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Abstract

This paper addresses the problem of identifying the minimal
pipelining needed in an asynchronous circuit (e.g., number/size
of pipeline stages/latches required) to satisfy a given performance
constraint, thereby implicitly minimizing area and power for a
given performance. In contrast to the somewhat analogous prob-
lem of retiming in the synchronous domain, we first show that the
basic pipeline optimization problem for asynchronous circuits is
NP-complete. This paper then presents an efficient branch and
bound algorithm that can find the optimal pipeline configuration for
moderately-sized problems. Our experimental results on a few scal-
able system models demonstrate that our novel branch and bound
solver can find the optimal pipeline configuration for models that
have up to 235 possible pipeline configurations.

1 Introduction

Most designs use a global clock to synchronize data flow. Re-
cently, however, asynchronous designs, have demonstrated poten-
tial benefits in low power, high average performance, composabil-
ity, and improved noise immunity and electromagnetic compata-
bility. Many tools and techniques have been developed to address
hazard-freedom and area minimization. Estimation and optimiza-
tion of their performance, however, remains somewhat of a stum-
bling block. The basic problem is that the complex interaction of
various handshaking protocols makes direct optimization for perfor-
mance very difficult.

There are two basic approaches to performance optimization of
asynchronous circuits. The first approach involves using perfor-
mance analysis techniques to guide manual or semi-automated de-
sign changes(e.g., [16]). The alternative approachis to develop syn-
thesis techniques that directly optimize for performance. Successful
efforts in this area have addressed transistor sizing [5], technology
mapping [6], and allocation and scheduling (e.g., [3, 2, 1]) in high-
level synthesis.

This paper formalizes a new performance optimization area for
asynchronous circuits called pipeline optimization. In particular,
previous research is either at a much lower level than pipelining
(e.g., logic synthesis) or assumes that the pipelining is fixed (e.g.,
in high-level synthesis). More specifically, to the best of our knowl-
edge, no automated tool exists to indicate the degree of pipelining
(e.g., number of pipeline stages) needed to achieve a given perfor-
mance. In other words, while it is well-known that good pipelin-
ing design styles in asynchronous circuits are critical to reduce the
asynchronous control circuit overhead (e.g., [17, 16]), it is more dif-
ficult to determine the best means of breaking up a large combina-
tional block into pipeline stages to achieve a given performance. In
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fact, recent experiences suggest this optimization problem is getting
more difficult. Namely, Caltech researchers et al. propose partition-
ing asynchronous data-paths into bit-slices and pipelining between
bit-slices to achieve higher throughput [12, 7]. When combined
with standard pipelining between functional component boundaries,
this creates a complex 2-dimensional pipeline. As a general rule
in asynchronous design, the number of pipeline stages increases
the power and area of the design due to extra completion sensing
and control logic. Thus, one reasonable objective for pipeline op-
timization is to identify the minimal pipelining needed to satisfy a
given performance constraint, thereby implicitly minimizing area
and power for a given performance.

It may be worth pointing out similarities with a somewhat anal-
ogous problem of retiming [14] in the domain of synchronous cir-
cuits. In particular, like our problem, one basic version of retim-
ing is to achieve a desired cycle time with the fewest number of
latches. In addition, like retiming, we do not significantly change
the structure of the circuit. That is, we currently do not consider re-
synthesizing the circuit jointly with pipeline optimization. The key
difference between the two problems, however, is that in the syn-
chronous domain an initial assignment of latches must be given and
the number of latches along any cycle must not be changed. In con-
trast, for our problem, the initial latch assignment is not necessary
and the correctness requirements on the number of latches along a
cycle are different.

This paper first proposes an abstract model of the circuit on
which the basic pipeline optimization problem can be defined. This
abstract model is sufficient to characterize a variety of pipelining
schemes, including those from Williams and Caltech [17, 12]. How-
ever, it is currently restricted to deterministic pipelines (no-choice)
and only considers fixed delays. Given that the basic synchronous
retiming problem can be optimally solved in polynomial time [11],
we first explored the complexity of our optimization problem. One
contribution of this paper is a proof that the defined asynchronous
pipeline optimization problem is NP-complete. In addition, we
present an efficient branch and bound algorithm which demonstrates
the feasibility of the optimization problem for moderately-sized
models. Our experimental results on a few scalable models of asyn-
chronous systems that our branch and bound solver can successfully
find the optimal solution among over 233 pipeline configuration.

The organization of the remainder of this paperis as follows. Sec-
tion 2 presents pipeline analysis background and Section 3 describes
the model on which we formulate the optimization problem. Sec-
tion 4 then proves NP-completeness of our problem while Section
5 describes an relatively efficient exact solution based on a branch
and bound approach. Sections 6 and 7 present experimental results,
conclusions, and potential directions for future work.
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Figure 1: Marked graph models of asynchronous pipelines.

2 Background: Asynchronous Pipelines

Previous work related to performance of asynchronous pipelines
have focused on assuming a given structure of an asynchronous
pipeline and analyzing its performance. For example, a determin-
istic pipeline is generally partitioned into a set of stages each con-
trolled by a different control signal. The # stage is associated with a
function evaluation delay T(Ff), a function resetdelay 1(F), a com-
pletion sensing delay for evaluation v(Df), a completion sensing de-
lay for reset ©(DY), a control overhead delay for evaluation ©(CY),
and a control overheaddelay for resett(C}). Marked graphs are typ-
ically used to analyze the interaction of neighboring stages in terms
of the above quantities [17, 10, 18, 13].] In particular, each cycle in
the graph has a cycle metric that is the sum of the delays of all as-
sociated transitions divided by the number of tokens that can reside
in the cycle. The cycle time of a deterministic pipeline is defined as
the largest cycle metric in its marked graph representation {5, 13].

The largest cycle metric in the marked graph either arises from
pipelining constraints or from algorithmic loop dependences. For
example, in asynchronous pipeline rings which implement itera-
tive algorithms, e.g., Williams’ asynchronousdivider [17], the cycle
time may be dictated by how long it takes for a data or bubble (i.e.,
a single token) to travel around the ring.

We first consider the marked graph illustrated in Figure 1(a).2
This marked graph abstractly models pipelines using both Williams
style PCO and PSO scheme [17] as well as some of Caltech’s
precharge-logic pipelining schemes [12]. For this marked graph,
there exists three one-token cycles, containing only one-token, for
every sequence of three pipeline stages as follows:

max (T(F) +°(F
) +1(Fyy

)+ UW(Fia) + o(F),
)+ U(Fla) +T(Fiy)s

Due to space limitations, we refer the interested reader to [13] for a
formal introduction to marked graphs and their application to performance
analysis.

2Note that the places in the marked graphs are omitted for brevity.
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As an example, the intuition behind the first of the three cycles is as
follows. After stage i evaluates, stage i+ 1 can evaluate, followed
by stage i+ 2. Once stage i + 2 evaluates, the results from stage
i+ 1 are no longer needed and it can precharge. Once stage i + 1
pre-charges, stage i can re-evaluate, completing the cycle. The cy-
cle time is lower bounded by the maximum of the above quantity
for each three-pipeline-stage sequence. More specifically, the cycle
time is the maximum of this lower bound and the cycle metrics as-
sociated with all loop dependencies.

Note that the marked graph in Figure 1(a) is general but ig-
nores the control and completion sensing overheads. In contrast, the
marked graph in Figure 1(b) illustrates a more detailed model of a
specific pipeline style, namely Williams’ PSO pipeline scheme. For
this marked graph, a sequence of three stages yields the following
three one-token cycles:

max (W(FF) + €(Fy1) + (Fa) + o(Dfy) +(Fy 1) + (D),
W)+ W(F) +T(Fy2) + oD ) +5(Fy ) +7(D5 ),
TWF) +U(FEr) + WUDf) +7(F)) + U(Fy) +7(D) )

For general PSO pipelines that contain forks and joins the above
equations must be modified to include control circuit overhead.

The optimization techniques developed in this paper focus on
the general class of pipelines in which each sequence of 3 stages
contributes some number of one-token cycles which covers most
pipeline strategies of current interest. We assert, however, that ex-
tensions to pipeline strategies in which fewer than 3 or more than 3
stages yield one-token cycles are straight-forward.

3 Pipeline Optimization Model

The abstract circuit models used for analyzing pipelines assume a
fixed pipeline structure and thus cannot be directly used as a model
to optimize the pipeline structure itself. More specifically, a pipeline
optimization model must characterize the set of possible pipeline
structures. This section describes our proposed model.

Our pipeline optimization model is a labeled directed graph
(S,U,M,F,L), with nodes S, edges U C s2, binary labels on edges
M : U — B, and two sets of binary labels on nodes F : § —+ B and
L: S — B. The edges U represent unpartitionable combinational
blocks called unirs. The unit u;, has a function evaluation delay
T(ff), a function reset delay 1(/7), a completion sensing delay for
function evaluation t(df), a completion sensing delay for function
reset 7(d]), a control overhead delay for function evaluation 7(c¢),
and a control overhead delay for function reset 7(cj).

The nodes S represent candidate boundaries between pipeline
stages called slots. The labels F denote slots which have pre-
assigned abstract latches that delineates pipeline stage boundaries.

The labels L denote which slots are 7o be assigned abstract
latches. Note that the presence of the latch changes the implied con-
trol structure of the circuit but does not necessarily represent a phys-
ical logic entity. In particular, note that many of the Williams style
pipeline [17] need not have explicit latches. In particular, the set of
combinational logic blocks in between two slots that are assigned
abstract latches is one stage. An example of asynchronous linear
pipeline is in Figure 2. Note that introducing more than one slot in
between stages (by adding a fictitious functional units with zero de-
lay) facilitates the introduction of explicit latches to further increase
throughput (such as in PC1 and PS1 [17]).

The labels M denote the edges u; for which independent data
can initially reside. We require that every loop in the pipeline opti-
mization model contain at least one edge that is labeled with a data.
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Figure 2: Our optimization model of an asynchronous linear
pipeline.

However, loops may have multiple such labeled edges, reflecting
the algorithmic intention to have multiple independent data flow-
ing simultaneously through the circuit. Thus, more generally, we re-
quire that every loop in the pipeline optimization model be assigned
enough abstract latches to support the number of edges u; labeled
with independent data. For example, for both Williams’ PSO and
PCO schemes, the minimum number of abstract latches to support d
independentdata is 2d + 1 [17, 16]. Also, we must consider termi-
nal slots that have either no incoming or no outgoing edges. To en-
sure the cycle time can be computed, we require that terminal slots
be pre-assigned abstract latches. Otherwise it is unclear how to ac-
count for the delay of units attached to terminal slots when comput-
ing the cycle time. These two conditions together ensure the cycle
time is well-defined.

The function evaluation delay of stage; is defined as ©(F;) =
Yujestage; T(fj)- The reset delay of stage; is defined as ©(R;) =
Maxyestage,1(r;) based on the assumption that all units within a
stage resets (e.g., precharges) simultaneously. The completion sens-
ing delays of stage; is set to the last unit’s completion sensing delay
for both function evaluation and reset. The intuition here is that the
completion sensing units for the other units are not needed and can
be discarded. Similarly, the control overhead delays of stage; (for
both function evaluation and reset) is defined as the first unit’s con-
trol overhead delays.

The output of the optimization problem is a subset of slots to be
assigned abstract latches and is referred to as an abstract latch as-
signment. Thus, the min-abstract-latch pipeline optimization prob-
lem is to find a minimum cardinality abstract latch assignment that
yields a cycle time that is well-defined and less than or equal to a
given constraint §.

Example To make this model more concrete, consider the pipeline
optimization model for a Huffman decoder [4] depicted in Figure 3
using the PSO pipeline scheme. The model decomposes the Huff-
man circuit into 11 units separated by 9 slots and includes the esti-
mated delays for each unit. There are three loops in this optimiza-
tion model, each representing an algorithmic loop dependency. The
maximum sum of the unit evaluation delays (reset evaluation de-
lays) along any such loop represents a lower bound on the cycle
time. In this case, the cvaluatlon delays of the top loop dominates,
yielding a lower bound of 46.3 n

4 Complexity Analysis

Given that the basic synchronous retiming problem can be opti-
mally solved in polynomial time [11], it seems prudent to deter-
mine the complexity of our problem before exploring efficient al-
gorithms. This section proves that our problem is NP-complete
for the simplified pipelining performance model depicted in Fig-
ure 1(a). This graph is equivalent to the more complicated marked

3Thus, our optimization problem is to find a minimum abstract latch as-
signment that yields a cycle time of no larger than 46.
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Figure 3: An asynchronous Huffman decoder model and its detailed
delay information.

graph in Figure1(b) for the special case of T( f]) = 1(f") = 1(df) =
©(d]) = 1(cf) = t(cf) = 0, for all i units. Lastly, we assume that
the given cycle time constraint § is larger than cycle metrics associ-
ated with loop dependencies, which for this simplified dependency
graph model, is independent of the degree of pipelining. The proof
of NP-completeness for a variety of more complex marked graphs,
including the graph depicted in Figure 1(b), then follows directly
by restriction [8]. The intuition behind these results is that, in gen-
eral, the number of potentially-optimal pipeline configurations in an
asynchronouscircuit is much larger than considered by synchronous
retiming for a similar-sized problem.

We define the Asynchronous Pipeline Decision (APD) problem
as the task of determining whether there exists a pipelining strategy
using K or less abstract latches for which the pipeline cycle time is
well-defined and less than or equal to 8. We prove this problem is
NP-complete by reduction to 3SAT problem in two steps.

First, let Z be a set of variables z; and X be a collection of sum-
of-product clauses over positive and negative literals of Z such that
each clause x; € X has |x;| = 3 [8]. The 3-Satisfiability (3SAT) prob-
lem is a well known problem whose task is determine whether there
exists a satisfying truth assignment for X. The complexity of the
3SAT problem has been well established:

Theorem 1 Complexity of 3-Satisfiability (3SAT) /8]
3SAT problem is NP-complete.

Consider a simplified pipeline optimization model G = (S,U),
where S is a set of slots, U is a set of units, and no cycle consists
of less than three slots. We define a 3UIL assignment as the task
of determining whether there exist a set of slots §' C § with cardi-
nality less than or equal to K, for which every terminal slot is in §’
and every three consecutive unit sequence should span at least one
slotin §'. The first step of our proof involves showing that the 3U1L
problem is NP-complete.

To do this, we follow the same reduction strategy to 3SAT from
the vertex cover problem [8]. We observed that ensuring every three
unit sequence is spanned by at least one slot in §' is equivalent to
ensuring that every middle unit is touched by at least one slot in §'.
Mapping units to edges and slots to vertices, this is equivalent to en-
suring that all middle edges must be covered by selected vertices,
which is the key point behind the following proof.



Lemma 1 Complexity of 3U1L Assignment (3U1L)
The 3UIL problem is NP-complete.

Proof (Sketch) First, the 3U1L problem is in NP because a modified
depth-first-search algorithm can verify that every that every termi-
nal slot is in §', every three unit sequence contains a slot in §', and
that ' is the appropriate size in polynomial time. To prove 3U1L
is NP-hard, we show that our problem can be reduced to the 3SAT
problem which is known to be NP-complete.

We first construct a graph G'= (§,U) and a positive integer
K < |S] such that G has a 3U1L assignment with X or less latch
assignment if and only if X is satisfiable. The graph consists of
three different subgraphs. First, for each variable z; € Z, we cre-
ate a truth-setting subgraph T; = (S;,U;) with S; = {;,z;,2;,7;} and
U; = {{thu}, {25}, {2, i}}. For each clause x; € X, there is a
satisfaction-testing subgraph A ; = (81, U), consisting of three slots
and three units joining them to form a cycle with three slots.

S ={ar[jl, a2, a3}
U = {{al aslil} {aal il as [0} {aslil ar [}

The third and last subgraph consists of only communication units
and is the only subgraph that depends on which literals occur in the
clauses of the 3SAT problem. For each clause x; € X, let the three
literals inx; be denotedby p;, g; and r;. Then, let the communication
units of A; be given by

Ui = {pjralil}:{gj,alil}: {rjas[i1}}

The construction of our instance of 3U1L is composed by setting
K = 3|Z| 4+ 2|X| and G = (8,U) where § is an union of all §; and
S;- and U is an union of U, UJ’. and U’ J’-’ . Note, that this construction
clearly has polynomial time complexity.

Now, we show that the original 3SAT problem is satisfiable if and
only if the constructed 3U1L problem is satisfiable. First, suppose
that §' C § is a valid solution of 3U1L for G with |[§'| < K. §' must
contain at least three slot from each 7; and at least two slots from
each A;. Since K = 3|Z]| + 2|X|, however, we can further conclude
that §' must contain exactly three slots from each T;, two of which
are terminal slots, and exactly tiwo slots from each A;. Note that the
third (non-terminal) slot chosen in each 7; defines which variable, z;
or 7, is set to one in the solution to the 3SAT problem. To see how
this truth assignment satisfies each of the clauses x; € X, consider
the three units in U}’. Exactly one of these three units must not be

attached to a slot in §' N A j because only two of the three slots in A
can be in §'. This slot thus must be connected to a slot z; (Z;) that
is in 8’ which implies that the clause x; is satisfied. For the other
direction, suppose a truth assignment satisfies X. The corresponding
3U1L solution §’ contains three slots from each T;, two of which are
the terminal slots and one defined by the truth assignment, and two
slots from each A}, corresponding to the slots not connected to the
third (non-terminal) slot of 7;. This set of selected slots ensures that

every three consecutive unit sequence has at least one selected slot.
n

Figure 4 shows an example of the proposed constructed graph
for the 3SAT problem Z = {zy,23,23,24} and X = {{z1,73,44},
{Zi,22,24}}. For example, the 3U1L solution &' = {zy,25,73,22,
ap[1),a3(1],a1[2],a3[2]} identifies the satisfying solution to the
3SAT problem z; = 1,z = 1,23 =0,and 24, = 0.

The second step of the proof requires the following useful defini-
tions. We define a sequence of units to be decomposedinto k stages
by a slot assignment if the units are part of k distinct stages (as de-
fined by the slot assignment). We say a sequence of units is a violat-
ing unit sequence (VUS) if the sequence must be decomposed into
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Figure 4: A 3U1L instance resulting from a 3SAT instance.

at least 4 stages in order to satisfy the cycle time constraint, §, i.e.,
there doesn’texist any slot assignment that yields a well-defined cy-
cle time less than or equal to § that decomposes the sequence of units
into 3 or fewer stages. We say a sequence of slots is a violating slot
sequence (VSS) if it is spanned by a VUS, i.e., their exists a VUS
that connects the sequence of slots.

Theorem 2 The pipeline cycle time is less than or equal 10 8 if and
only if every VUS spans parts of at least 4 stages, i.e., contains units
in 4 distinct stages. In other words, the corresponding VSS must
contain at least 3 abstract latches.

Proof (Sketch) <=: We first prove that if every VUS spans at least
4 stages, the cycle time constraint 8 is satisfied. To prove this, we
prove the equivalent statement that if the cycle time constraint & is
not satisfied, there must exist a VUS which constitutes at most 3
stages. To see this, note that to violate 8, there must exist at least
three consecutive stages whose cycle time is larger than 8. The se-
quence of units that correspond to this sequence of stages is a VUS,
thereby completing this part of the proof.

=»: If cycle time constraint § is satisfied, every VUS constitutes
parts of atleast 4 stages. We prove the above statement by contradic-
tion. Assume that that cycle time constraints & is satisfied but that
there exists a VUS with three or less stages. By the definition of
pipeline cycle time, this VUS however implies that § is violated, a
contradiction. |

Finally, we prove NP-completeness of APD problem by restrict-
ing the APD problem such that ©( ff) = 0.2 and 8 = 0.99 and show-
ing a reduction to the 3U1L problem.

Theorem 3 The APD problem is NP-complete.

Proof (Sketch) We first show that APD problem € NP. To verify
that a given solution 7 to the APD problem is valid, we must ver-
ify that it has less than or equal to X slots and that it yields a circuit
whose cycle time satisfies the given cycle time constraint 8. The first
partinvolves counting the number of slots in T and the second part of
the problem involves finding the longest sequence of three stage de-
lays which can be solved using a trivially modified version of depth
first search. Thus, both of these steps take polynomial time.

Next, to prove the APD problem is NP-hard, we provide a
polynomial-time algorithm that maps any instance of the 3UIL
problem to an instance of the APD problem. First, we construct an
APD problem instance G’ from an instance of 3U1L problem. Every
unit #; in G is divided into two unit #; ; and u; 2 in G'. Moreover, for
each new slot created, we create two additional slots and add units
in between the three slots to make a directed ring of size 3. Thus, G’
consists of 5|U| units and |S| + 3]U| slots. The transformation from
G to G' can be done easily in polynomial time.



Figure 5: An example of mapping a 3U1L problem instance to an
APD problem instance.

Next, we prove that there exists a subset of slots with cardinality
less than or equal to X latches that satisfies any instance of the 3U1L
problem if and only if there exists a latch assignment using K’ =
K+3|U| that satisfies the constructed instance of the APD problem.

Lets consider both directions of the if and only if condition. First,
suppose there exists a latch assignment with K latches that satis-
fies the 3U1L problem. We observe that a property of our construc-
tion is that every five unit sequence in G’ has a corresponding 3 unit
sequence in G. In particular, every five unit sequence in the con-
structed graph G’ consists of two newly added slots and two slots
that were consecutive in G, one of which must be in the solution
to the 3UIL problem. Consider the slot assignment in which, in
addition to the selected latches in the 3U1L solution, every newly
added slot is assigned a latch. First, notice that this assignment re-
quires less than or equal to K + 3|U| latches. Second, notice that
solution guarantees that every five unit sequence in the constructed
graph spans three latches, that the cycle time is well-defined and is
less than or equal to 3.

Conversely, suppose there exists a satisfying latch assignment us-
ing less than or equal to K’ = K + 3|U| latches for an instance of
APD problem. Another property of our construction is that every
three unit sequence in G has two corresponding five unit sequences
in G'. Each corresponding five unit sequences spans two slots that
were consecutivein G and two newly created slots. Any solution to
the APD problem must assign a latch to one of the consecutive slots
in G. Consider the solution to the 3U1L problem created by select-
ing these slots in G. Each three unit sequence in G spans a selected
slot and the number of selected slots must be less than or equal to X,
thereby completing the proof.

An example of mapping a 3U1L problem to an APD problem is
depicted in Figure 5.

5 Proper Decomposition of Violating Unit
Sequence '

To solve the general optimization problem, we first introduce the
following definitions. A VUS is Properly Decomposed (PD) by a
slot assignment if the following conditions are satisfied:

Condition 1 Covering condition: The VUS is decomposed into at
least 4 stages by the slot assignment.

Condition 2 Satisfying condition: The VUS does not contain any
(complete) sequence of stages which violate 8.

Let M be a set of VUS such that every sequence of units is either
a subsetof 2 VUS in M or a superset of a VUS in M, that is no se-
quence can just partially intersect or disjoint with all VUS in M.
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Lemma 2 The cycle time is met if and only if all VUS € M are prop-
erly decomposed.

Proof (Sketch) «: Consider a 3-stage sequence of units, which vi-
olates the cycle time. It is either a superset or a subset of at least a
VUS in M. If itis the supersetof a VUS in M, it can’t be a 3-stage or
less sequence. (Contradiction of the condition 1). If it is the subset
of a VUS in M, it should be properly decomposed. (Contradiction
of the condition 2).
=>: Proof by the definition of VUS. ]
The key theorem that identifies our optimization approach fol-
lows directly from the above lemma.

Theorem 4 If and only if all VUS € M are properly decomposed
with the minimum slot assignment, then the cycle time is met with
the minimum abstract latches.

6 Branch and Bound Algorithm

There exist a variety of techniques that may be used to solve our
minimization problem. The most general technique is to cast the
problem as an integer programming problem and use generic IP
solvers. Alternatively, one could define a BDD describing the pos-
sible solutions for each VSS and take the product of all such BDDs.
Any path through the BDD that leads to one represents a valid so-
lution and the path with the minimal number of “1” branches, rep-
resents a minimal solution {15]. Both of these solution strategies,
however, do not take advantage of the structure of the solution space
and thus may be inefficient. In contrast, this section proposes an ef-
ficient branch and bound algorithm that incorporates a new lower
bound technique tailored to our problem. Moreover, we assert that
our branch and bound algorithm is more robust than possible BDD-
based techniques because it may be terminated early to obtain a non-
optimal solution whereas BDD-based approaches may catastrophi-
cally fail if the BDD-size blows up.

The nodes in our branch and bound tree represent slots. Each
node has up to two children, one representing the partial solution
in which the slot is assigned an abstract latch, referred to as a slot-
assigned-child, and the other representing the partial solution in
which the slot is not assigned an abstract latch, referred to as a slot-
excluded-child. Each node is associated with the set of VSSs that
contain that slot. Each time a new abstract latch is added to a partial
solution we compute the subset of associated VSSs that are properly
decomposed. We do not search the subtree routed at a slot-assigned-
child when 1) the number of abstractlatches assignedup to that child
node plus the derived lower bound for that subtree is larger or equal
to the current best solution or 2) the child node represents a solu-
tion better than the current best, in which case the current best so-
lution is updated, or 3) the cycle metrics associated with any loop
dependency exceeds 8.4 We do not search the subtree routed at a
slot-excluded-04 when we determine there exist no feasible solution
for a VSS associated with the slot.

In the traditional branch and bound approaches to covering prob-
lems, the MIS_QUICK independent-set-based lower bound algo-
rithm [9] is widely used because its simple and fast. We general-
ize this algorithm to our optimization problem as follows. For each
node in the branch and bound tree, we create a lower bound graph
consisting of a vertex for each VSS and an edge between every two
VSSs that share at least one slot. Each vertex is labeled with the
number of additional abstract latches needed to be assigned for the
VSS to be satisfied (which, recall, is only one of two conditions to
be properly decomposed). Each edge is labeled with the number of

“This last condition is because additional abstract latches cannot decrease
cycle metrics associated with loop dependencies.
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Figure 6: An example of the lower bound heuristic.

slots shared between the two VSSs. We define the weight of a ver-
tex as the sum of connected edge labels divided by the vertex label.
We identify the vertex with the minimum weight and decrease all
connected vertices by the minimum of the identified vertex’s label
and the connecting edge label. We then remove the identified vertex
along with all connected edges and iterate. It can be easily verified
that the sum of the identified verticies’ labels is a lower bound of our
problem. Figure 6 shows an example of one iteration of our lower
bound heuristic.

7 Experimental results

We have implemented a prototype of our algorithm in C. To demon-
strate its feasibility and limitations, we applied it to the asyn-
chronous Huffman decoder mode! depicted in Figure 3 as well as
three scalable asynchronous circuit structures, a linear pipeline, a
pipeline ring, and a pipelined ring-of-ring structure. We tested lin-
ear pipelines and pipeline rings with 20, 25, 30 and 35 slots. The
last structure (ring-of-rings) we tested with 5 rings, each ring con-
taining 10 slots, with 2 slots shared by crossing rings. Thus each
ring communicates with 2 adjacent rings, as illustrated in Figure 7.
For all examples, we choose Williams’ PSO pipeline scheme. For alt
scalable examples, the function evaluation delay, the function reset
delay, the completion sensing delay for evaluation and the comple-
tion sensing delay for reset are randomly generated between 10.0
and 30.0, 5.0 and 15.0, 1.0 and 20.0, and 1.0 and 10.0, respectively.

Table 1 shows the experimental results of our algorithm with and
without the lower bound algorithm (presented in Section 6) enabled.
When the lower bound algorithm is enabled, the run time is cut by
a factor of up to two orders of magnitudes. The results demonstrate
that using our lower bound algorithm, the optimal pipeline configu-
ration for moderately-sized problem is feasible. It is also important
to note that for large systems, the run-time can be reduced by ei-
ther removing slots from consideration or pre-assigning slots with
abstract latches. For instance, we ran additional experiments where
for each structure, we pre-assigned several selected slots with ab-
stract latches. As shown in Table 1, the run-times are significantly
reduced.

8 Conclusions

This paper formalizes a new asynchronous pipeline optimization
problem common to a variety of pipelining styles and proves that
it is NP-complete. It then proposes an efficient branch and bound
algorithm for the exact solution. The experimental results suggest
that the algorithm is feasible for moderately sized systems. More-
over, complexity reduction methods for its application to larger sys-
tems are also presented and evaluated.

There are many interesting future directions for this research. For
example, although the algorithm as described is restricted to models
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Figure 7: An asynchronous ring-of-rings model.

that do not exhibit choice, the approach can also heuristically be ap-
plied to systems with choice modeled by, e.g., free-choice Petri nets.
The idea is to sequentially apply the algorithm to distinct choice-
free behaviors (e.g., marked graph components) from those with
highest probability to those with lowest probability. Specifically,
the abstract latches assigned in one iteration would be assumed pre-
assigned for the remainder of the optimization process. Other more
effective strategies may also be possible and are an interesting area
of future research. In addition, extensions that allow stochastic de-
lays may also be possible and useful.
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