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Abstract 
As semiconductor technology advances into smaller and smaller geometries, 

new challenges arise. The increased circuit integration combined with larger 

variability make it harder for designers to distribute a global clock and global 

interconnect signals efficiently in their designs. To combat the effects designers use 

more conservative models and more complicated tools that result in longer design 

times and diminishing returns from the migration to the smaller geometries. Some of 

these problems can be addressed by asynchronous circuits, but there exists no well-

defined method for automated asynchronous design. Some methods have been 

proposed over the years, but they leverage off existing synchronous techniques too 

much, resulting in circuits that are bound by the characteristics of their synchronous 

counterparts. This thesis proposes a novel approach for generating such circuits, 

from any arbitrary HDL representation of a circuit by automatically clustering the 

synthesized gates into pipeline stages that are then slack-matched to meet 

performance goals while minimizing area. The method thus provides a form of 

automatic pipelining in which the throughput of the overall design is not limited to the 

clock frequency or the level of pipelining in the original RTL specification. 

Consequently, the performance can generally maintain or exceed the performance of 

the original circuit. The method is design-style agnostic and is thus applicable to 

many asynchronous design styles.   

The contributions of the thesis are two-fold. First, we define a model and 

theoretical infrastructure that guides clustering to avoid the introduction of deadlocks 

and achieve a target circuit performance. This provides a framework for proper 

clustering that can enable the unhindered exploration of area minimization algorithms 



 xi 

in the future and lead to optimized competitive designs. Secondly, we propose 

optimizations to existing slack matching models that take advantage of fanout 

optimizations of buffer trees that improve the quality of the results. 
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Chapter 1 Introduction 

Synchronous design has dominated the VLSI and ASIC design market for many 

years. Recently the design challenges of designing circuits with a global clock has been 

rising, as the industry moves to smaller geometries that allow for very large circuits to be 

placed on a single die. In particular, as wiring delays become more and more dominant, 

the task of distributing a clock across a large design and dealing with clock delay and 

skew across the entire die is becoming a growing problem. The usual trend of clock 

frequencies in commercial chips increasing every year has stopped and even though 

manufacturers are moving to smaller geometries clock frequencies have remained 

constant for some time. 

At the same time, higher chip integration is also introducing problems in terms of 

power consumption, much of which is coming from the clock distribution circuits. 

Processor manufacturers are resorting to more complex implementations of clocking 

strategies involving clock gating, software-controlled clock frequencies and voltages 

across the chip, such as PowerNow! of AMD [2] and Intel’s Enhanced SpeedStep 

Technology [1]. Both technologies are used to reduce power consumption when the 

processors are moderately used or idle. 

Such problems are inherently solved in asynchronous circuits. The elimination of 

the global clock removes all the complex timing requirements associated with its 

distribution. It also allows the designer to remove timing margins built into the logic to 

accommodate clock variations, and use this time for processing. Power in asynchronous 

circuits is also only consumed during processing as the control circuits are data-driven. 

On top of these benefits additional area becomes available on the die due to the 
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elimination of the clock generation and distribution network. Several asynchronous 

design styles have been developed that span a variety of application domains, from low 

power to high-performance. 

Although asynchronous logic is incredibly appealing, it has yet to be adapted 

widely by the semiconductor industry. Until recently asynchronous design was 

synonymous to custom design, since no automated flow existed for the generation of 

asynchronous circuits. For the majority of the commercial world, where ASIC flows are 

the typical approach for chip design, this is a major drawback, since most companies 

lack the infrastructure and the expertise to support such efforts. The cost and the time-

to-market for such efforts are usually prohibitive for companies that do not specialize in 

the area of custom VLSI design. On top of that, critical issues such as verification and 

testing, which is normally done by commercial tools is not supported for the majority of 

design styles that are proposed in the asynchronous logic research community. 

The advantages of asynchronous design, combined with the lack of a formal 

automated flow for the generation of such circuits are the key drivers behind this work. 

The goal is to examine existing asynchronous design styles and identify key problems 

that are unique to asynchronous design. We want to characterize those problems and 

formulate their solutions, so that a tool can be generated to address those 

asynchronous-specific issues. Having performed that step, we can then leverage off 

commercial tools and solutions used in current synchronous design flows, and complete 

a full set of tools and procedures that would allow a designer to generate an 

asynchronous design from behavioral RTL code. It is our belief that the existence of 

such a flow would open the way for a wider adaptation of asynchronous logic and a 

realization of its benefits in the commercial world. 



 3 

1.1 Contributions 

The main focus of this thesis is in the area of automated pipelining of 

asynchronous circuits. The method proposed here involves starting from a gate-level 

representation of a circuit, in which each gate represents a pipeline stage, and merging 

two pipeline stages at a time to generate larger pipeline stages. This method allows us 

to generate a pipelined circuit from an arbitrary netlist that can take advantage of 

performance and design features of various asynchronous design templates. In order for 

this process to be meaningful these merging transformations have to be designed based 

on two important criteria. First the transformations have to be guaranteed not to cause a 

circuit to become non-functional. Secondly the clustering transformation ensures that 

after slack matching the target circuit performance can be achieved. 

We model the circuit as a directed graph to abstract the implementation details of 

the circuit. Clustering is then the iterative merging of nodes of the graph. Based on this 

model this thesis includes the following contributions: 

• Demonstrates criteria that help detect and prevent merges that could 

generate a transformed graph that cause deadlock. The deadlock-free 

maintenance criterion is expressed in two different ways for practical 

reasons. The first expression uses a breadth-first search in the graph 

while the other depends on the existence of all pair-wise distances in the 

graph, which is a computationally intensive process. Both have the same 

worst-case complexity, but the search-based one has better average-

case performance and in practice is proven to be much faster. However 
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the distance-based algorithm has the advantage that it can be seamlessly 

combined with criteria that help ensure target performance. 

• Proposes additional criteria that help detect and prevent graph 

transformations that could introduce logic structures that would reduce 

the performance of the circuit beyond the target performance that is 

required for a particular design. This means that while clustering these 

criteria will prevent the artificial lengthening of the critical paths of the 

design beyond the point where it is impossible to satisfy the cycle time or 

the end-to-end latency constraints for the design. 

In the process of developing this main framework, other contributions were made 

that will have an impact on the general asynchronous design process and in particular in 

the area of RTL-based (ASIC) flow. 

• Developed local update for the all pair-wise distance array that is 

generated by a modified Floyd-Warshall algorithm so that the array can 

be updated with our clustering transformations with minimal local updates 

reducing complexity significantly. 

• Developed practical improvement to the Slack Matching formulation 

originally presented in [5] to incorporate additional information for 

potential buffer sharing and thus improved the end result. 

In order to test and verify all the ideas that were developed as part of this thesis a 

software package was developed that enables an asynchronous ASIC flow. The 
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software implements an end-to-end tool that reads a Verilog netlist and performs the 

operations described in this thesis. 

• Currently reads in Verilog netlists that are gate-level synthesized netlists 

from any commercial software package. It recognizes the MLD and PCHB 

design styles currently and can translate to fully function netlists for either 

design styles. 

• Performs clustering on a graph which is design-style-agnostic and can 

use all different variants of the clustering as described in Chapter 3 

and.Chapter 5. 

• It also performs slack matching by utilizing external linear programming 

solvers and fanout checking (and fixing if necessary) on the netlist to 

guarantee that all design rules are followed. 

• Emits Verilog netlists that can be used as input to the back-end tools 

(applicable to any software package available) as well as testbenches for 

both the original and final netlists and random vector generation code that 

allows pre- and post-software behavioral verification. 

1.2 Outline 

In order to better describe the nature of the problems that will be discussed as 

part of this work, Chapter 2 has been devoted to summarize the various existing 

asynchronous design styles, as well as existing synthesis flows, their features and 

weaknesses. Some key challenges and definitions are also defined here to present the 
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general context for this research. Chapter 3 presents a thorough analysis of the 

clustering theory for asynchronous circuits that was developed and how it can be used to 

guarantee functionality and performance. Some interesting contributions to other flow 

issues that are also involved in the end-to-end design process, namely slack matching 

and fanout optimizations, are presented in Chapter 4. Chapter 5 presents the existing 

version of our tool and flow, its features, capabilities and inefficiencies. Chapter 6 

summarizes the conclusions of this work and identifies interesting problems for future 

work in the area. 
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Chapter 2 Background 

2.1 Introduction 

In synchronous circuits all the data is synchronized by the global clock. In 

between combinational logic blocks latches or flip-flops are inserted that latch the data 

once per period of the clock hence achieving the synchronization of data and control 

signals among the different circuit elements. In asynchronous circuits this 

synchronization is achieved through handshaking protocols that are implemented to 

assist the various circuit elements with the exchange of data. There are many styles of 

asynchronous design libraries and flows, and almost each one has a different 

handshaking mechanism associated with it. Before attempting to go into detail 

describing different asynchronous design styles it is useful to go through the various 

classifications of asynchronous protocols and their properties so that it is easier to place 

the different options as part of a bigger picture. The classification can be done in many 

dimensions, namely based on the handshaking interface, data interface and the timing 

requirements that have to be satisfied for correct operation of the circuit. 

2.2 Handshaking protocols  

The handshaking between two asynchronous units exchanging data often starts 

with the unit where the data is originating from sending a request to the receiver. 

Typically the request is sent when the data is ready and depending on the protocol this 

could be part of the data or a separate control signal. The receiver has to then 

acknowledge the receipt of the data. Then the transmitting module knows that the data 

has been consumed and can reset its value, in order to be ready to process the next set 
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of data. This Request-Acknowledgement exchange can be performed in several different 

ways and handshaking protocols can be classified according to the nature of this 

exchange. 

First, we distinguish between protocols according to the number of phases 

(transitions) that exist in the handshake. There are two distinct kinds of protocols, the 2-

phase and the 4-phase protocol. In the 4-phase protocol case the sender asserts its 

request (REQ) to inform the receiving element that it holds valid data on its output. The 

receiving element will then receive the data when it is ready to consume it and raise the 

acknowledgment (ACK) signal when it has actually done so. The sender will then reset 

its REQ signal and after that the receiver will lower its ACK signal. The second pair of 

transitions could also be used to explicitly identify a data reset phase. The 2-phase 

protocol only uses two active transitions to complete the communication handshake. 

Therefore, all transitions of the REQ/ACK signals are used in the same way, whether 

falling or rising. That means that during the first cycle the sender raises REQ and then 

the receiver raises ACK to finish the handshake. Instead of resetting the signals before 

the second communication, the protocol is implemented so that the sender lowers REQ 

to start the next transfer, and then the receiver lowers ACK to acknowledge the data. 

The request and acknowledgment signals could be individual signals or they could be 

implemented across the same wire. The later is also known as single-track 

communication, and could be implemented by having the sender assert the signal (REQ) 

and the receiver de-asserting it. These three cases are summarized in Figure 1. 
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Figure 1 Summary of asynchronous handshaking protocols based on the 
messages that are exchanged between sender and receiver. Based 
on this classification we identify 4-phase protocols (b), 2-phase 
protocols (c) and single-track 2-phase protocols. 

Another interesting point is that the basic protocols described above could be 

modified by interleaving different edges to serve different purposes. The basic forms 

described above are for point-to-point communications between two adjacent units and 

the communication cycle is always initiated by the sender. When the sender initiates the 

protocol it is considered a push channel, and they are common in pipelined circuits. 

However, in other non-pipelined circuits the receiver signals that it is ready first before 

the sender produces any data. This is known as a pull channel and the initial request is 

Sender Receiver

REQ

ACK

(a)

REQ

ACK

Data

(b)

REQ

ACK

(c)

1st Data 2nd Data

REQ ACK

(d)

1st Data 2nd Data

REQ ACK
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sent by the receiver and in the reverse direction of the data flow. For example an 

adaptation of the 4-phase protocol described previously for push channels can be used 

for pull channel communications. The receiver asserts the REQ signal to indicate that it 

is ready to accept data. When the sender has computed the data and put it on the 

channel it asserts its ACK signal. The receiver then lowers its REQ signal as soon as it 

has consumed the data. Finally the sender lowers its ACK signal after it has reset the 

data and the channel is now ready for the next transmition. This is depicted in Figure 2. 

Figure 2 An example of a 4-phase pull channel. 

All the examples stated up to this point are examples of point-to-point 

communications. This means that the sender sends a signal to indicate the presence of 

data and releases the data when that gets acknowledged. Another quite interesting case 

is called enclosed communication. It is defined as the case where the REQ signal is 

asserted and then followed by an entire handshake from the receiver side (meaning the 

ACK is both asserted and de-asserted), before the REQ signal gets de-asserted. This 

type of behavior might not make a difference in a typical push pipelined channel, 

however its usefulness becomes apparent when considering cases where we want to 

perform sequential actions instead of concurrent actions. Assume that the sender wants 

Sender Receiver

REQ

ACK

(a)

REQ

ACK

Data 0

(b)
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to generate data and then there are multiple receivers that are going to operate 

sequential actions based on this data. The REQ signal can then be asserted to validate 

the data on the sender side. Then multiple receivers can take turns operating on the 

data and the REQ signals stays high validating its presence. When the last one of the 

receivers is done processing the sender can lower the REQ signal and reset the data. 

The signal transitions for such a scenario are shown in Figure 3. Additionally it can also 

be the case that some or all of these processes operate on the data with some level of 

concurrency as well. 

Figure 3 An example of an enclosed interleaving of four channels with one 
sender and three receivers. 

2.3 Data Encoding 

Another way of classifying asynchronous channels is based on the way that the 

data is encoded on the channel. The way that is closest to typical synchronous designs 

is called bundled data. In bundled data the data is presented in the form of a bus of 

single rail wires from the sender to the receiver. This has the benefit that only one wire 

per signal is only required and that the signals could be generated by single-rail 

combinational blocks just like those used for synchronous design. However there is no 

way to identify that the data is valid on the receiver end by just observing the data rails, 

REQ

ACK0

Data 0

ACK1

ACK2
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hence the designer has to make sure that the data is all valid before the REQ signal 

becomes visible to the receiver. For this reason the REQ path has to be delay matched 

with the slowest combinational path between sender and receiver and this task is not 

trivial. Post layout simulation is typically required to ensure the functionality of the circuit.  

Another way to encode data on a channel is by making it dual-rail. If the dual-rail 

signals are reset between transitions it is now easy to verify the presence of the data by 

the data itself by making sure that at least one of the two wires representing the data has 

been asserted. In this case an explicit REQ line is not necessary for the data, as a 

simple OR of the two signals verifies that the data is present. Dual-rail signals can also 

be grouped together in busses as in bundled data. If there is no explicit REQ like in the 

bundled-data rails all the individual OR results from each signal has to be combined to 

generate the global REQ signal for the bus. When one bit is transferred a single gate 

delay is added to the critical path, but in the later case the impact of such a circuit to the 

performance of the circuit could be significant since it could amount to several gate 

delays. 

Finally a more generalized for of dual-rail signaling is 1-of-N signaling. Here for 

every n wires that are used one can transmit log(n) bits. Out of the n wires only one is 

asserted at a time. This encoding has several benefits. Just like dual rail signaling there 

is no need for an explicit REQ signal since the presence of data can be extracted from 

the data itself (again assuming that the data is reset between transmitions). It has also 

been shown in [17][18][20] that, with this type of data encoding, one could also omit the 

acknowledgement signal as well. Moreover, there is less activity on the bus than in the 

dual-rail case, since only one wire is allowed to switch during a transmition, which could 

help reduce power consumption and crosstalk noise. However the width of the bus 
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grows exponentially with the amount of bits to be encoded and therefore, this approach 

could quickly become impractical for the implementation of wide buses. For such wide 

data paths the signals have to be broken up into smaller groups. Popular solutions are 1-

of-2 and 1-of-4 encoding since they use only 2 wires per signal, but 1-of-8 is also 

common due to better power efficiency. 

Figure 4 Abstract view of different channels that transmit k bits of data; (a) 
using the bundled-data protocol, (b) a differential bus and (c) single 
track 1-of-N communication. 

2.4 Timing Assumptions 

One last classifying characteristic of asynchronous communication channels is 

the type of timing assumptions that are required to hold for a particular protocol to 

operate correctly. In terms of the actual design process, the fewer timing assumptions 
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that exist in a design the better, since timing assumptions usually have to verified 

through simulation that have to be performed both pre- and post-layout. 

The first timing model is one that all delays both gate and wire are allowed to 

assume any value, and the circuit is guaranteed to function properly. This model is 

called delay insensitive (DI), and it is the most robust model for asynchronous circuits. 

However, Martin [26] showed that no practical single-output gate implementation exists 

that satisfies this constraint. Realistically this means that in order to build a DI circuit one 

would have to use only multi-output gates, which is incredibly restrictive for typical circuit 

designs. Alternatively one would have to use gates that cannot be designed according to 

the DI timing assumptions and integrate them in the circuit using DI rules at the top level. 

Martin in [27] also proposed an alternative to this strict constraint called Quasi 

Delay Insensitive. This has the same delay assumptions as the DI except it requires that 

every fork in the design is isochronic. The isochronic fork is a fork, for which the delays 

to all destinations out of that fork are equal. This realistically is very hard to achieve due 

to varying wire lengths and load at the destination during design, and due to varying 

operating conditions (such as voltage and crosstalk noise) during actual operation of the 

circuit. More realistically this assumption can be approximated by constraining the short 

path departing from a fork to be faster than slowest reconvergent path to the gate driven 

by the short path. This is a constraint that is much easier to meet and verify in practice. 

In [3] the QDI concept is extended from short wire fork delays to delays through a small 

number of gates that depart from a fork and then re-converge further down the data 

path.  
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Another category of circuits are Speed-Independent circuits (SI). In speed 

independent circuits gates could have arbitrary delays, but wire delays are considered 

negligible. This makes all forks isochronic, hence the QDI protocol requirement stands 

by default. With process geometries constantly shrinking though, wire delays become 

more and more dominant part of a path delay, and this assumption and the real delays 

need to be determined post-layout and the functionality of the circuit has to be verified 

again through simulation. 

Scalable Delay Insensitive (SDI) is an approach that partitions the design in 

smaller parts and attempts to bridge the gap between DI and SI through this approach. 

Within each sub-module the design is performed by bounding the ratio of delays 

between paths by a constant. It also defines a ratio related to the estimated and 

observed data on the delays that is also lower and upper bound. The same constant is 

used as a bound for both expressions. After each individual module is designed, the 

interconnections at the top level are designed based on DI assumptions. 

2.5 Asynchronous Design Styles 

As one can see there are many design choices available, both in terms of the 

handshaking protocol and data encoding. Each has different advantages that could be 

exploited depending on the requirements of a project. Research teams have over time 

defined many design styles that can be used for the implementation of asynchronous 

circuits, each one having its own advantages and disadvantages. These styles are 

collections of design libraries, protocol definitions and constraints that have been 

designed and verified to produce functional designs. These basic cells in these libraries 

can be used to produce the desired circuits, and this flow, at least theoretically, can be 
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either manual though a custom VLSI approach or automated just like a synchronous 

ASIC flow. In the process of defining the context of the problems that this work is 

attempting to solve, it is important to go through a few popular and proven design styles 

that have been developed over the years and proven their value for certain types of 

design requirements. 

2.5.1 PCFB and PCHB 

The Pre-Charge Half Buffer (PCHB) and Pre-Charge Full Buffer (PCFB) were 

presented in [7] and are two example of a QDI template. Both templates are similar, but 

PCFB uses an extra internal state variable so that it is able to store one token per stage, 

and that is why it is called a Full Buffer. On the other hand a PCHB is a half buffer 

meaning that one token can exist in two adjacent pipeline stages. The templates are 

designed for fine-grain-pipelining, which implies that each pipeline stage is one gate 

deep. The data is encoded using 1-of-N encoding and thus there is no explicit request 

line associated with the data. Each gate has an input completion detection unit and the 

output also has an output completion detection unit. The two templates are shown in 

Figure 5. 
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Figure 5 The PCHB template is shown in (a) and the PCFB template is shown 
in (b). 

The function blocks are designed using dynamic logic (Domino logic [32] more 

specifically) in order to reduce the size of the circuit. Another interesting property is that 

the function block can actually evaluate even if not all inputs are present yet. If the 

function allows it the function block can generate an output with a subset of the inputs 

and data can propagate forward along the pipeline. However the C-element will not send 

an acknowledgement to the left environment until all inputs arrive and the output has 

been generated. That prevents premature acknowledgments from propagating 

backwards to units that have not even produced data yet. The RCD is used to detect 

that data has indeed been generated from the function block. In the PCHB when both 

the LCD and RCD have detected valid data on both input and output the function block 

gets disabled. When the next stage in the pipeline acknowledges the outputs of the 

current stage then the function block will be pre-charged to be ready to receive the next 

set of data. 
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The LCD and RCD operate on 1-of-n encoded channels. Their operation is 

performed simply by performing an OR on the two wires. The data is reset to zero during 

pre-charge, therefore, the presence of data is detected when one of the two wires 

produces a logic 1. If multiple channels exist the results of the OR from each channel 

have to be combined together through C-elements to produce the output of the 

LCD/RCD. Even though this is a simple operation one has to remember that this a fine-

grain-pipeline design style. For multi-input gates the control logic quickly becomes a 

large overhead and as a result these templates are not area efficient. Also even though 

the cells use dynamic logic for smaller size and better performance, there are several 

levels of control involved in the critical path. With PCHB being a half-buffer the cycle 

time involves multiple levels of logic as well as a completion detection unit and a C-

element. Its cycle time varies depending on the functional block, but is generally 

between 14 & 18 transitions. The PCFB is a full buffer version of PCHB. It has the same 

cycle time as PCHB, so its only benefit would be slack capacity. For this reason the 

PCFB is not as widely used as the PCHB design style. Even though this yields good 

overall performance, there are design styles available that have much smaller cycle 

times. 

2.5.2 Mousetrap 

MOUSETRAP is a recently proposed design style [38] that seems very 

interesting due to its versatility and speed. It is a bundled-data protocol, with 2-phase 

control and could be used for both very fine-grain and coarser pipeline design. It has a 

very small cycle time of 5 transitions for a FIFO design and although the cycle time 

would increase with merges, fork and logic added to it, it still has the potential for very 
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high throughput implementations. A basic diagram of a FIFO pipeline designed with this 

design style is shown in Figure 6.  

Figure 6 The MOUSETRAP design style for a FIFO implementation. 

The most interesting feature of this type of circuit is the simplicity of its control. 

The same feature is to a large extent responsible also for its small cycle time. It 

essentially consists of a single XNOR gate per pipeline stage. The data is accompanied 

by a request that has alternating values for successive tokens. The data and the request 

are both latched at every stage with latches that are controlled by the local control 

(XNOR).  The latches are initially transparent waiting for data to arrive. When data goes 

through, since the requests of successive token have alternating values, when the 

request goes through the latch it will change the value of the XNOR output and the latch 

is made opaque. When the next stage has also fired and the data has been latched 

there the XNOR will change value again and the latch is made transparent again and 

new data may arrive. If the design is not just a FIFO, then logic is added on the data 

path between the latches. In that case since the data is single-rail bundled data, the 
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request has to be delay-matched with the slowest combinational path in order to avoid 

errors in the interface. When the request goes through is will go through the XNOR and 

close the latch, so the timing has to be designed so that the data will definitely be 

through the latch before that happens. 

One big advantage of this design style is that the data path can be designed from 

standard gates that can be found in any synchronous library. That means that no custom 

asynchronous cell library design is necessary to support the protocol and also that it 

might be easier to use existing tools for an automated synthesis flow. However, this style 

requires the use of delay-matched request lines and has one timing assumption that 

needs to be verified for every pipeline stage. These generally require more cumbersome 

verification both pre- and post-layout. The idea has been presented for FIFOs, however 

it could be extended to more complex pipelines with forks, joins and cycles. In those 

cases the fact that successive tokens require requests with alternating values becomes 

a restriction that needs to be designed with care. Also in the case of merges and even 

more specifically conditional merges it is our assessment that more complex cells with 

memory of the previous state are required to handle such a pipeline.  

2.5.3 MLD 

Multi-Level Domino is another design style that also used bundles of wires, 

however here the data is encoded using differential encoding. The data path is 

constructed out of domino-logic gates in order to be more area efficient as well as faster. 

This also allows the circuit to generate a request to the next stage based on the data 

itself. A completion detection unit exists for each output and all the validity signals are 

then combined through an AND gate tree to generate the valid flag for the entire pipeline 

stage. The style is targeted more towards medium-grain pipelining and several layers of 
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logic and many data paths in parallel are typically used in a single pipeline stage. This 

yields a small overhead from the addition of the pipeline stage control units and hence 

an area efficient design. Several variations of this design style have been proposed over 

the years in like PS0 [39] [42], and LDA [7], others using 2-phase and others using 4-

phase handshaking. Even though there are differences between the variants in terms of 

the handshaking mechanism of the controllers and the generation of control signals, 

abstractly the general form of these styles can be illustrated in Figure 7. 

The cycle of a pipeline stage starts with the dynamic logic gates receiving data 

from the previous stage and evaluating their outputs. When the data propagates to the 

last stage of gates in the pipeline stage the outputs for the stage are generated and the 

dual-rail signals are used to validate that all outputs are present. The valid signal is 

generated for the entire stage and is used as a request to the next stage. It could also be 

used internally in the stage for isolating the outputs and initiating an early pre-charge of 

the logic before the final stage. When the next stage acknowledges the data, the stage 

resets its outputs to all zero so that the valid signal is forced low. The data path is 

connected normally just as in the case of a synchronous netlist. Any forking or merging 

between stages is handled by the controller circuits. That can be accomplished by 

inserting C-elements for the requests of signals reaching a merge and the 

acknowledgment signals departing a fork. The introduction of such elements might 

impact the cycle time of a stage, but since the data path is several stage long, this extra 

delay can be offset by reducing the amount of logic levels in a particular stage. 
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Figure 7 An abstract view of a Multi-Level Domino Pipeline. 

The generation of the request from the data alleviates the need for delay lines 

that are required in single-rail data paths such as MOUSETRAP. It also simplifies the 

timing verification required for the designs. On the other hand since dual-rail dynamic 

gates are not available commercially this style requires that libraries are generated 

specifically for this application and this increases the design time and makes automated 

synthesis harder since commercial synthesis tools are not currently capable of handling 

dual-rail signaling. Another interesting point of the design style is that since the 

handshaking mechanism involves the data path gates (though the generation of the valid 

signal) it is not allowed to have route-through signals in a pipeline stage, since that 

would cause problems with the handshaking protocol and timing. Therefore this design 

style also requires the addition of buffers for all such signals.  
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2.5.4 STFB and SSTFB 

Single-Track Full Buffer is a design style proposed in [18][7] for fine-grain 

pipeline design. It uses 1-of-N encoding for the data and also 2-phase single-track 

handshaking between gates that is embedded in the data. It has been shown to yield 

very high throughput designs. There are several features of this design style that 

contribute to its high performance capabilities. Firstly the gates use dynamic logic 

internally for higher performance and reduced area. Secondly the gates have extremely 

small forward latency of 2 transitions and a total cycle time of 6 transitions. That is 

accomplished by embedding the control signals as part of the data path and the use of 

2-phase handshaking. 

In STFB the sender will receive data and evaluate its output and then 

immediately tri-state its output. The receiver detects the presence of data and evaluates 

only when all the data has been received. This is done by properly designing the stacks 

of NMOS transistors so that all paths to ground use all inputs. When the receiver 

evaluates its outputs it will actively drive the wires low and then tri-state the inputs. This 

signals the sender that the data has been consumed and it can evaluate the next set of 

data. The data is encoded in a 1-of-N fashion therefore for each communication only one 

wire in the set will transition. This wire is therefore used simultaneously for the data, 

request and acknowledgment signaling between the two cells. Figure 8 shows an 

abstract view of such a communication channel as well as a timing diagram of two 

successive token transfers on a 1-of-4 channel of this type. 
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Figure 8 An abstract view of a STFB and SSTFB communication channel is 
shown in (a) and an example of two successive communications of 
a 1-of-4 such channel is shown in (b). 

A problem with this template is that the data wires are not actively driven at all 

times. There are times that both transmitter and receiver will be in tri-state mode, hence 

the data becomes more susceptible to noise and leakage. Statisizers could be used to 

help alleviate this problem. An improvement for this protocol was recently published in 

[18] called the Static STFB, where the data is actively driven at all times. Here once the 

receiver detects the presence of data it actively holds the values present on the channel 

until it consumes it. 

The high speed capabilities of this design style come at the expense of increased 

area, as expected from a fine-grain pipeline. The circuitry required on both ends of the 

channel, which is used for detecting, driving and resetting the data is not large, but 

substantial compared to the logic associated with the actual logic function of each gate. 

Another problem with this design styles is that since both ends of the channel actively 

drive the data lines at some time, the data communication has to be implemented with 

point-to-point communications, meaning that a gate cannot drive more than one more 

gate. Forks have to be implemented in special fork cells that are specifically designed for 
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that purpose and which further increase the amount of logic required for implementation 

by adding gates that one would not usually need when using a different template. 

2.6 Asynchronous Circuit Synthesis 

2.6.1 Introduction 

The lack of a comprehensive ASIC design flow for asynchronous circuits, like the 

one that exists for synchronous circuits, is probably the single most important reason for 

the limited adoption of asynchronous technology by the semiconductor industry. Several 

approaches have been proposed so far, but none of them has been able to address all 

the issues associated with asynchronous design. There are two major categories of 

design methodologies among the proposed work. One is attempting to define the 

problems according to an asynchronous specification that incorporates the exact 

description of all the operations and their relations.  This approach is referred to as High-

Level Synthesis and has the potential of creating circuits that are most optimally 

designed to match the given specifications. The other approach is to leverage off of tools 

that already exist in the market for synchronous flows and use those for the majority of 

the tasks associated with the design. That allows for faster turnaround times, since most 

tools already exist. The concept there is to synthesize synchronous netlists and then 

convert the results to an asynchronous design style. 

2.6.2 High-Level Synthesis 

Several approaches have been developed over the years for characterizing 

asynchronous circuits and then generating synthesized netlists based on the 

specification. These approaches defined languages able to handle the concepts 

necessary for the interpretations of asynchronous communications and the design 
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process starts from specifications written in this language. Languages like CSP were 

defined to be able to define the problems in the form that is unique to asynchronous 

design. CSP defines a design in the form of concurrent hardware processes, and also 

the way that the processes communicate. Different variant have been defined, such as 

CHP that also have support for automated synthesis to a certain extent [28]. 

Phillips developed Tangram [21][7] which is a description language for 

asynchronous processes. Syntax based translation is used to convert the processes into 

circuits. The first step is to map the processes into some fixed handshake types of 

functional blocks that are predefined and classified according to their handshaking 

properties. These are called handshake circuits and are not mapped to any specific 

library. Then the netlist is broken up into combinational logic, registers and 

asynchronous elements and in the last step the combinational logic is taken into a 

commercial synthesis tool and synthesized using synchronous libraries. 

Bardsley et. al proposed another language called Balsa and subsequent 

research has added onto this framework for top level synthesis [3][4][7]. This also starts 

from a new programming language that is made explicitly to understand asynchronous-

specific commands and details. Balsa follows the synthesis approach of Tangram 

although there some differences in terms of the format and the features offered. 

Incremental synthesis is supported and the intermediate handshake circuits follow the 

original specification architecture. A new description format is used to describe the 

handshake circuits and the final mapping translates every part of the circuit into standard 

cell components of given libraries. 
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This approach in general is very promising, however it starts from a high level of 

abstraction that requires the use of a new language and also good understanding of 

asynchronous processes and interfaces. At the same time it requires more complete tool 

suites that will be used to bring the designs to the physical implementation level. 

Simulation and development tools are needed to assist with the design process, which 

are at a big disadvantage compared to their synchronous counterparts that have been in 

development for more than two decades. Even if that was not the case companies and 

engineers would be very reluctant to invest in new tools that have not been proven in the 

field already. Existing designs would also have to be recoded to be adapted to the new 

flow.  

On the other hand there are several existing designs in HDL languages that are 

extremely useful and interesting and also a large number of designers that are able to 

code, partition and optimize designs using current synchronous flows. For asynchronous 

design to gain leverage in the market it is imperative that flows based on RTL level 

synthesis using conventional HDL and industry-accepted tools are available. In fact it is 

my belief that for a good designer that is used to a particular flow and its capabilities the 

results from the two approaches are going to be similar. 

2.6.3 HDL-Based Synthesis 

This type of synthesis starts from conventional HDL and uses tools that are well 

established in the industry for the implementation of synchronous circuits. Some of these 

approaches can use existing code that has already been coded for synchronous circuits 

and others require certain coding details that assist the translation process. Overall most 

of these approaches can be seen as synchronous translations, and especially for legacy 

circuits there is a possibility that they cannot take advantage of all benefits and features 
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associated with asynchronous design. For example since timing information for the 

different processes is not available, trades between concurrency and sequencing, 

especially in terms of resource sharing are not possible unless the designer has already 

taken these into consideration when coding at the HDL level. 

2.6.3.1 De-Synchronization 

De-synchronization [8][11][13][14] is a method for directly translating 

synchronous netlists into asynchronous netlists with local handshaking between cells. 

Synthesis is performed from regular HDL with a regular synchronous flow. The netlist 

that is produced is then parsed and in the first step the flip-flops in the design are all 

replaced by pairs of latches. After that is done the clock circuitry is removed from the 

netlist and replaced by local controllers that implement local handshaking. 

Consequently, there is combinational logic that is followed by an odd pair of latches that 

is immediately followed by an even pair of latches with no logic in between. When the 

control is connected together delay matched lines have to be inserted in parallel with the 

combinational logic, namely between the even latch controllers and the odd latch 

controllers. The delay lines are used to match the worst-case delay of the combinational 

logic, and this is necessary since the data path is designed out of regular single-rail logic 

gates that come from the synchronous synthesis library. 

The benefit of this approach is that commercially-available standard cell libraries 

and standard ASIC tools are used for the synthesis. Therefore no new libraries are 

necessary and the only tool that is required is the parser that does the flip-flop 

replacement and control instantiation. Another big benefit is that the circuit can easily be 

proven to be equivalent to its synchronous counterpart given that all timing constraints 

between the controllers are correctly verified. The correctness of the circuit is 
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mathematically proven without any exhaustive analysis of the circuit. However, the final 

asynchronous circuit is so close to the originally synthesized netlist that no significant 

performance or area benefits are realized with this flow. The power associated with the 

clock distribution circuit is removed, which is a big benefit, but the circuit is constrained 

in terms of its capabilities from the synchronous specification. 

2.6.3.2 Phased Logic 

Phased Logic is another approach in the quest of automated HDL based 

synthesis, originally described in [22]. The flow was adapted and optimizations for both 

ASIC and FPGAs [40][34][35][36][37]. The flow begins with a synchronous HDL design. 

The design is synthesized using commercial tools and the netlist is then manipulated 

with custom tools to produce the final netlist. The gates are replaced by their equivalent 

counterparts that use two wires instead of one per signal. Each gate also has an internal 

state that it uses to handshake with neighboring cells.  

The two wires are not used to generate dual-rail data, but instead are used to 

define not only the data, but also the state of the originating gate. This helps distinguish 

“odd” data from “even” data and the gates are now capable to distinguish when the data 

is valid and when not. When a gate is in a particular state – odd or even – it is ready to 

fire when all inputs have the same state as the gate. As soon as it fires the gate changes 

its state and waits for tokens with the same state value. It sends the output data with the 

original state of the gate that produced it so that the gates further down the pipeline can 

fire. Flip-flops are converted to buffers, but are initialized with a token upon reset. An 

innovation in this flow is that the circuit is analyzed to verify that the netlist initial 

conditions guarantee a netlist that is live and safe. This is guaranteed by making sure 

that all cycles have at least one token, by inserting buffers for flip-flop-to-flip-flop paths 
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and making sure that each signal is part of a directed circuit that has one token. Dead 

gates are removed and if there are any liveness or safeness problems are resolved by 

adding additional logic. Other optimizations are available, such as slack-buffer insertion 

and use of units that can evaluate early, however parts of this flow are done manually 

with external files that include this information. 

This is an integrated flow that has been used to generate circuits and proven its 

value. It has the benefit of an FPGA prototyping flow and it is continuously appended 

with tools that make it close to commercial standards (such as the PLFire schematic 

viewer [15]). However it requires custom gate design and also some inputs from the user 

for a successful conversion. For example slack-matching is done by manually specifying 

files that include the position and the number of buffers to be inserted. 

2.6.3.3 Null-Convention Logic 

Theseus Logic proposed Null Convention Logic (NCL) [15] for the 

implementation of asynchronous circuits. Later efforts have enhanced the flow and also 

proposed programmable solutions for implementing this kind of circuits [22][28][30]. 

Reconfigurable solutions have also been proposed for the particular design style and 

flow. NCL starts from conventional HDL, but the code has to be written strictly in RTL 

form (no behavioral register inference) and the register acknowledgment and request 

signals have to be specified. It then gets synthesized into an intermediate library called 

3NCL. This library is still a single-rail library but with the addition of an extra possible 

value (the NULL value) for all wires. This preserves single-rail simulation and design 

capabilities, while emulating the final dual-rail gates. The final library is a full dual-rail 

library, but since the control is written around the fact that data will assume the value of 

NULL in a handshake cycle this is necessary for simulation. After this stage of 
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verification a second run of synthesis is performed to translate the 3NCL gates into 

2NCL gates that are the true dual-rail gates that will be used for the physical design 

process. In order to assure DI behavior only a limited variety of gates are used (2-input 

NAND, NOR, XOR) 

Generally this is a complete flow, but still requires some input from the designer 

(register handshakes and placement). It uses existing synchronous tools for the majority 

of the design flow and achieves results that are close to manual designs. It also closely 

follows the original synchronous specification and does not optimize the design 

specifically to match the asynchronous library capabilities. 

2.6.4 Challenges in RTL-Based Synthesis 

A lot of different approaches have been proposed to achieve automated ASIC 

flows that start from HDL and result in finalized circuits using as much of the existing 

synchronous ASIC toolset as possible. All these flows focus on getting a design through 

the flow, but none address all the optimization issues that are specific to asynchronous 

design. Although useful, they fail to address issues that prevent the generation of circuits 

that can be superior to their synchronous counterparts.  

The flows presented above depend on the synchronous netlist for the definition 

of the pipeline stages. This is not taking advantage of key features of asynchronous 

design styles and thus cannot yield more than incremental improvements. Moreover 

none of these methods have any good way of guaranteeing performance constraints, 

which is a basic requirement for any commercial design. Slack is not considered except 

for the case of Phased Logic, and even there this is done manually from externally 

defined input files that are user-specified.  



 32 

A finer and more design-style aware pipelining mechanism can yield better 

results and this is the driving force behind our clustering approach. Tailoring the circuit 

pipeline to the performance requirements and the chosen design template improves the 

quality of results. With a framework for correctness and performance maintenance this 

leads to a more powerful method that has potential to yield results that are more 

competitive than the ones provided by existing flows. 

2.7 General Design Considerations 

2.7.1 Local and Global Cycle Time 

In the absence of a global clock, asynchronous circuit performance is 

characterized using different metrics. When characterizing an asynchronous pipeline 

stage (could be as small as a single cell/gate for micro-pipelines) there are two important 

metrics to characterize performance. The first one is forward latency (FL) and is 

measured as the time between the arrival of a new token, when the pipeline stage is 

idle, and the production of valid outputs for the next stage. This is a metric that is only 

dependant on the internal design of the pipeline stage. The second metric is called the 

local cycle time (LCT), and it is defined as the time between the arrival of a token and 

the time that the unit has reset itself back to the idle state and is ready to receive the 

next token. This number is generally affected by the next pipeline stages as well since 

the handshaking on the right side of the stage defines the time at which the stage can 

reset its output and proceed to get ready to accept new data. Both metrics are calculated 

during the design phase in terms of transitions, meaning the number of signal transitions 

that have to take place for the pipeline stage to move from one state to the next. Even 
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though this is not directly translated into actual time, it is a useful first tool for tradeoff 

studies, design style comparison and performance estimation.  

Once the local cycle time and forward latency is known there are several 

methods to do a more thorough analysis and find the performance of the entire circuit, 

and potentially identify the bottlenecks in the system. This is generally a very labor-

intensive process that cannot be performed without a tool designed for this purpose, but 

the basic ideas can be intuitively described using the defined metrics of forward latency 

and local cycle time. The performance of a circuit is defined as the global cycle time 

(GCT) of the circuit and it is essentially the metric that defines how many transitions it 

takes the circuit to process a token on average. Ideally the global cycle time is equal to 

the maximum of the local cycle time and the algorithmic cycle time (ACT). The 

algorithmic cycle time is the maximum for all cycles of the sum of the forward latencies 

of all the pipeline stages in the cycle divided by the number of tokens (data) that are in 

the cycle at any time. This is the maximum performance target for a design and the 

global cycle time cannot be improved beyond this point. However, the design might have 

a cycle time that is higher than this value, depending on the topology and the number of 

tokens in the design. 

The reason that this might happen is that the performance is defined not only by 

how fast data can propagate down the pipeline, but how fast the pipeline resets to 

accept new tokens. The backward latency (BL) of a pipeline stage is defined as the 

difference between the local cycle time and the forward latency and it can be perceived 

as the time it takes for a bubble – or empty position in the pipeline – to propagate 

backwards in the pipeline. Alternatively, the backward latency can also be defined as the 
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time it takes a node to complete the handshaking with its neighboring cells and reset 

itself so that the next token can go through.  

The forward and backward latency combined define the performance of a local 

pipeline stage. However the alignment of the data in the forward direction as well as the 

alignment of the bubbles in the backward direction is important to guarantee that a given 

global cycle time is achievable even if both the ACT and LCTs are all smaller than the 

requested global cycle time. This concept of alignment between the handshakes of the 

various stages is called Slack Matching and due to its importance it will be discussed in 

further detail in Chapter 4. 

2.7.2 Handling Forks and Joins 

Now that there is a notion of performance defined for the circuit and the pipeline 

stages individually, it is easier to show what the problems are when defining an 

asynchronous pipeline. The first issue that every designer is faced with when designing 

an asynchronous circuit is dealing with forks and merges in the data path. Due to the 

fact that the handshaking signals required for synchronization propagate along with the 

data, extra gates usually have to be added to make sure that the request and/or 

acknowledgement signals get combined so that the correctness of the protocol is 

maintained. If care is not taken it is easy to have the system fail because of a deadlock 

at a join, due to improper acknowledgement (or request) along one of the two merging 

paths. These additional gates usually are on the critical path and have to be taken into 

consideration in order to avoid impeding performance. Also paths going through forks 

and joins are also likely to be parts of cycles or re-convergent paths and the cycle time 

analysis has to be performed to verify that the design performance is not reduced. 
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2.7.3 Fanout Optimization 

Another aspect of forks is the handling of fanout. In synchronous design buffers 

can be added to high-fanout nets to improve performance without altering the basic 

functionality of the circuit. In asynchronous circuits, however there are cases where a 

high-fanout node has to be buffered, and the buffer that will be added alters the timing 

and structure of the circuit in such a way that affects the global cycle time. Even worse, 

in cases like SSTFB dedicated cells have to be inserted to handle nodes with fanout 

grater than one, and all these cells have to be included in the design in a way that does 

not cause performance degradation. This might imply modifying the shape of the fanout 

tree, or adding buffers in paths parallel to the one being altered. Generally this is a labor 

intensive process that currently needs to be undertaken manually during the design 

process. 

2.7.4 Clustering 

In design styles that are targeted towards coarse-pipelines such as MLD or even 

finer-grain pipelines such as MOUSETRAP, another problem arises that related to the 

placement of the gates within the different pipeline stages. The more logic one places in 

a stage the smaller the control overhead for the circuit. In the case of MLD for example, 

though, the wider the pipeline the slower the completion detection and therefore the 

circuit itself. The same is true for the number of logic levels within each stage. For 

MOUSETRAP the larger the grouping the slower the design, since the requests (and 

hence the cycle time of a pipeline stage) are dictated by the longest combinational path 

in the pipeline stage. Generally one can trade the clustering – or the distribution of gates 

within pipeline stages – on both dimensions, both in terms of depth and width, in order to 

achieve better performance. It is also obvious that the grouping can further affect 



 36 

performance, since one grouping could require less forks and joins to be inserted in the 

circuit than another. Generally this is another set of tradeoffs that are currently 

performed manually and it is up to a good designer to achieve a good distribution that 

boosts performance and reduces area. 
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Chapter 3 Clustering 

Before going through the entire design flow and the tasks performed by both the 

commercial and customized pieces of software that comprise it, it is interesting to focus 

on the problem of clustering. This problem is common for all the different design styles, 

and it is equally important for all of them. The clustering of the gates inside larger 

pipeline stages allows the circuit to reduce the control overhead and make the different 

design styles competitive to not only each other, but also their synchronous 

counterparts. 

The goal of this chapter is to formally define the problem and its solution and to 

lay the foundation for a successful application of clustering on any circuit. In particular, 

this chapter develops criteria that guarantees that clustering preserves the functionality 

of the circuit and does not introduce structures that make the circuit unable to meet its 

performance requirements. 

3.1 Definitions 

Circuits usually are designed subject to performance constraints that are derived 

from system requirements. Even though it is interesting to find the “fastest” a circuit can 

run or the “smallest” it can be made, practically it is not very useful, since the circuit 

requirements are always defined by system parameters that are not dictated by the 

circuit capabilities, but by the overall system function. Therefore we plan to define our 

problem in such a way that it can address a variety of design requirements. 

The first step is to abstract the circuit into a more generic structure so that we 

can formulate our problem mathematically. This structure is a weighted directed 
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graph ( )mhEVG ,,,= , where V  is the set of nodes in the netlist. 

TBCLPOPIV ∪∪∪= , where PI is the set of primary inputs, PO  is the set of primary 

outputs, CL  is the set of combinational gates and TB is the set of flip-flops or 

TOKEN_BUFFERS. All four set TBCLPOPI ,,, are mutually disjoint sets. E is the set of 

directed edges )(VxVE ⊆ . We will use the notation ),(, jiji vve =  for an edge in E  to 

simplify our notation for a directed edge that starts from node iv  and ends in node jv . 

We also require that E does not contain any self-loops iie , . We also will define a 

function +ℜ→Eh :  that is used to map an edge onto a positive real number that 

represents the forward latency of the edge. We also define function { }1,0: →Em , such 

that  

( )


 ∈

=
otherwise

TBv
em

i

ji
,0

,1
, (1). 

We define a path jip , as a sequence of edges in E , the first edge in the 

sequence starting from node iv , and the last edge in the sequence ending in node jv  

and such that for all other edges in the sequence, their starting point is the ending point 

of the previous edge in the path and their ending point is the starting point of the next 

edge in the path. We also assume in this document that a path goes through each node 

once (simple path). We will also define a cycle as a path iip ,  that starts and terminates 

at the same node iv . We also define GP  as the set of all paths that exist in the G . 

Another important input will be a target performance metric, which is defined in 

terms of the target cycle time (TCT) of the circuit and will be defined as goalτ . We also 
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define the algorithmic cycle time (ACT or lgaτ ) of the circuit, which is the lower bound of 

goalτ  beyond which goalτ  is no longer achievable. Thus lgagoal ττ ≥ . Having defined a 

path the algorithmic cycle time is defined as: 

goal

pe

kj

pe

kj

PpVv
a

iikj

iikj

Giii em

eh

ττ ≤









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




=
∑

∑

∈

∈

∈∃∈

,,

,,

, )(

)(

max
,

,

:
lg (2). 

We also define the weight of an edge ( ) ( ) ( ) goaljijijiji emeheww τ*,,,, −==  . We 

have the following convention: 

( ) ( ) ( )
( )
( )




∈<−

∪∈>
=−=

TBveh

CLPIveh
emehew

igoalji

iji

goaljijiji ,0

,0
*

,

,

,,, τ
τ (3). 

We also need to define the weight of a path – as an extension of the edge weight 

– that is the sum of the weights of all edges in the path sequence, so 

( ) ( )∑
∈

=
jipe

jiji ewpw
,

,, .We also define the length of a path as the number of edges in the 

sequence of the path. So ( ) jiji ppL ,, = .  

We also define a distance between two nodes iv  and jv  as the maximum weight 

of all valid paths from iv  to jv , or as ∞−  if no paths exist from iv  to jv , which we 

denote as 
( ){ }







∞−

∈∃
= ∈∀

otherwise

Ppifpw
d

Gjiji
Gp

ji
ji

,

,max ,,

,
,      (4). 
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We also define the transitive fanout (TFO) and combinational transitive fanout 

(CTFO) as well as transitive fanin (TFI) and combinational transitive fanin (CTFI) as 

follows: 

( ) }:{ , Gjiji PpvvTFO ∈∃= , 

( ) }:{ , Gjiij PpvvTFI ∈∃= ,     (5) 

( ) }::{ ,,, TBvpePpvvCTFO kjilkGjiji ∈∈¬∃∧∈∃= , and 

( ) }::{ ,,, TBvpePpvvCTFI kijlkGijjj ∈∈¬∃∧∈∃= . 

So essentially the ( )ivCTFO  (and equivalently the ( )ivCTFI ) is the set of all 

nodes that are reachable from iv  (or equivalently for CTFI that can reach node iv ) 

through a path that does not go through a TOKEN_BUFFER node. 

We also have to formally define the local move operation before we begin our 

discussion of the clustering algorithm. A local move is a function on the graph 

( )mhEVG ,,,=  that produces a new modified graph ( )mhEVG ,,',''= . It essentially 

takes two nodes Vvv ji ∈,  and replaces them in 'V  with a unified new node '' Vv k ∈  

that contains the contents of both nodes (in circuit terms that would be the instances and 

wires internal to the pipeline stages that correspond to the original nodes iv  and jv ) . 

The rest of the nodes of V  are preserved in 'V . Mathematically: 

{ } { }kji vvvVV ',' +−=   (6) 
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If both Eee ijji ∈∃∧∃ ,,  the move is not allowed because this case would 

generate a self-loop in the graph (a cycle of length 1). Otherwise, when combining nodes 

iv  and jv  into the new node kv' , the edges in the set 'E  are generated as follows: 

• EeEe jmim ∈∃∨∈∃ ,,  with jmim ≠≠ , then ', Ee km ∈∃ . 

• EeEe mjmi ∈∃∨∈∃ ,, with jmim ≠≠ ,  then ', Ee mk ∈∃ .  (7) 

• Ee lm ∈∃ ,  with jmim ≠≠ ,  and jlil ≠≠ ,  then ', Ee lm ∈∃ . 

So the new node kv'  has the combined fanin and fanout of iv  and jv , except for 

any edges between the two that get absorbed in the new node and are removed from 

the top-level graph. In other words, nodes Vvv ji ∈,  are replaced by a single node 

'' Vv k ∈ , and Vvv ji ∈,  are also replaced by '' Vv k ∈  in all directed pairs (edges) in 'E .  

An important observation is that if either edge jie ,  or ije ,  exist in E  a 

corresponding edge does not exist in 'E , which prevents the generation of a self-loop. 

So assuming that the initial netlist has no self-loops, no new ones can be created during 

the execution of local moves. 

If an edge Ee ji ∈,  gets absorbed, then Ee im ∈∀ , , ', Ee km ∈  it is true that 

( ) ( ) ( )kmjiim ewewew ,,, '≥+ . This means that an absorbed edge can increase the weights 

of all incoming edges to the new node '' Vv k ∈  that before the execution of the move we 

incoming edges to iv , but at most by ( )jiew , . If Ee ji ∉, then the local move does not 

change the weights of any edges. It is also important to note that such a move is only 
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allowed when ( ) 0, >jiew . This is due to the fact that ( ) 0, <jiew  implies from definition 

(3) that TBvi ∈ . A move that absorbs a token buffer is not allowed because of the 

special functionality that token buffers serve in the circuit guaranteeing liveness around 

loops. 

Finally it is important to note the following relationships, since they are very 

useful in understanding the effects of clustering on the connectivity of the graph model of 

the circuit. They represent the relationship between the TFI, TFO, CTFI and CTFO of the 

old nodes Vvv ji ∈,  and the new merged node '' Vv ∈ after the execution of a local 

move. These relationships can be easily derived from the definition of 'E  that was 

presented previously. 

( ) ( ) ( ){ } { }jiji vvvTFIvTFIvTFI ,' −∪=  

( ) ( ) ( ){ } { }jiji vvvTFOvTFOvTFO ,' −∪=         (8) 

( ) ( ) ( ){ } { }jiji vvvCTFIvCTFIvCTFI ,' −∪=  

( ) ( ) ( ){ } { }jiji vvvCTFOvCTFOvCTFO ,' −∪=  
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Figure 9 Three different local move scenarios that have different impact on 

the lgaτ  of the circuit. The circuit for the three scenarios before the 

move ((a), (c), (e) respectively) and after ((b), (d), (f) respectively) 
showing how the ACT could remain unaffected ((a),(b)), increase 
((c),(d)), or even get introduced ((e),(f)). 

Some examples of possible moves are shown in Figure 9. It is interesting to see 

the different scenarios and the effects that they could have either on the weight function 

( )jiew ,  and/or on the algorithmic cycle of the circuit: 

• In the first scenario, which is depicted in Figure 9 (a) and (b) we can see an 

example of two nodes merging that are part of parallel paths and hence the 

execution of the move does not affect the ACT of the circuit, since the levels 

of logic in the nodes that are part of the path that defines the ACT are 

unaffected. 
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• In the second scenario, which is depicted in Figure 9 (c) and (d) there is an 

edge connecting the two nodes which gets absorbed. In this case the new 

logic will artificially inflate the ACT since a new level of logic is added in a 

node that is part of the critical path. Even though the levels do not really 

change in terms of the actual data path, this node will now have a delayed 

handshaking sequence due to the new logic, which affects the critical path. It 

should be noted here that additional merging with v3 could remove this effect 

assuming this move was possible. 

• In the third scenario, which is depicted in Figure 9 (e) and (f) there was no 

cycle in the portion of the circuit that is depicted. However after merging the 

two nodes v1 and v6 there is now a new cycle in the design. This cycle is 

again not introduced in the logic, since the circuitry is not modified by 

clustering, but introduced in terms of the control handshakes between the 

different nodes of the graph. 

Having defined the general mathematical framework it is now time to look into a 

more formal representation of the clustering. In the following section we will define our 

present goals from the clustering and some key theorems that are necessary for the 

clustering to provide a functional solution that meets the user performance requirements. 

3.2 Clustering Criteria 

Clustering is a sequence of local moves that serve the purpose of minimizing 

control area. We have chosen to define local moves as the merging of two nodes, since 

all merges can be broken down into this basic two-way merge, and the two-way merge is 
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easier to characterize and study. Since every pipeline cluster will ultimately need to have 

its own control unit as well as left and right C-element trees for multiple fanins and 

fanouts, every local move results in a drop in total area. 

The ultimate goal is to find the clustering of the circuit into pipeline stages that 

achieves the minimum overall area while hitting a target performance. However 

practically this means that this has to take into consideration not only the clustering 

process, but also the effects of slack matching and fanout optimization. In general since 

this is a new area of research we found that before even considering different 

optimization algorithms and approaches, there were more fundamental problems that 

need to be addressed before area optimality. As we will show in Section 5.2.2 we chose 

a heuristic algorithm using a steepest descent approach and local constraints for the 

area optimizations. The focus of this work was maintaining correctness and performance 

during clustering. Having this foundation will allow us to further explore the optimization 

process in the future. 

3.2.1 Ensuring liveness 

The handshaking nature of asynchronous circuits requires that one constraint is 

satisfied to ensure the circuit is live [14] (also referred to as liveness of a circuit). 

Informally a circuit is live, if every cycle in the circuit should have at least one data 

TOKEN. This is guaranteed during the design process, by ensuring in every cycle in the 

design at least one TOKEN_BUFFER cell. A TOKEN_BUFFER is a special gate in the 

netlist that upon reset (or startup) will get initialized with a token (data). All other gates in 

the netlist are empty during initialization. 
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Based on the definitions in Section 3.1 the liveness criteria can be formalized in 

the context of our proposed graph model. A graph ( )mhEVG ,,,=  is live if every cycle 

iip ,  includes at least an edge e  that starts at a node TBv ∈ . Based on our convention, 

equivalently the graph is live if every cycle iip ,  includes at least an edge 0)(: <ewe . 

However, with arbitrary clustering it is easy to see how a cycle can get created 

that generates a new cycle that violates this principle. So our first task is to make sure 

that clustering does not destroy the liveness of a circuit and that we find a criterion that 

allows us to prevent all moves that could cause that from ever being executed.  

Several of our proofs are based on the modified graph 

{ }( )mheeEVG ijji ,,,,* ,,−= , which does not include the two special edges that have the 

possibility of being absorbed during a local move. The reason for this is that those are 

the only two edges in the graph that are treated differently than others and by 

considering the modified graph that does not include them we can generalize our theory 

without having to consider the multitude of special cases. An important first conclusion is 

that in such a modified graph cannot include any paths between the two merging nodes 

that is of length 1. This is used in the proofs that follow. 

Lemma 1: Let a local move merge two nodes Vvv ji ∈,  in graph ( )mhEVG ,,,=  into 

node '' Vv k ∈  in the graph ( )mhEVG ,,',''= . In the modified graph 

{ }( )mheeEVG ijji ,,,,* ,,−=  if *, Gnl Pp ∈∃  and  ( ) ( )jninjlil =∨=∧=∨=  then 

1, >nlp . 



 48 

Proof: Let us assume that *, Gnl Pp ∈∃ . If  ( ) ( )jninjlil =∨=∧=∨=  and 1, =nlp . 

Then we will show that this statement cannot be true through contradiction. Indeed the 

possible cases are as follows: 

1. ( )inl == ⇒ { } Giiii Pep ∈= ,,  which contradicts our convention that Ee ii ∉,  

2. ( )jnl == ⇒ { } Gjjjj Pep ∈= ,,  which contradicts our convention that Ee jj ∉,  

3. ( )jnil =∧= ⇒ { } *,, Gjiji Pep ∈=  which contradicts our proposition that  

{ }ijjiji eeEe ,,, ,−∉  

4. ( )injl =∧= ⇒ { } *,, Gijij Pep ∈=  which contradicts our proposition that  

{ }ijjiij eeEe ,,, ,−∉  

Since all possible combinations contradict our original convention or proposition it is 

proven 1, >nlp .� 

Now we would like to show that every path that exists in the modified original 

graph { }( )mheeEVG ijji ,,,,* ,,−=  also exists in the resulting graph after the move. This 

is an important conclusion since it helps us to easily qualify and evaluate the results of a 

possible move and its consequences in terms of the connectivity of the graph. 

Lemma 2: Let a local move merge two nodes Vvv ji ∈,  in graph ( )mhEVG ,,,=  into 

node '' Vv k ∈  in the graph ( )mhEVG ,,',''= . In the modified graph 

{ }( )mheeEVG ijji ,,,,* ,,−=  if *, Gnl Pp ∈∃  then ', Gqo Pp ∈∃  such that  

Case 1: If ( ) ( )jninjlil ≠∧≠∧≠∧≠  then lo =  and nq =  

Case 2: If ( ) ( )jninjlil ≠∧≠∧=∧=  then ko =  and nq =  

Case 3: If ( ) ( )jninjlil =∧=∧≠∧≠  then lo =  and kq =  
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Case 4: If ( ) ( )jninjlil =∧=∧=∧=  then ko =  and kq =  

Proof: First we are going to prove all the cases for the special case that a path 

*, Gnl Pp ∈  does not go though nodes Vvv ji ∈, , unless ji vv ,  are one of the endpoints of 

the path. 

Case 1: ( ) ( )jninjlil ≠∧≠∧≠∧≠  Assume that ( ) nlpvve ,21, ∈=∀  it is true that 

ivv ≠1 , ivv ≠2 , jvv ≠1 , jvv ≠2 , meaning the path does not include any edge 

that includes any of the merging nodes. Then based on the definition of the 

local move nlpe ,2,1 ∈∀  and '2,1 Ee ∈∃  therefore ', Gnl Pp ∈∃ .  

Case 2: ( ) ( )jninjlil ≠∨≠∧=∨= ( ) nlpvve ,21, ∈=∀ ivv ≠2 , jvv ≠2 , then Vvr ∈∃  

such that { }nrrlnl pep ,,, ,= , and from the definition of the local move if 

jlilEe rl =∨=∈∃ :, ⇒ ', Ee rk ∈∃ . So if *, Gnl Pp ∈∃  and 

( ) ( )jninjlil ≠∨≠∧=∨=  then { } ',,, , Gnrrknk Ppep ∈=∃ .  

Case 3: ( ) ( )jninjlil =∨=∧≠∨≠ and ( ) nlpvve ,21, ∈=∀  ivv ≠1 , jvv ≠1 , then 

Vvr ∈∃  such that { }nrrlnl epp ,,, ,= , and from the definition of the local move if 

jninEe nr =∨=∈∃ :, ⇒ ', Ee kr ∈∃ . So if *, Gnl Pp ∈∃  and 

( ) ( )jninjlil =∨=∧≠∨≠  then { } ',,, , Gkrrlkl Pepp ∈=∃  

Case 4: Now if we assume that ( ) ( )jninjlil =∨=∧=∨=  and the path does not 

include nodes ji vv ,  on any edge other than its starting and ending point. Using 

Lemma 1 1, >nlp , therefore we can write that { }nrrlnl ppp ,,, ,=  for some node 
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rv  along the path. But if ',, * Grkrl PpGp ∈∃⇒∈∃ , and 

',, * Gkrnr PpGp ∈∃⇒∈∃ , so { } ',,, , Gkrrkkk Pppp ∈=∃ . 

We have now proven all four cases for paths that do not go through nodes Vvv ji ∈, . 

We need to also show that all cases also stand when the path does go through nodes 

Vvv ji ∈, . 

Next we cover the case where *, Gnl Pp ∈∃  that goes through node 

( ) ( )ji vvvvv =∨= 111 :  and ml vvvv ≠∧≠ 11 . But then we can write that 

{ }nlnl ppp ,11,, ,= . Using the conclusions of Cases 1-4 above on the sub-paths nl pp ,11, ,  

and for any value of nl,  we know that if ',1, GkoGl PpPp ∈∃⇒∈∃  and if 

',,1 GnkGn PpPp ∈∃⇒∈∃ . This implies { } ',,, , Gnkklnl Pppp ∈= . So the relationships in 

Cases 1-4 stand also when the path goes through the nodes Vvv ji ∈, � 

With Lemma 2 we have shown that the new graph ( )mhEVG ,,',''=  after the 

local move maintains all the connectivity as that in the modified initial graph 

{ }( )mheeEVG ijji ,,,,* ,,−= . However, the initial graph ( )mhEVG ,,,=  is our real initial 

graph and therefore, it is useful to also show that the connectivity in G  is maintained in 

'G  even if the two special edges ijji ee ,, ,  where part of some original path. 

Lemma 3: Let a local move merge two nodes Vvv ji ∈,  in graph ( )mhEVG ,,,=  into 

node '' Vv k ∈  in the graph ( )mhEVG ,,',''= . If Gnl Pp ∈∃ ,  and { }jinl ep ,, ≠ , { }ijnl ep ,, ≠  

then ', Gqo Pp ∈∃  such that 

Case 1: If ( ) ( )jninjlil ≠∧≠∧≠∧≠  then lo =  and nq =  
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Case 2: If ( ) ( )jninjlil ≠∧≠∧=∧=  then ko =  and nq =  

Case 3: If ( ) ( )jninjlil =∧=∧≠∧≠  then lo =  and kq =  

Case 4: If ( ) ( )jninjlil =∧=∧=∧=  then ko =  and kq =  

Proof:  Lemma 2 proves the proposition for nlijnljiGnl pepePp ,,,,, : ∉∧∉∈∀ . So we 

need to prove the proposition for  nlijnljiGnl pepePp ,,,,, : ∈∨∈∈∀ . Let us assume that 

{ }njjiilnlGnl peppPp ,,,,, ,,: =∈∃ . Even though in ', Ee ji ∉  it is true that if Gil Pp ∈∃ ,  then 

', Gkl Pp ∈∃  and if Gnj Pp ∈∃ ,  then ', Gnk Pp ∈∃  therefore { }nkklnlGnl pppPp ,,,', ,: =∈∃ .� 

The three lemmas show that except for the single-edge path that connects the 

two merging nodes, the new graph 'G  includes all other paths that existed in G .  This is 

a very useful conclusion that will be used to show the necessary conditions that need to 

be satisfied to maintain both liveness and performance on the new graph. 

Theorem 1: Let a local move merge two nodes Vvv ji ∈,  in graph ( )mhEVG ,,,=  into 

node '' Vv k ∈  in the graph ( )mhEVG ,,',''= . The graph 'G  is non-live iff in the modified 

graph { }( )mheeEVG ijji ,,,,* ,,−= , ( )ji vCTFOv ∈  or ( )ij vCTFOv ∈ . 

Proof:  

( ← ) Assume in *G  it is true that ( )ij vCTFOv ∈ . Then from Lemma 1, 

1: ,*, >∈∃ jiGji pPp . Consequently ( ) jmim vvvCTFOv ≠∈∃ :  and jmmi pp ,, ,∃  in *G that 

only traverse combinational nodes. And from Lemma 2 it is also true that kmmk pp ,, ,∃ , so 

there exists a combinational cycle, therefore the graph 'G  is not live. Similarly we can 

show the same if we assume that ( )ji vCTFOv ∈ , which proves the one side of the 

proposition. 
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( → ) Now let us assume that 'G  is not live (but G  was) and that '' Vv k ∈  is part of a 

combinational cycle that was generated during the local move. We will assume that 

( )ji vCTFOv ∉  and ( )ij vCTFOv ∉  and show that we reach a contradiction.  

From the definition of the local move guarantees the absence of self-loops on nodes 

so 'Vvm ∈∃  for which kmmk pp ,, ,∃  in 'GP and ( )mk vCTFOv ∈'  and ( )km vCTFOv '∈ . But if 

kmmk pp ,, ,∃  in 'GP  it is true due to Lemma 2 that nmml pp ,, ,∃  in *GP  such that either: 

• il =  and jn =  ⇒ ( )ij vCTFOv ∈ , which contradicts our assumptions or 

• jl =  and in =  ⇒ ( )ji vCTFOv ∈ , which contradicts our assumptions or 

• inl ==  ⇒ *G  not live ⇒ G  not live, which contradicts our assumptions or 

• jnl ==  ⇒ *G  not live ⇒ G  not live, which contradicts our assumptions. 

Therefore all possible cases contradict our assumption, therefore if 'G  is not live, it must 

be that ( )ji vCTFOv ∈  or ( )ij vCTFOv ∈ , therefore our proposition stands. � 

Theorem 2: Let a local move merge two nodes Vvv ji ∈,  in graph ( )mhEVG ,,,=  into 

node '' Vv k ∈  in the graph ( )mhEVG ,,',''= . Graph 'G  will be live if in the modified graph 

{ }( )mheeEVG ijji ,,,,* ,,−= , 0, ≤jid  and 0, ≤ijd  

Proof: From Theorem 1, we know that the new graph will not be live iff ( )ij vCTFOv ∈  

or ( )ji vCTFOv ∈ . But if ( )ij vCTFOv ∈  ⇒  ( ) jiji peewp ,, 0: ∈∀>∃  by the definition of 

CTFO . And from the definition of jid ,  it is clear that 0, >jid . So if 

( )ij vCTFOv ∈ ⇒ 0, >jid  and similarly if ( )ji vCTFOv ∈ ⇒ 0, >ijd . Therefore if 

0, ≤jid  and 0, ≤ijd , then ( )ji vCTFOv ∉  and ( )ij vCTFOv ∉ , so the resulting graph will 

be live due to Theorem 1, which completes the proof. � 
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However it should be noted that the reverse argument is not always true, 

meaning that 0, >ijd  does not guarantee that ( )ji vCTFOv ∈ . For example, consider a 

situation of a long path from a PI through a TOKEN_BUFFER to a PO. It might be 

possible in that case to have a path for which 0, >jid , but which after the merge 

includes a TOKEN_BUFFER in the cycle. Such an example if presented in Figure 10. 
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Figure 10 An example where 0, >ijd  does not guarantee that ( )ji vCTFOv ∈ . 

Notice that 29,2 =d , but the path includes 5v is a TOKEN_BUFFER 

thus ( )29 vCTFOv ∉ . 

Therefore this criterion is weaker than the one presented in Theorem 1, in the 

sense that it could exclude local moves that would not necessarily cause a non-live 

graph. The value of Theorem 2 is that once we have obtained the distances for the 

entire graph, the check can be implemented with a single lookup, while the operation of 

finding the CTFO is much more computationally intensive. It is also much more effective 

when combined with the performance criteria, which are discussed in the next section 

and are also based on distances. For example if in we like to avoid creating an 

algorithmic cycle that is longer than our target cycle time then this move should be 
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avoided anyway. This will become more apparent in the following section, where the 

performance criteria are described. 

3.2.2 Maintaining Performance 

The goal of our analysis here is to define some criteria so that our local move 

operations can maintain the performance of the original circuit. There are two 

performance measures that are interesting here and one could potentially choose to 

even enforce them separately. The first one has to do with the TCT or goalτ . In essence 

what that means is that the local move should not introduce any new cycles that could 

make the ACT any larger than the TCT thus making the circuit slower than requested by 

the user. The other one has to do with end to end latency. It is sometimes important that 

the PI-to-PO latency in a circuit does not increase. In that case we should be preventing 

any moves from being executed that could increase the latency from any PI to any PO in 

the circuit. Another limiting factor for the performance is the LCT. This is taken care of by 

local criteria that prevent moves from being executed that would slow down a channel to 

the point that it hurts performance. These are not discussed in this section but rather in 

the implementation section. 

In order to prove our criteria we are first going to prove a Lemma that will help 

make our further discussion simpler. In particular we want to show that there are certain 

distance criteria that can be used to easily determine, whether the graph is satisfying the 

performance target for the TCT or not. This allows us to evaluate the performance of the 

graph (circuit) by marely evaluating the distances between the different nodes of the 

graph.  

Lemma 4: In a live graph G  the lgaτ is satisfied iff Vvi ∈∀  it is true that 0, ≤iid . 
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Proof: For all nodes that are not part of any cycle it is trivially proven since in that case 

−∞=iid , . So we need to prove this for all nodes that are part of a cycle. So let’s assume 

that the graph G is live and also meets the lgaτ . Then 
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We can further write that: 
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We can also trivially prove the reverse side of that relationship by contradiction. Assume 

that the graph is live, Vvi ∈∀  it is true that 0, ≤iid , but the lgaτ  is violated, therefore 
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lgagoal ττ ≤ . Let us assume that the ACT is determined by a path iip ,  for node Vvi ∈ . 

Then similarly to before we can write that: 
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Which contradicts the original assumption therefore the proposition stands. � 

Lemma 5: Let a local move merge two nodes Vvv ji ∈,  in graph ( )mhEVG ,,,=  into 

node '' Vv k ∈  in the graph ( )mhEVG ,,',''= . If G  is live and the lgaτ  and/or PI-to-PO 

latency constraints are satisfied and a local move is executed, any violating path in 

( )mhEVG ,,',''=  will go through the newly formed node kv' . 

Proof: We can prove this through contradiction. Assume that we have a graph G  where 

the lgaτ  and/or PI-to-PO latency constraints are satisfied. Assume that the new node is 

'Vvk ∈  that is the merge of Vvv ji ∈, . Assume that there exists a path that violates 

either the lgaτ  or PI-to-PO latency constraints in *G  that does not go through the new 

node. However by the definition of the local move the edges into kv  

are{ } { } { } { }ijjiinilkm eeEeEeEe ,,,,, ,' −∈∪∈=∈  which means that if the path does not go 

through 'Vvk ∈  it cannot go through either Vvv ji ∈, . And since G  and *G  are 
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identical for all nodes and edges it means that if this violating path exists in *G  it existed 

in G  as well. Therefore G must have a violating path, which contradicts our assumption. 

� 

Theorem 3: Let a local move merge two nodes Vvv ji ∈,  in graph ( )mhEVG ,,,=  into 

node '' Vv k ∈  in the graph ( )mhEVG ,,',''= . If G is live and the lgaτ  constraints are 

satisfied, the local move will not create a path violating the lgaτ  constraint iff  in the 

modified graph { }( )mheeEVG ijji ,,,,* ,,−=  the following distance relationships are true 

0, ≤+ ad ji , 0, ≤+ ad jj , 0, ≤+ bd ij  and 0, ≤+ bd ii  where ( )
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Proof:  

Case 1: Let us first assume that Eee ijji ∉,, . .  Then based on the definition of the local 

move the weights of the edges of E  are the same as those in 'E . From Lemmas 3, 4 

and 5 we can write the following relationship for the new distances 'd  in 'G  and the old 

ones d  in G : 
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In fact the first two relationships are true since iid ,  and jjd ,  must be smaller or equal to 

0 since G  satisfies the lgaτ . 
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Case 2: Let us first assume that EeEe ijji ∈∧∉ ,, . Then kkkl pe ,,' ∈∃ for which we know 

by definition that ( ) ( ) ( )klijjl ewewew ,,, '≥+ . This implies that the path that defines kkd ,'  

could be greater by ( )
ijew ,  than the distance of the path it originated from if ije ,  was not 

part of the original path of iit would otherwise be smaller or equal to it. This means that 

we can write: 
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The reason why the ( )
ijew ,  is not added to the other two paths is that since they end in 

node 
i

v  it is impossible that they could be followed by ije , . 

Case 3: Let us first assume that EeEe ijji ∉∧∈ ,, . Then kkkl pe ,,' ∈∃ for which we know 

by definition that ( ) ( ) ( )kljiil ewewew ,,, '≥+ . This implies that the path that defines kkd ,'  

could be greater by ( )
jiew ,  than the distance of the path it originated from if jie ,  was not 

part of the original path or it would otherwise be smaller or equal to it. This means that 

we can write: 
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The reason why the ( )
jiew ,  is not added to the other two paths is that since they end in 

node jv  it is impossible that they could be followed by jie , . 
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Theorem 4: Let a local move merge two nodes Vvv ji ∈,  in graph ( )mhEVG ,,,=  into 

node '' Vv
k
∈  in the graph ( )mhEVG ,,',''= . If G  and 'G  are live and satisfy the goalτ  

constraint, the move will not increase the latency of any path from PI to PO iff PIv
m

∈∀  

and POv
l
∈∀ it is true that: 

{ } { }
liljjmimlm ddddd ,,,,, ,max,max +≥  

Proof: The latency between PIv
m

∈∀  and POv
l
∈∀  can be described by the distance 

between 
m

v  and 
l

v  that is lmd , . The distance according to Lemma 5 will not increase if 

the length of all paths through the new node 
k

v'  have length smaller or equal to lmd , . 

We denote with d  the distances of paths in 
G

P  and with 'd  the paths in 'G
P . The length 

of the longest path through 
k

v'  can be written as lkkm dd ,, '' +  therefore we can write that 

the statement will be true as long as lkkmlm ddd ,,, '' +≥ . For simplicity we are going to 

break down the proof into three cases: 

Case 1: If EeEe ijji ∉∧∉ ,, . Assume that the local move generates a path from node 

m
v  to node 

l
v . But since EeEe ijji ∉∧∉ ,,  based on the definition of the local move no 

edge will change weight so },max{' ,,, jmimkm ddd =  and similarly },max{' ,,, jlillk ddd = . In 

other words the longest path from the input 
m

v  to the new node 
k

v'  is equal to the 

longest path to either of the two nodes that the move merges. Similarly the longest path 

from the new node 
k

v'  to the output 
l

v  is the longest path from either of the two nodes 

that the move merges. So the longest path from input 
m

v  to output 
l

v  that goes through 
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the new node 
k

v'  will have a length of { } { }
liljjmimlkkm dddddd ,,,,,, ,max,max'' +=+ . In 

order for the latency not to increase from input 
m

v  to output 
l

v  we can therefore write: 

{ } { }
liljjmimlkkmlmlm dddddddd ,,,,,,,, ,max,max''' +=+≥=   

Case 2: If EeEe ijji ∉∧∈ ,, . In this case we know by definition that 

( ) ( ) ( )kmjiim ewewew ,,, '≥+   and ( ) 0, >jiew , so a path in the original graph from input 
m

v  

to node 
i

v  could get longer by ( )
jiew , . However it is true that 

( )
jiimjiimjm ewdddd ,,,,, +≥+≥ . So the equation proven in Case 1 still holds, in fact we 

can simplify it and write { }
liljjmlkkmlmlm ddddddd ,,,,,,, ,max''' +=+≥=  

Case 3: If EeEe ijji ∈∧∉ ,, . Similarly due to symmetry with Case 2 the equation that 

was proven in Case 1 holds and can be simplified and written as 

{ }
liljimlkkmlmlm ddddddd ,,,,,,, ,max''' +=+≥= . 

3.2.3 Modified Floyd-Warshall for finding distances 

The Floyd-Warshall algorithm is used to find all pair-wise distances in the graph 

so that the constraints set above can be checked quickly by a simple look-up. The 

algorithm is originally designed to find all the minimum pair-wise distances in a graph 

and cannot be used if there are any negative-weight cycles in the graph. This works well 

for our case, because we need to find the maximum distances between all pairs of 

nodes. And assuming that the lgaτ  is met in the graph originally according to Lemma 4 

Vv
i
∈∀  it is true that 0, ≤iid . Therefore there are no positive weight cycles in the 

graph, which allows to replace all min operations in the original algorithm with max 

operations, and still achieve convergence.  
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The complexity of the algorithm is ( )3
VΘ , so it is very expensive 

computationally. Moreover, the complexity does not change no matter how many nodes 

really need to be updated. After each local move is executed, the pairwise distances in 

the graph change and an update is required. Running the entire Floyd-Warshall 

algorithm was attempted, but it was quickly realized that this was impractical and so slow 

that made the use of the distance-based algorithms impractical. 

 A local update has been implemented that updates the array with simple 

operations only around the neighborhood of the new node after each move so that the 

Floyd-Warshall algorithm needs to run only once. However, the complexity of even one 

execution of the algorithm is really prohibitive for circuits that include tens of thousands 

of nodes. This is one of the reasons why when it comes to liveness two theorems were 

developed. Theorem 1 only requires a local search and in very large netlists where 

calculating all the distances is hard to do, one can choose to ignore performance in 

order to obtain results quickly and still maintain a functional circuit in the end of the 

operation, which however may or may not meet the performance requirements. 

The local update that was developed to speed up the processing between move 

executions is extremely fast, reducing the overhead of the Floyd-Warshall to practically 

just the initial run that finds the initial distances. It takes advantage of the knowledge of 

the graph interconnect as well as the nature of the move so that it can speed up the 

processing and avoid updating any unnecessary values. The algorithm is shown in 

Figure 11. 

The update function for the distances (update_distance_from_node) has 

complexity ( )NBΟ , where B is the average branching factor at each node and N  is 
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the number of nodes in the graph. It is based on the realization that each path from a 

node has to go through one of its fanout nodes, therefore all the distances from a given 

node can be calculated using just the distances to its fanout nodes and the distance 

vectors stored at each of the fanout nodes. This version of the algorithm was used 

extensively in our implementation of the distance algorithm presented in 3.2.2 and in 

practice it performs several times better than the Floyd-Warshall algorithm, however 

theoretically its performance could not be proven to be any better than the ( )3
NΟ  that 

the Floyd-Warshall algorithm achieves, since this algorithm will not prevent a node from 

being visited several times. 

 

Figure 11 Pseudo-code of the first distance-update routine. This version was 
found to be very fast in practice, but its performance is not bound. 
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A slightly modified version was then generated that has a performance that can 

be bound by ( )2
NBΟ , where B is the average branching factor at each node and N  is 

the number of nodes in the graph. The modified version is shown in Figure 12. This 

algorithm takes advantage of the fact that the pair wise distances in the rest of the graph 

did not change. So first the distances of the new node to all other nodes are reset and 

an update is executed to calculate the distances from the new node to all other nodes 

using just information from its fanout. Any path from the new node to any other node has 

to go through its fanout so this operation is enough to give us the new distances. Then 

the update is executed on the fanins of the new node, so that any new paths generated 

by the new node are updated on its fanin. Since the distance from all other nodes to the 

fanins of the new node did not change a final update on all nodes of the graph using 

these three nodes is enough to update the entire graph. This last loop is the longest 

operation in this update algorithm and is executed ( )NBΟ  times each containing 

N updates so the total complexity of the update proposed is ( )2
NBΟ . For the typical 

circuits that we have studied it is true that the branching factor B  is negligible in size 

compared to the number of nodes N  in the graph and thus for such graphs we can say 

that the complexity of the update is of complexity approximately equal to ( )2
VΟ . 

This algorithm was designed, but not implemented. The previous version was 

proven to be very fast in practice and the results were satisfactory, so this new algorithm 

was not deemed necessary. Thus no run-time comparisons were generated to compare 

the two. 
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Figure 12 Pseudo-code of the second distance-update routine.  

This version can be shown to have performance ( )2BNΟ , where B is 

the average branching factor at each node and N is the number of 
nodes in the graph. 
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3.3 Experimental Results 

Both aspects of the clustering theory were tested using our software platform and 

ASIC flow that will be discussed in Chapter 5. In all cases we use the same clustering 

core algorithm, which is a greedy, steepest descent algorithm that picks the local moves 

that reduce the total area of the design the most. It stops when the algorithm determines 

that there are no possible moves left that do not violate the rules defined in each case. 

Since our slack matching and clustering rules also depend on the assumption that all 

LCTs are smaller all equal to the lgaτ  and hence not critical, another local check was 

added that ensures that no moves are permitted that would grow an LCT beyond the 

allowed TCT target. Depending on the design style selected, other minor local 

constraints are also enforced to guarantee legal circuit implementations for the particular 

design style, but these details are minor and are not going to be discussed here. 

We use for testing various examples from the ISCAS benchmark set that 

includes examples that are purely combinational (hence include no cycles) or mixed 

sequential and combinational (include state elements and cycles). We also added a few 

examples that are generally common in commercial circuit designs. We use four variants 

of clustering for each of the netlists. The first one applies no rules to the greedy 

clustering. The second one only applies the liveness rule described in Theorem 1. The 

third one adds the TCT constraints of Theorem 3 and also uses the expressions in 

Theorem 2 for liveness to reduce the computational complexity. Finally the last one adds 

the criteria of Theorem 4 to control the PI-to-PO overall latency of the circuit. For the 

examples we report the logic area after clustering, the total circuit area after slack 

matching and the GCT as measured by our software after clustering and slack matching 

is complete. 
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 Local & Global Cycle Time (transitions) 

 
Area 

Guided 
Liveness 

Liveness 
& TCT 

Liveness, 
TCT & 

Latency 

Design LCT ACT LCT ACT LCT ACT LCT ACT 

 c3540 28 DL 32 32 34 34 30 30 

 MAC16 28 68 32 32 34 34 28 28 

 MAC32 32 72 32 32 32 32 32 32 

 s1196 34 34 34 34 32 32 30 30 

 s1238 28 DL 32 32 34 34 30 30 

 s13207 28 DL 32 32 30 30 30 30 

 s1423 28 DL 32 50 32 32 32 32 

 s1488 30 30 30 30 32 32 28 28 

 s15850 30 DL 38 64 34 34 34 34 

 s27 26 26 26 26 24 26 24 26 

 s298 26 26 26 26 26 26 26 26 

 s344 26 26 26 26 28 28 26 26 

 s349 26 26 26 26 26 26 26 26 

 s382 26 DL 26 26 26 26 26 26 

 s386 28 28 28 28 26 26 26 26 

 s400 26 DL 26 26 26 26 26 26 

 s420 26 26 26 26 26 26 26 26 

 s444 26 DL 30 30 26 26 26 26 

 s510 28 28 28 28 28 28 28 28 

 s526 26 DL 32 32 28 28 30 30 

 s5378 32 32 32 32 32 32 30 30 

 s641 26 DL 32 32 28 28 26 26 

 s713 26 DL 32 32 32 32 26 26 

 s820 28 DL 32 32 30 30 28 28 

 s832 32 32 32 32 32 32 28 28 

 s838 26 DL 32 32 30 30 26 26 

 s9234 32 32 32 32 32 32 26 26 

 s953 28 DL 32 32 32 32 26 26 

 SISO 34 DL 36 76 46 46 30 34 

Table 1 Performance of the different circuits in terms of Local and Algorithmic 
Cycle Time under different local move approval criteria. It is worth 
noting that without the use of our proposed criteria more than half of 
the circuits resulted in deadlock (marked DL). 

Table 1 shows that 15 of 29 designs (51.7%) resulted in deadlock and were not 

functional after clustering. So it is clear that it is very important to be able to maintain the 

liveness of the circuit throughout these transformations, since the likelihood of destroying 

its functionality is very high. It is also important to note that a non-live circuit will also fail 
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slack matching due to infeasible constraints, therefore in most cases the area guided 

results are skewed since there were no slack buffers added. Since such results are not 

meaningful area comparisons for the area-guided approach are not further analyzed. 

 Logic Area (µm
2
) Total Area (µm

2
) 

Design Liveness 
Liveness 
& TCT 

Liveness, 
TCT & 

Latency 
Liveness 

Liveness 
& TCT 

Liveness, 
TCT & 

Latency 

 c3540 53906.7 55238.4 67044.1 95369.5 92305.2 89650.9 

 MAC16 73659 79578 123170 218770 220988 209570 

 MAC32 61990.7 70978.2 84036.9 111006 140453 118325 

 s1196 22883.9 24017.5 27561 41813.6 45172.8 42873.4 

 s1238 24158.6 24916.1 28344.4 51539.3 54246 44670.5 

 s13207 132051 134391 144565 265536 273949 254701 

 s1423 26546.64 28230.9 31879.8 33606.1 59998.5 58762.9 

 s1488 29227.4 30055.7 31940.4 80592.8 80444.2 71767.3 

 s15850 117041.6 182966 182966 150210 297931 297931 

 s27 387.072 728.066 705.026 1013.76 1041.41 1018.37 

 s298 5170.18 5276.16 5234.69 8787.46 8865.79 8603.14 

 s344 5852.18 6165.54 6690.8 11796.5 12192.8 11699.7 

 s349 5824.5 6128.6 6667.8 12215.8 11828.7 11621.4 

 s382 6981.09 7326.7 7787.53 12575.2 13261.8 12722.7 

 s386 6420.66 6494.43 6570.98 11858.1 11259.1 12630.5 

 s400 7068.65 7455.76 7847.39 11994.6 12432.4 11713.5 

 s420 7225.34 7414.25 8262.14 15091.2 15390.7 14114.3 

 s444 6469.61 6907.43 7828.96 11649 12073 11593.7 

 s510 11920.9 12354 12570.7 31085.6 30034.9 27795.5 

 s526 8068.6 8193 9202.22 16132.6 16372.2 15699.5 

 s5378 61099.2 63975.6 68370.9 127436 129294 121197 

 s641 7326.73 7294.5 9400.3 15777.8 14667.3 14008.3 

 s713 7308.3 7345.12 9321.96 17459.7 14418.4 14008.3 

 s820 14742.8 15249.6 15931.6 33202.4 33225.4 29654.2 

 s832 13916.2 14303.3 15727.1 28781.6 30795.3 26993.7 

 s838 15694.9 15819.3 16985.1 34260.5 36159 29205.5 

 s9234 46361.1 48940.4 51255.4 79276 95743.9 91948.6 

 s953 18312.2 18266.1 20312.09 33039.4 34956.3 29707.8 

 SISO 22939.8 43118 100449.6 22939.8 167119 114762 

Table 2 Area summary for different examples using different local move 
approval criteria. The left columns correspond to the logic area, which 
is the area of the clustered gates before the introduction of slack 
matching. The columns on the right correspond to the total circuit area 
after slack matching. 
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 % Logic Area Increase % Total Area Increase 

Design Liveness 
Liveness 
& TCT 

Liveness, 
TCT & 

Latency 
Liveness 

Liveness 
& TCT 

Liveness, 
TCT & 

Latency 

 c3540 0.0% 2.5% 24.4% 0.0% -3.2% -6.0% 

 MAC16 0.0% 8.0% 67.2% 0.0% 1.0% -4.2% 

 MAC32 0.0% 14.5% 35.6% 0.0% 26.5% 6.6% 

 s1196 0.0% 5.0% 20.4% 0.0% 8.0% 2.5% 

 s1238 0.0% 3.1% 17.3% 0.0% 5.3% -13.3% 

 s13207 0.0% 1.8% 9.5% 0.0% 3.2% -4.1% 

 s1423 0.0% 6.3% 20.1% 0.0% 78.5% 74.9% 

 s1488 0.0% 2.8% 9.3% 0.0% -0.2% -11.0% 

 s15850 0.0% 56.3% 56.3% 0.0% 98.3% 98.3% 

 s27 0.0% 88.1% 82.1% 0.0% 2.7% 0.5% 

 s298 0.0% 2.0% 1.2% 0.0% 0.9% -2.1% 

 s344 0.0% 5.4% 14.3% 0.0% 3.4% -0.8% 

 s349 0.0% 5.2% 14.5% 0.0% -3.2% -4.9% 

 s382 0.0% 5.0% 11.6% 0.0% 5.5% 1.2% 

 s386 0.0% 1.1% 2.3% 0.0% -5.1% 6.5% 

 s400 0.0% 5.5% 11.0% 0.0% 3.6% -2.3% 

 s420 0.0% 2.6% 14.3% 0.0% 2.0% -6.5% 

 s444 0.0% 6.8% 21.0% 0.0% 3.6% -0.5% 

 s510 0.0% 3.6% 5.5% 0.0% -3.4% -10.6% 

 s526 0.0% 1.5% 14.0% 0.0% 1.5% -2.7% 

 s5378 0.0% 4.7% 11.9% 0.0% 1.5% -4.9% 

 s641 0.0% -0.4% 28.3% 0.0% -7.0% -11.2% 

 s713 0.0% 0.5% 27.6% 0.0% -17.4% -19.8% 

 s820 0.0% 3.4% 8.1% 0.0% 0.1% -10.7% 

 s832 0.0% 2.8% 13.0% 0.0% 7.0% -6.2% 

 s838 0.0% 0.8% 8.2% 0.0% 5.5% -14.8% 

 s9234 0.0% 5.6% 10.6% 0.0% 20.8% 16.0% 

 s953 0.0% -0.3% 10.9% 0.0% 5.8% -10.1% 

 SISO 0.0% 88.0% 337.9% 0.0% 628.5% 400.3% 

Average 0.0% 11.5% 31.3% 0.0% 30.1% 15.9% 

Average excluding SISO,s1423,s15850 0.0% 2.6% -4.4% 

Table 3 Area increase for different examples using different local move 
approval criteria On the columns on the left we see the area increase for 
the clustered netlist before the addition of slack matching. On the 
columns of the right we see the area increase for the final netlist after 
slack matching, 

From the Table 2 and Table 3 we can see that the simpler CTFO criterion-based 

algorithm performs the most amount of clustering, as expected, due to fewer constraints. 

The logic area for this algorithm is the smallest of the three variants analyzed. The 
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addition of the ACT maintenance criteria poses extra constraints, yielding clustered 

netlists that have 11.5% more area. There is a total area increase on average of 30.1% 

once the slack matching is factored in. However if we exclude the three examples where 

CTFO yielded extremely large GCT essentially requiring no slack matching (SISO, 

s15850 and s1423) the average increase in total area is only 2.6%. Adding the latency 

constraints further constrains clustering, and one can see that the clustered area 

increase is now 31.3%. The slack matching cost drops though, since the latency 

constraints were intended to force better alignment of paths and reduce slack matching 

as well as maintaining latency. On average after slack-matching, this algorithm suffers a 

15.9% area increase. In fact, if we again exclude the 3 examples that the liveness-only 

algorithm yielded excessive GCT on, this third algorithm is actually 4.4% better on 

average than the liveness-only one on total area. If one also factors in the fact that the 

latency-aware algorithm beat the others almost uniformly on the final GCT it is clear that 

it is the best one of the three. 

Intuitively this is expected as this additional criterion is likely to force better 

alignment of nearby pipeline stages and prevent merging of stages that are further apart 

from each other. In general given that this algorithm is able to maintain performance and 

liveness. However it should be pointed out that this algorithm requires all pairwise 

distances in the circuit, which is a computationally expensive operation. On the other 

hand the liveness-only one has small complexity and thus may be more practical for 

larger circuits.  
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Chapter 4 Slack Matching and Fanout 
Considerations 

4.1 Introduction 

This section will discuss the concept of slack matching and improvements that 

have been made to existing algorithms. Although describing the entire theory behind 

slack matching as well as its modeling and formulation is beyond the scope of this work, 

it is useful to show the basic principle behind its use and motivation through an example. 

This allows the reader to understand the general context of the optimizations described 

here, without getting into some of the more intricate details of the process. 

Slack matching can be thought as the process of properly aligning the timing of 

the handshakes between the pipeline stages in the design, so that a circuit can 

maximize its performance. If a stage generates data late, forcing another stage to wait 

then the receiving stage will have to stall its other inputs as it cannot process without all 

its inputs being present. This forward latency matching is straightforward and analogous 

to the latency matching that is frequently performed in synchronous circuits. In 

asynchronous circuits, though, it is also true that there is a backward latency, that 

defines the time it takes a stage to reset itself and get ready to receive data again. This 

forces an alignment constraint for the backward latencies as well, which is harder to 

visualize and which is realized in re-convergent paths. In both cases the mismatches 

can be handled by adding additional pipeline stages called slack buffers. The slack cells 

commonly are faster than regular logic cells and that allows them to be able to address 

larger mismatches than a common cell due to their excess slack which is defined that 

the difference between the circuit GCT and the cell LCT. 
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Figure 13 This example illustrates the effects of improper slack matching in a 
pipeline. The circuit shown above comprises pipeline stages that 
can run at a 10-transition cycle, however due to the mismatch the 
circuit cannot run faster than a 12 transition cycle. 

The above intuitive explanation is illustrated in Figure 13. Notice that all pipeline 

stages can run at a cycle time of 10- transition delays. This should enable the circuit to 

also run at that speed, but due to improper slack matching it can not go faster than an 

average cycle of 12 transitions. One can start tracing the causes of this slow down by 

looking at the arrival times of the data at the different stages assuming that data is 

launched at time t = 0. Notice that the token from the top branch arrives at stage 4 at 

time t = 2. However the other branch is not ready causing it to wait for 4 transitions. This 

is the first stall and is happening due to the top path being too fast. Now stage 5 can only 

start resetting at time t = 6 when the data is used by stage 4, so it cannot accept data 

until t = 14. This in turn causes a stall between stages 0 and 5. The stalls inevitably keep 
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propagating backwards, and on average it turns out that the circuit can never exceed 12 

transitions per cycle performance on average. 

The slack matching problem is commonly modeled using a Petri net model 

commonly referred to as the Full-Buffer Channel Net model proposed in [5]. As the name 

suggests the underlying assumption is that the stages are full-buffer stages, although in 

practice it has been shown to work well even for half-buffer cells. The problem can be 

presented as MILP problem, but due to complexity it has been also approximated in [5] 

with an LP. This section is devoted on optimizations that can be performed on this 

original formulation. 

4.2 Slack Matching Fanout Tree Improvements 

Slack matching adds buffers on the connections between pipeline stages to 

enhance the performance of the circuit. In reality slack matching creates a small buffer 

tree at the output of a cluster that ensures the alignment of the data at the leaf cells of 

the tree at the desired times. The cost of slack matching is high in many asynchronous 

circuit templates that could account to up to 33% of the total circuit area. Therefore it is 

worth investigating improvements to the existing models and methods, which could be 

used to reduce the area overhead that makes this process so costly. 

Slack matching is done using the Full-Buffer-Channel-Net (FBCN) model as 

presented in [5]. In the FBCN model slack matching is done on channels. Channels are 

point-to-point edges in the graph and are used to describe abstractly a connection 

between two pipeline clusters or nodes in the graph. So if a connection between the two 
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exists, irrespective of how many physical wires it includes a single channel is created. 

The formulation is fairly straight forward: 

( ) Vvvfhsfewaa jislackslackjijijiij ∈∀+∗+++= ,,)( ,,,  

Goal Function is to Minimize ∑ jis ,  

In this equation, ji aa , represent the arrival time at node Vvv ji ∈, . jif ,  is the free 

slack of the channels and is equal to the difference between the TCT and the LCT for 

the particular channel. jis ,  represents the number of slack cells that need to be 

introduced on the channel so that the circuit is slack-matched. 
slack

h  is the forward 

latency of a slack cell, which is a constant that is known at design time and 
slack

f  is the 

free slack of the slack cell, which is also constant and corresponds to the difference 

between the TCT and the LCT if the slack cell is inserted and depending on the 

complexity of the circuit can either be precisely calculated or estimated. This is because 

depending on the design style the LCT of the slack cell could depend on the fanin and/or 

fanout and/or width of the bus that is routed through it, none of which parameters are 

known in advance and they actually depend on the solution of the arrival time problem. 

This model is fairly accurate for simple pipelines and it has been proven to work 

well in most cases. However, this formulation does not account for hardware 

optimizations that could be made and could make this model more accurate. In most 

design styles, it is possible that several channels leave a particular cluster for several 

different destinations. However all these channels could be the same wire actually 

forking to many targets in the netlist. So in this case it is possible to actually share any 

slack buffers that need to be placed for channels from the same source. The original 
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formulation does not explore this possibility and could think that several buffers are 

needed in a location that one buffer could be used for all the channels that run in 

parallel. 

In most cases – assuming that we merge the buffers after slack matching 

anyway – this inaccuracy actually just results in the LP program overestimating the 

number of buffers needed. However, this problem could be further exaggerated in some 

cases if the LP formulation concludes that buffers are better placed in a different 

location. For example if a 2-input cluster has 3 fanout channels due to a wire feeding into 

3 other clusters the original formulation would make the LP solver conclude that it is 

better to place buffers before the cluster than after it, and ultimately use 2 slack buffers 

instead of 1. This is shown in Figure 14. 

A modification was made to the goal function of the LP problem to reflect this 

inaccuracy from the goal function. The formulation of the arrival times remains identical, 

but an additional set of parameters is required to be stored and used for evaluation 

along with some extra constraints that are however linear in terms of the problem size 

(number of nodes). So again: 

( ) Vvvfhsfewaa jislackslackjijijiij ∈∀+∗+++= ,,)( ,,,  

But also we add the extra parameters 
i

z and respective constraints such as 

iji zs ≤,  

Goal Function is to Minimize ∑ iz  
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And since the minimization of the sums of 
i

z  is the goal function it will be true 

that { }
ji

j
iiji szzs ,, max=⇔≤ . With this formulation, the linear program solver will 

attempt to find the best solution assuming that it can use a line of buffers that can be 

shared among all the outgoing channels. This is accurate for cases that slack buffers 

can support arbitrary fanout and the only cases where it is problematic is situations 

where a particular design styles poses a hard limit on the fanout of every gate/node. In 

those cases it might be necessary to have buffer trees rather than buffer lines for slack 

and in that case our formulation is inaccurate and also optimistic. 

(a)

(b)

(c)

 

Figure 14 A case where the original slack-matching formulation yields sub-
optimal placement of slack buffers. The original circuit in (a) 
requires on buffer stage. However the old formulation would decide 
to place the buffers on the input of the gate assuming no sharing (b). 
The new formulation models the sharing and places the buffer after 
the gate (c). 
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4.3 Experiment Setup 

In order to test the improvements that can be accomplished by the sharing of the 

buffers an experiment was setup that focuses on the case of PCHB pipelines. The 

experiment involved slack matching a netlist that was using the PCHB design style. The 

formulation was based on the LP approximation described in [5] with the use of a ceiling 

function. That is the amount of slack per channel is formulated and solved as a real 

number and the result of the LP problem is rounded up to give the actual number of 

buffer stages that will be instantiated. This was done because the MILP formulation that 

is actually accurate, where the slack variables are actually described and solved as 

integer parameters, is too slow and not practical as also observed in [5] and only very 

few extremely small examples could be tested. 

The objective of our tests was to show the benefits of the buffer-sharing concept 

while slack matching and characterize the improvements that can be realized. The 

results are subject to the LP approximation inaccuracy, but have practical value since 

this approximation allows us to test on larger circuits with tens of thousands of gates, 

which are closer to real life examples that this method could be applicable to. There are 

a couple of additional constraints to the PCHB template that was used that slightly affect 

the accuracy of the results. Those include maximum fanout constraints on gates and an 

additional requirement that Primary Inputs (PIs) should only fanout to a single gate. 

When either constraint is violated additional buffers need to be added to yield a 

functional circuit. Our software was designed to yield functional circuits that can be 

simulated in Verilog for correctness, therefore those constraints needed to be enforced 

in order to be able to verify the functionality and performance of the final netlists. 
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4.4 Experimental Results 

For the sake of our experiments we have used 26 examples from the standard 

ISCAS benchmark circuits as well are 3 of our own examples that represent different 

sized mathematical operations (2 Multiply Accumulate Units) and a SISO module (Soft-

In-Soft-Out used in Error Correcting Decoders in Telecommunication Systems). The 

results are summarized in Table 4. 
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  Orig. LP - No Sharing Orig. LP - Sharing New LP - Sharing 

Example Insts 
Buffer 
Area 

Total Area 
Buffer 
Area 

Total 
Area 

Buffer 
Area 

Total 
Area 

 c3540 731 6804.17 27225 5235.15 25474.9 3982.69 24121.5 

 MAC16 1604 11344 48254.1 9893.84 47153.7 8519.73 45508.6 

 MAC32 1092 8584.7 32071.7 6780.67 30150.1 5696.87 29015.2 

 s1196 387 4357.32 14964.5 3472.59 13929.1 3388.26 13763.2 

 s1238 409 4866.05 16109.1 3852.75 14918.9 3693.77 14450.2 

 s13207 1738 14034.1 52840.9 12908.9 51906.4 8720.18 47919.5 

 s1423 443 2134.43 12430.5 1835.83 12138.9 1581.47 11901.1 

 s1488 455 2842.21 14061.8 2021.07 13535.1 1679.62 13275.2 

 s15850 2229 12408.4 64173.8 11310.8 63170.2 8967.63 60804.9 

 s27 9 99.5328 299.981 99.5328 299.981 77.4144 277.862 

 s298 76 597.197 2144.1 503.194 2050.1 470.016 2012.77 

 s344 82 796.262 2641.77 707.789 2589.24 508.723 2322.43 

 s349 80 608.256 2430.26 594.432 2437.17 519.782 2368.05 

 s382 101 829.44 3035.75 707.789 2903.04 663.552 2827.01 

 s386 89 619.315 2683.24 505.958 2528.41 450.662 2470.35 

 s400 102 785.203 3002.57 693.965 2907.19 637.286 2822.86 

 s420 99 1396.22 3533.41 1238.63 3341.26 663.552 2786.92 

 s444 99 763.085 3015.01 713.318 2956.95 677.376 2894.75 

 s510 172 1205.45 5374.77 879.206 5213.03 666.317 5011.2 

 s526 125 873.677 3581.8 821.146 3532.03 837.734 3543.09 

 s5378 960 7633.61 28001.9 6571.93 27002.4 4813.52 25161.1 

 s641 135 2092.95 5059.58 1889.74 4788.63 731.29 3642.62 

 s713 134 2012.77 4954.52 1891.12 4776.19 641.434 3508.53 

 s820 219 1504.05 6947.94 1241.4 6852.56 740.966 6245.68 

 s832 213 1492.99 6672.84 1222.04 6498.66 803.174 6097.77 

 s838 208 2233.96 6903.71 2054.25 6711.55 1194.39 5847.55 

 s9234 632 3859.66 18323.7 3157.4 17592.4 2742.68 17403 

 s953 281 1957.48 9277.29 1515.11 8760.27 1338.16 8555.67 

 SISO 1300 1470.87 28431.8 1426.64 28391.7 1166.75 28126.3 

Table 4 Slack matching results for the sharing and no-sharing versions of the 
algorithm 
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 Area Savings 

Example 

Buffer 
vs. Orig. 
LP - No 

Sh. 

Buffer 
vs. 

Orig. 
LP -  

Sharing 

Total 
vs. 

Orig. 
LP - No 

Sh. 

Total 
vs. 

Orig. 
LP -  

Sharing 

 c3540 41.47% 23.92% 11.40% 5.31% 

 MAC16 24.90% 13.89% 5.69% 3.49% 

 MAC32 33.64% 15.98% 9.53% 3.76% 

 s1196 22.24% 2.43% 8.03% 1.19% 

 s1238 24.09% 4.13% 10.30% 3.14% 

 s13207 37.86% 32.45% 9.31% 7.68% 

 s1423 25.91% 13.86% 4.26% 1.96% 

 s1488 40.90% 16.89% 5.59% 1.92% 

 s15850 27.73% 20.72% 5.25% 3.74% 

 s27 22.22% 22.22% 7.37% 7.37% 

 s298 21.30% 6.59% 6.13% 1.82% 

 s344 36.11% 28.13% 12.09% 10.30% 

 s349 14.55% 12.56% 2.56% 2.84% 

 s382 20.00% 6.25% 6.88% 2.62% 

 s386 27.23% 10.93% 7.93% 2.30% 

 s400 18.84% 8.17% 5.99% 2.90% 

 s420 52.48% 46.43% 21.13% 16.59% 

 s444 11.23% 5.04% 3.99% 2.10% 

 s510 44.72% 24.21% 6.76% 3.87% 

 s526 4.11% -2.02% 1.08% -0.31% 

 s5378 36.94% 26.76% 10.15% 6.82% 

 s641 65.06% 61.30% 28.01% 23.93% 

 s713 68.13% 66.08% 29.19% 26.54% 

 s820 50.74% 40.31% 10.11% 8.86% 

 s832 46.20% 34.28% 8.62% 6.17% 

 s838 46.53% 41.86% 15.30% 12.87% 

 s9234 28.94% 13.13% 5.02% 1.08% 

 s953 31.64% 11.68% 7.78% 2.34% 

 SISO 20.68% 18.22% 1.07% 0.93% 

Average 32.63% 21.60% 9.19% 6.00% 

Table 5 The area savings in terms of slack-matching buffer area and total circuit 
area realized with the new LP formulation and sharing vs. the other 
versions. 

The results show that the proposed sharing algorithm and the new formulation 

achieve significant savings over the previous formulation with no sharing as well as over 

the previous formulation with sharing allowed. There is only one example that the new 

algorithm did worse compared to the original formulation with sharing. In this particular 
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case the new formulation did worse by just one buffer. This can be attributed to the fact 

that in both cases the formulations are approximate, in the sense that the results are 

rounded up to instantiate an integer number of buffers, and in this context an difference 

of one buffer can be considered a reasonable approximation error. 

Overall the sharing of existing buffers seems to achieve average buffer area 

savings of approximately 32.63% vs. the original LP formulation and no sharing and 

21.6% vs. the original LP formulation with sharing. In terms of the total circuit area the 

savings are approximately 9.19% and 6% respectively on average.  

4.5 Other considerations 

The new formulation as well as the sharing of buffers have area benefits that are 

clear from all our experiments. However it is interesting to note a couple of other issues 

that require careful consideration when choosing which variant to use. Firstly, the new 

formulation requires additional variables as many as the nodes in the circuit and 

additional constraints as many as the channels in the circuit, thus making the linear 

formulation more complex. This results in more memory usage and larger runtime. As 

the circuits grow in size the new formulation becomes more and more expensive and 

ultimately impractical. The older formulation can generally tackle larger problems in the 

same amount of time and thus could be preferential for larger netlists. 

Another interesting observation is that the sharing assumes that arrival times of 

shared buffers can satisfy all leaf nodes attached to them. However this is not always 

true and as a result sometimes it results in additional buffers being added on a 

subsequent pass. Without sharing, the arrival times have no such assumptions and thus 
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convergence is achieved usually faster. Both formulations are approximate due to the 

rounding, so addition of buffers in subsequent paths is always possible, but without 

sharing it is more rare. This is important when runtime is critical and an additional path 

might require a very large amount of time that is prohibitive for a given design. 
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Chapter 5 An Asynchronous ASIC Flow 

It is easier to understand the context of this work and the general motivation 

behind it as part of the entire flow. In this chapter we are going to describe a new flow 

that has been developed to enable an ASIC design flow for the asynchronous design 

styles. It will show the commercial tools used and all the customized tools generated and 

how this flow works from end to end. This is will give the reader a perspective as to what 

is the value of our work and what its position is relative to the rest of the flow. 

Our goal is to generate the framework to enable an asynchronous ASIC flow that 

will enable engineers to design circuits using asynchronous design styles with the same 

ease and efficiency as they do for synchronous designs currently. To achieve this we 

have generated a tool flow that resembles the standard synchronous ASIC flow and in 

fact reuses most of the existing parts and standard commercial tools. The designer 

starts with standard HDL input and uses commercial synthesis engines to generate a 

synthesized image of the logic. We have then designed a tool that takes the synthesized 

netlist and applies all the design transformation and optimizations that are unique to 

asynchronous design. After our customized tool is done it generates a netlist back into a 

standard format so that it can be imported into a standard back-end flow. That enables 

us to use standard Place and Route, verification and simulation tools that are well known 

in the industry. 

We have also focused throughout this work on the goal of guaranteeing 

performance. There are three limiting factors for the performance of an asynchronous 

circuit. The first one is algorithmic loops that were addressed through the distance-based 

clustering criteria presented in Section 3.2.2. The second one is unbalanced paths and 
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misaligned data in the pipeline, which is a problem solved through slack matching that 

was discussed extensively in Chapter 4. The third limiting factor is the LCT of a channel, 

which could make a local handshake the critical path of a circuit. This is addressed in 

this chapter in Section 5.2.2, where we describe the Clustering algorithm that is 

implemented as part of this flow. 

5.1 Synthesis 

The first process in the flow is synthesis. This is done in commercial synthesis 

tools to convert the design to a synchronous Verilog netlist. The initial synchronous 

specification is done from a behavioral HDL or RTL HDL, which could be defined in any 

language that is supported by the commercial synthesis tools. A second input to the tool 

is the library information. The library information is really an “image” library that abstracts 

the asynchronous gate details for the synthesis tool (such as whether they are dual-rail 

or single-rail, their handshaking ports and protocols, etc.), but includes all the information 

that is useful for it to do a proper design (such as timing, power, area, etc.). 

The benefit of this flow instead of trying to generate a new tool is that we can 

leverage off tools that have been refined through years of research to perform good 

optimizations, and include predefined and optimized design components such as adders 

and multipliers that can be used in the data path. So by placing appropriate constraints 

one could use ripple-carry or carry look-ahead adders to trade between latency and 

area. Other tasks, such as buffer insertion and gate resizing could be performed as well, 

by changing the input constraints for the design. In most cases relaxed constraints are 

enough, since they yield the simplest data path, but if one wanted to shorten the data 
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path due to a large algorithmic cycle time in the final design, modified constraints could 

be used to force the compiler to generate a different netlist. 

Figure 15 Overview of our ASIC flow. 

5.2 The Clustering Program 

Most asynchronous design styles allow for multiple gates to be placed within the 

same pipeline stage. Generally that is done to reduce the area overhead associated with 

the control logic that is used for handshaking between every pipeline stage and its 

neighbors. The control logic is large and the more efficiently it gets shared among many 

gates the smaller the penalty that one has to pay for the asynchronous design style 

conversion. Depending on the design style the number of gates per pipeline cluster 
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varies widely, but it is believed that the same principles apply in all cases. Also most 

asynchronous design styles share other design rules, such as limits on fanin/fanouts per 

pipeline cluster and others. Finally all asynchronous circuits have to obey similar rules 

about Local Cycle Time, Target Cycle Time and Algorithmic Cycle Time as discussed in 

Section 2.7.1. And all of these parameters depend on the size and interconnect of the 

different clusters in the final netlist. So the goal is to minimize the area of the final netlist 

by grouping gates together as well as possible, but at the same time obeying all the 

design constraints that are specific to a particular design style and also maintain the 

functionality and the performance requirements that the designer specified when 

defining the HDL description of the circuit. 

5.2.1 Circuit Representation 

Immediately after the original Verilog input file for the circuit is read, the netlist is 

converted to a generic directed graph structure, with the instances and primary IO 

converted into nodes and the wire interconnect represented by edges. The original 

Verilog input file is converted into a generic graph structure that can be manipulate more 

efficiently during the different optimization operations that are run during processing. 

Initially the tool reads the entire netlist (flat netlist with no hierarchy) and creates a single 

pipeline stage out of every gate in the original netlist. The goal of this is to give the tool 

the most flexibility in terms of clustering, and also start with very simple pipeline clusters 

that should generally meet any give performance targets more easily. 

5.2.2 Clustering 

Having formed the fundamental one-gate clusters the next step is to try and 

group them in larger groups without violating the performance requirements of the 

design and at the same time preserve the original functionality intended by the user. Our 
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present algorithm does not try to find an optimal clustering solution. Instead it uses a 

heuristic optimization based on area and performance criteria that implements a 

steepest-descent-type of algorithm. The main focus of our work so far has been on 

correctness of the emitted circuit as well as preservation of the performance 

requirements. The runtime of the heuristic approach is also a big advantage since it 

allows us to test larger circuits. 

The clustering is done by merging two clusters into one (we refer to this as a 

local move) and executing one such move at a time. During each iteration the software 

looks at all possible moves that are available and executes the one that has the largest 

performance benefit. It also estimates the area gains from the potential merging, and 

uses the area benefits to break ties in the case that many moves have the same 

performance improvements. The area metric is an area estimate of the control logic that 

can be removed by executing the particular move. The performance metric is an error 

metric associated with the Target Cycle Time of the circuit and the Local Cycle Time of 

the individual channels. For each channel an error metric is calculated that is equal to 

the amount that the LCT violates the GCT. For each move the performance metric is the 

difference between the sum of errors for all channels before the move and after the 

move. The largest the metric the more LCT improvements the move will achieve.  

After each move the algorithm discards all moves that are no longer feasible and 

generates new ones from the region of the circuit that was affected and then repeats the 

process. This avoids costly recalculation of all move data at each step.  The algorithm 

does not select any move that would make the metric worse and thus in practice avoids 

making LCT worse than the GCT and affecting the performance of the circuit, thus 

addressing the last and final parameter that could affect performance. 
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The moves are also checked for other local rules that are associated with 

particular design restrictions for the design style that is being targeted and are not 

related to either performance or correctness. For example TOKEN_BUFFER cells are 

cells that for all templates are initialized during reset with particular data values, unlike 

regular cells that do not hold data after reset. Those can only be placed in pipeline 

stages that host similar types of cells. When the clustering algorithm cannot find any 

candidate local moves to execute it stops. The algorithm is summarized in Figure 16. 

 

Figure 16 The clustering algorithm that ensures that LCT does not grow. 
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5.2.3 Fanout Fixes 

The circuit is generated using synchronous tools and design libraries. There are 

certain restrictions in some of the different design styles in terms of the number of fanout 

gates that each gate will drive. Sometimes this is due to the particular protocol – for 

example single-track 1-of-N channels (such as those in SSTFB) only support point-to-

point connections – or due to performance restrictions (fanout load of the gate or depth 

of C-element trees required for merging ACK signals). When the given netlist does not 

obey these restrictions the program has to intervene and correct these faults by 

instantiating fanout trees for problematic signals using buffer cells, in a process that 

bears a large amount of resemblance to the buffering and fanout optimization process of 

the synchronous netlists, only with different criteria and decision metrics. This step is 

executed if necessary before moving on to create a final netlist. 

5.2.4 Final Optimizations 

After clustering is done the software also performs slack matching on the netlist. 

The concept of slack-matching is analyzed in detail in [5], and the tool uses a similar 

formulation as described there to achieve the performance requested by the user. Some 

modifications have been made to improve the results based on some practical 

observations, which will be analyzed later in Chapter 4.  

Other local optimizations are done in the netlist during this final stage to ensure 

the best quality of results. Gate replication is used to reduce the levels of logic in certain 

cases and buffers are inserted in some cases if it is deemed that the operation might 

help performance. In general these are minor implementation details that help a practical 

design, but are probably outside the scope of this work and will not be analyzed as part 

of this document. 
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5.2.5 Library Conversion 

The next step is to generate a new netlist that instantiates the actual gates that 

will be used for implementation from the selected asynchronous implementation design. 

The program also needs to generate and instantiate all the additional control logic that is 

necessary for the handshaking between the pipeline stages that were defined during 

clustering and slack matching. 

For the design styles that have been imported in the tool so far the final gates 

that will be used are dual rail gates, even though for other design styles that is not the 

case. All the nets in the original netlist are in this case converted into pairs of nets each 

representing the true and false rails of the original single rail signal. The gates are also 

converted to their dual rail counterparts and the wires are interconnected appropriately. 

With a dual rail library inversions of inputs and outputs could be handled by swapping 

the two wires attached to a gate. During this step all gates are converted to their non-

inverting counterparts, and the inversion of inputs and outputs takes place by inverting 

the dual-rail wires. Even though the single rail library uses image gates that include all 

permutations of possible inversions of inputs and outputs, the final library includes only 

the non-inverted versions, reducing the amount of library cells that are required for a 

complete library implementation. Special signals such as power, ground and a global 

asynchronous reset are also generated. When all the gates have been converted the 

completion detection trees are formed and the controllers for the pipeline stages are 

instantiated. The merge and fork cells for the primary inputs and outputs are also 

instantiated, and the handshaking signals for the left and right environment are added to 

the top level module. 
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5.2.6 Verification 

The software package finally creates additional information that is required for 

verification of the resulting design. A header file is written that contains some important 

parameters for the design, such as the number of inputs, outputs and vectors that are 

going to be used. Another file that contains a random number generator is also copied to 

the design directory. Then the software will generate a testbench for the synchronous 

netlist as well as a testbench for the asynchronous one. A script is also written out that 

includes the commands needed for running the tests. 

The script file commands will first call the random generator module and 

generate an input file for both simulations that uses random data at all inputs. After this 

the synchronous netlist is run given the input vectors and the output vectors are 

recorded at every cycle and sent to a file. The script then executed the command to 

simulate the asynchronous netlist with the same input file. The results of this run are 

compared against the results of the synchronous netlist and if they match the testbench 

will indicate that the test completed successfully. Otherwise it will indicate a failure. At 

the same time the testbench samples the design outputs and average the number of 

tokens received over time to calculate the global cycle time in the design. 

5.3 Simulation and Back-End Design 

The default simulation that our program performs is done in NC-Sim to verify that 

the translation was successful. However since the netlist is in regular Verilog format, 

further simulation in any commercial simulator is possible. The Verilog Netlist can also 

be used as is by commercial back-end tools to perform place and route and verify the 

performance of the circuit. Back-annotation could also be used for post-layout 
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simulations if desired. However, the flow currently does not support ECO flows and post-

layout optimizations. Therefore if the netlist is not yielding the desired results and 

changes are necessary, the design might have to be processed again from the 

beginning. Alternatively hand-editing might be able to alleviate the problem if it is easy to 

identify and fix. Post-layout analysis and ECO-type fixes to the netlist is an interesting 

and potentially necessary future step. 

The flow has been proven in practice to work and we have taken several 

example designs through, including place & route to produce GDSII. The netlists started 

from RTL-level code (Verilog) and taken through synthesis, our clustering and slack-

matching tool and then Place and Route through Cadence’s Encounter tool suite. The 

results are encouraging showing functional netlists that can successfully place and route 

and produce functional circuits that would be ready for fabrication. Obviously more is 

necessary for this flow to reach the levels of sophistication that synchronous flows have 

reached, but it is a proof of concept that an automated ASIC flow for performance-aware 

asynchronous design is possible. 
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Figure 17 A caption of a finalized placed and routed design after a successful 
pass through our asynchronous ASIC flow. 
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Chapter 6 Summary 

6.1 Advancements 

Asynchronous circuit design has been proposed many times, but has only been 

adopted in very few isolated cases by the design community. The main reason for this, 

in our view, is the lack of an automated set of tools that would allow a designer to 

generate a circuit quickly from a behavioral Hardware Description Language (HDL), just 

like the ASIC flow that has existed for years for synchronous circuits. As part of this 

effort we created an automated flow that can automatically generate asynchronous 

circuits from any HDL using a mixture of custom and existing industry tools. 

Due to the fact that asynchronous circuits require a handshaking controller for 

every pipeline stage, which is used to interface to adjacent pipeline stages, the logic 

overhead of such circuits is large. By grouping the circuits appropriately one can reduce 

this overhead and yield circuits that have competitive or even superior characteristics 

that their synchronous counterparts. Without this grouping asynchronous circuits are 

most likely going to be far less efficient in terms of throughput per area, even though 

they might have a substantial absolute performance advantage over their synchronous 

equivalents.  

It is also important to note that asynchronous circuits are data driven in nature. 

This allows clustering to redefine the pipeline stages irrespective of the pipeline stages 

defined at the RTL without altering the behavior of the circuit. Thus clustering allows 

automatic re-pipelining based on performance-driven criteria that can create a circuit that 

meets the desired performance without changes to the RTL. This makes the design 
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easier and saves designers time and effort that would otherwise be required in adjusting 

their pipeline stages to meet the required performance. 

As we were investigating the tradeoffs early on we discovered that arbitrary 

clustering with only local constraints had a very high likelihood of yielding non-functional 

circuits that would deadlock, and very frequently circuits that had performance that was 

far worse than that of the initial circuit or the desired performance target. Consequently 

this work was focused on guaranteeing that these two important criteria were maintained 

by exploring the proper design criteria that would ensure functionality and performance 

maintenance.  

In Chapter 3 we proposed and proved several different criteria that allow us to 

ensure that the functionality of a circuit is retained through clustering as well as other 

additional ones that ensure that both algorithmic cycle time and end-to-end latency do 

not deteriorate. This along with the directed graph model that is proposed is the most 

important contribution of this thesis and it is an enabling factor for automated pipelining 

of asynchronous circuits. Using the theory of Chapter 3 we can ensure that the circuits 

will always work and meet performance goals desired by the designer.  

Additionally, our algorithm relies heavily on maintaining a a record of all 

distances from all the nodes to all the nodes of a graph. We have used the Floyd-

Warshall algorithm for deriving the initial distances, but as we modified the graph it was 

quickly obvious that the algorithm was too complex ( ( )3
VΘ ) to be executed multiple 

times for updating the distances after every change in clustering. Thus we proposed 

different practical update algorithms that require far less computation and can be used in 

practice. One of them was proven to have ( )2
VΟ  for circuits with limited fanout. This is 



 95 

an update algorithm that could be useful to a variety of applications that require the 

maintenance of such an all-pair wise distance array. 

Finally Chapter 4 focuses on implementation improvements to the slack matching 

formulation that was earlier proposed in [5]. The improvements are based on a different 

formulation for the Linear Program that can be used to solve the Slack Matching problem 

for a circuit. Even though both methods discussed are approximations of the optimal 

solution and the model proposed is only a small improvement over the original one the 

section offers an approach that has practical value. The method discussed along with 

the new model for sharing slack matching buffers between channels results in overall 

saving of 13% in terms of total buffering area and approximately 3% in overall circuit 

area. 

6.2 Applications  

In this thesis we have created a modeling framework that allows a designer to 

perform this clustering of the logic gates into pipeline stages by modeling the logic onto 

an implementation-agnostic graph. This allows us to cluster any arbitrary circuit from its 

gate-level logic representation into pipeline stages of an asynchronous circuit of any 

desired design style. Depending on the implementation style the clustering constraints 

have to be modified to yield a functional circuit that abides by all design rules for the 

particular style. Area models might also vary quite a bit. But the basic principles of our 

proposed flow are applicable to all of them.  

With the right formulation of the local constraints and appropriate performance 

and area models for a particular design style one can use this work to design any type of 
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asynchronous pipeline that one desires starting from a gate-level representation of the 

desired circuit. That means that one could start from any regular HDL representation of a 

circuit and use a conventional synthesis engine to convert it to gates. Then using this 

model one could use it to create a pipelined circuit for any design style of their choice. It 

is believed that this method, since it maintain the functionality and performance of the 

original circuit, while optimizing its area by clustering, could be used as part of a much 

broader ASIC flow that would be applicable to all types of asynchronous circuits. 

6.3 Open Issues 

The focus of this thesis was on maintaining correctness and performance 

throughout our processing. For all our experiments we used a greedy method for 

selecting our clustering moves one at a time. This is essentially a steepest-descent 

method that is most likely far from optimal. Clustering is a hard problem and several 

heuristic methods have been proposed to address it in different contexts. It is believed 

that many such methods are also applicable here and it remains an open issue to find 

practical and good methods for this particular application. Optimization techniques from 

dynamic programming, simulated annealing, and other optimization techniques are all 

thought to be applicable for this problem. It is our belief that there deserves to be follow-

up work that builds on this framework and will focus now on improving the area results 

for such circuits, by attempting to find suitable area models and optimization techniques 

that solve this problem in a good and practical fashion. 
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6.4 Conclusions 

This thesis proposed a method for modeling an arbitrary gate-level circuit using a 

graph model and methods that allow us to perform area-reducing transformations to it, 

which are modeled as clustering operations on the graph. The goal is to provide a 

theoretical foundation for a method that could lead to a fully automated flow for 

designing asynchronous circuits from an arbitrary gate-level representation that is 

implementation-agnostic. The long term goal is to provide a framework for further 

optimizations that could be done to generate asynchronous circuits in an ASIC-like flow 

that can ultimately compete in performance, area and ease of design with their 

synchronous counterparts, thus enabling designers to take advantage of asynchronous 

design techniques in commercial applications. It is our belief that this work is a 

significant step along a path that can ultimately lead to significant wider adoption of 

asynchronous design technology. 
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