako, M. Imai, T. Fujii, M. Ozawa, I. Fukasaku, Y. Ueno,
F. Okamoto, H. Fujimoto, O. Fujita, M. Yamashina, and M. Fukuma. “TITAC-2: A 32-bit
scalable-delay-insensitive microprocessor.” In Symposium Record of HOT Chips IX, pp.
19–32, August 1997.

[32]. J. M. Rabaey, “Digital Integrated Circuits A Design Perspective”, Prentice Hall Electronics
and VLSI Series, 1996.

[33]. R.B. Reese; M.A. Thornton; Traver, C., “Arithmetic logic circuits using self-timed bit level
dataflow and early evaluation”, Proceedings of the International Conference on Computer
Design, 2001.

[34]. R.B. Reese; M.A. Thornton; Traver, C., “A fine-grain Phased Logic CPU”, Proceedings of
the IEEE Computer Society Annual Symposium on VLSI, Feb. 2003.

[35]. R.B. Reese; M.A. Thornton; Traver, C., “A coarse-grain phased logic CPU”, Proceedings
of the Ninth International Symposium on Asynchronous Circuits and Systems, May 2003

[36]. R.B. Reese; M.A. Thornton; Traver, C.; Hemmendinger, D., “Early evaluation for
performance enhancement in phased logic”, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, April 2005

[37]. R.B. Reese; M.A. Thornton; C. Traver, “A coarse-grain phased logic CPU” IEEE
Transactions on Computers, July 2005.

[38]. M. Singh and S.M. Nowick. “MOUSETRAP: Ultra-High-Speed Transition-Signaling
Asynchronous Pipelines.” Proc. of IEEE Intl. Conf. on Computer Design (ICCD-01), Sept.
2001

[39]. M. Singh, and S.M. Nowick. “High-throughput asynchronous pipelines for fine grain
dynamic datapaths”. In Proc. of ASYNC, 2000, pp. 198–209.

[40]. C. Traver.; R.B. Reese.; M.A. Thornton, “Cell designs for self-timed FPGAs”,
Proceedings of the 14th Annual IEEE International ASIC/SOC Conference, 2001.

[41]. T.E. Williams. “Latency and Throughput Tradeoffs in Self-Timed Speed-Independent
Pipelines and Rings”., PhD Thesis Stanford University, June 1991 Technical Report CSL-
TR-90-431

[42]. T.E. Williams, and M.A. Horowitz. “A Zero-overhead self-timed 160ns 54b CMOS
divider”. ISSCC Digest of Technical Papers, 1991, pp. 98-296.

