
Asynchronous Circuits: An Increasingly Practical Design Solution

Peter A. Beerel
Fulcrum Microsystems

Calabasas Hills, CA 91301
and

Electrical Engineering, Systems Division
University of Southern California

Los Angeles, CA 90089
pabeerel@usc.edu

Abstract

While ultra-deep-submicron design presents increasingly
difficult challenges for standard synchronous design
practices, recent research in asynchronous design
techniques is making asynchronous circuits an increasingly
practical alternative. These challenges include the
increasing pressure for low-power, the growing challenge of
predicting increasing impact of wire load and delay, and the
performance penalty associated with supporting
communication between different clock domains. This
paper reviews the different solutions to these problems that
the spectrum of existing asynchronous design techniques
support. It focuses on techniques for fine-grain two-
dimensional pipelining that yield ultra-high-speed at
nominal power supplies and very low-energy at reduced
power supplies.

1. Introduction

The performance and power gap between semi-custom
standard-cell-based and full-custom synchronous design
styles is typically more than 2X and seems to be growing
larger [1]. Standard-cell-based synchronous methodologies
restrict the form of clocking, registers, and combinational
logic to conform to the abilities of mature CAD tools.
Moreover, the challenging task of estimating and
accounting for relatively increasing wire delays in deep sub-
micron technology is limiting performance and causing the
so-called timing closure problem. In full-custom
methodologies, this problem is addressed through carefully
designed macro cells that have superior wiring and density
than possible using semi-custom techniques. In particular,
these macro cells may take advantage of advanced forms of
clocking, registers, and combinational logic, including
various forms of dynamic logic, thereby facilitating higher
performance and lower power at the cost of 2-3X increase
in design time [1].

This basic tradeoff between design time and quality of
design also exists in asynchronous design with some
significant differences [3]. Asynchronous circuits are
typically decomposed into blocks that synchronize and
communicate data with some form of request/acknowledge
handshaking. Asynchronous methodologies differ in the
size of these blocks, ranging from blocks similar in size to
synchronous semi-custom pipeline stages (20 fanout-of-
four, FO4, deep) to fine-grain pipelining where each block
implements the logic associated with something as small as
a 1-bit addition (2 FO4 deep) along with the necessary
handshaking to asynchronously receive inputs and send
outputs. The basic tradeoff within each of these
asynchronous techniques is the tolerance to timing
variations. The most robust form of asynchronous circuit
design makes very little assumptions about the delay of
gates and wires, i.e., they can have unbounded delay. The
most aggressive form of circuit design uses timing
assumptions both within and across blocks that must be
verified pre and post layout.

This paper analyzes these tradeoffs in more detail,
focusing on recent design styles of asynchronous two-
dimensional fine-grain pipelining. We assert that achieving
high-performance in robust asynchronous circuits provides
throughputs comparable to full-custom design with design-
time that can be comparable to semi-custom efforts. When
combined with the natural integration of fast and slow
components, the optimal clock gating that arises from
handshaking-based communication, and voltage scaling, the
circuits can also yield lower energy consumption for a
given performance.

2. Synchronous design styles: semi-custom
versus full-custom

Semi-custom standard-cell-based design methodologies
offer good performance with typically 12-month design
times [1]. They are supported by a large array of mature

Proceedings of the International Symposium on Quality Electronic Design (ISQED�02)
0-7695-1561-4/02 $17.00 © 2002 IEEE

CAD tools that range from simulation, synthesis,
verification, and test. A large library of standard-cell
components that have been carefully designed, verified, and
characterized supports the synthesis task. This library is
generally limited to static CMOS gates because they are
robust to different environmental loads and have high noise
margins, thus requiring little block-level analog
verification. Standard-cell designs also use standard
clocking and limited gated-clocking strategies to facilitate
automation and reduce design times, reducing the options
for saving power. In addition, standard flip-flops are often
used to simplify timing analysis despite the incurrence of
significant data to clock output overheads.

Moreover, the time-to-market advantage of standard-cell
based designs is being attacked by the increasingly difficult
task of estimating wire delay. In deep-submicron design
wire-delays are relatively increasing and the traditional
separation of front and backend design tasks is breaking
down because logic and gate design choices do not account
for the amount of wire delay actually incurred. This timing-
closure problem has forced numerous shipment schedules to
slip. EDA vendors have now developed a new suite of
emerging CAD tools that address aspects of physical design
much earlier in the design process [26][27].

Full-custom design houses, however, have found that
these challenges can be overcome with more manual design
effort that incur longer design cycles of an average of 36
months. In addition, the use of advanced dynamic logic
styles has been an area of growing interest in full-custom
designs [10][22][23]. Domino logic is estimated to be 30%
faster than static logic because of the improving logical
effort derived by the removal of PMOS logic [24].
Traditional domino logic however still suffers from
overhead associated with clock skew and latch delays.
More advanced flip-flops and latches have been developed
that somewhat improve the clock skew overhead and reduce
the latch delays [25]. At the extreme, the latches and thus
their overhead can be entirely removed using multiple
overlapping clocks in a widely used technique, recently
named skew-tolerant domino logic [23].

The basic cost of this higher performance is the reduced
noise margin and the increased need for extensive analog
verification, both pre and post layout. In particular,
dynamic logic suffers from charge-sharing problems that
require more manual and extensive analog simulation. In
addition, many advanced forms of dynamic logic, have very
aggressive timing assumptions that must be accounted for
during the entire design process and verified both pre and
post layout. These timing assumptions are particularly
difficult to verify because they involve two-sided non-local
constraints [10][36]. For example, in self-resetting domino
logic, the precharge signal is a pulse that has a two-sided
timing constraint. The pulse must be sufficiently long to
allow the circuit sufficient time to precharge. The pulse,

however, cannot be too long, however, because new data
may arrive at the inputs of the dynamic gate while the
precharge signal is still asserted, causing significant short-
circuit current.

3. Asynchronous channel-based design

Many asynchronous designs are composed of blocks
synchronizing and communicating data using handshaking
via channels. These channels are a bundle of wires upon
which a protocol controls the communication of data, also
called a “token”. Numerous forms of channels have been
developed that trade off robustness to timing variations and
power/performance. Bundled-data channels communicate
with a single request-line bundled with a unidirectional data
bus coupled with an acknowledgement wire, as illustrated
in Figure 1a. These channels are area and power efficient
but incur a timing assumption every place they are used.
Alternatively, data can be sent with 1-of-N channels that
use N data wires to send log2N bits of data, as illustrated in
Figure 1b. The most well known form of this channel is
dual-rail that uses two data wires per bit of data. These
facilitate delay-insensitive communication between blocks,
reducing the amount of timing verification required. Note
that 1-of-4 channels provide 2-bits of data by changing only
1 wire, yielding lower power than conventional dual rail
channels [8]. In addition, single-track 1-of-N channels are
also possible in which the sender drives the wire in one
direction whereas the receiver acknowledges the wire by
resetting it, as illustrated in Figure1c. The handshaking
protocols across these channels are either 2-phase, 4-phase,
or a mixture.

Figure 1. Three types of asynchronous channels.

An asynchronous block is a combination of datapath and
control circuitry that may have multiple input channels to
receive tokens and multiple output channels to send tokens.
The operation of the block is to read a subset of input
tokens, process the data, and send output tokens. In all

Proceedings of the International Symposium on Quality Electronic Design (ISQED�02)
0-7695-1561-4/02 $17.00 © 2002 IEEE

cases, the handshaking protocol guarantees that input
tokens are processed only when valid data exists and output
tokens are sent only when the output channels have reset. In
linear pipelines, such as simple FIFOs, each pipeline stage,
or block, has a single input and output channel. In real
systems, however, non-linear pipelines are common,
involving blocks with multiple input and output channels.
In many cases, tokens on input channels are conditionally
read based on the value of another input channel and output
channels are conditionally written to based on the results of
the computation. For example, a 2-way split block has two
input channels, one for data and one for control, and two
output channels. This block waits for tokens on both the
(binary) control and data channels and the output channels
to reset. Then, based on the binary value of the control
token, it sends the data token to the corresponding output
channel and then repeats [12].

As mentioned earlier, the size and implementation
design style of asynchronous blocks varies greatly among
different design styles and this section reviews several
different varieties.

3.1 Globally asynchronous locally synchronous
(GALS) design

In globally asynchronous, locally synchronous the
blocks are as large as synchronous design techniques can
efficiently handle. A standardized channel interfaces allows
synchronous blocks to communicate despite vast
differences in internal frequency and design styles. This is
particularly important because the Semiconductor Industry
Association estimates that long-range wires may have a
delay that is equivalent to between 5 and 20 clock cycles
[1]. Either communication will need to operate at reduced
frequencies or techniques to pipeline the communication
must be adopted [29]. Because the latency of the
communication will be particularly difficult to estimate
before layout, latency-insensitive design techniques have
gained significant interest [28]. Because the blocks are
latency-insensitive, it is very easy to add additional storage
buffers late in the design cycle to pipeline long-range
channels, thereby increasing communication frequency with
little to no latency overhead. A perceived advantage of
GALS is that asynchronous circuits are limited to the
periphery of blocks where careful design libraries and
interface design techniques can be employed. One problem
with these interface techniques, however, is that they
require synchronizers which themselves incur a significant
latency penalty.

3.2 Micropipelines

In micropipelines, first introduced in [21], the size of the
communicating block is typically similar to that of a

standard synchronous pipeline stage (~20 FO4 latency).
The block consists of control and datapath logic. The
datapath logic is typically designed using standard-cell
static CMOS logic, enabling the full use of mature
synchronous synthesis techniques. The control logic
implements the request/acknowledge control circuitry that
facilitates communication across the bundled-data channels
between blocks. The tools Balsa and Tangram
automatically generate the control logic using syntax
translation from a high-level language [7][20]. The control
logic can also be synthesized using Petri-net or FSM based
specifications [9][17][18] or derived from recently
developed bundled-data control templates [32]. In all cases,
the control logic requires the use of a delay line that
matches the longest delay in the datapath to guarantee that
the control circuit generates requests only after data is
valid.

Because the pipeline stages, or blocks, of a
micropipeline are similar in size to that of synchronous
pipelines, their worst-case performance is comparable to
that of synchronous blocks. In fact, one of the big
challenges in micropipeline design is to ensure that the
matched delay line and control circuitry is designed
carefully not to incur large control overhead. Careful
timing verification is required to ensure that the delay line
is long enough to provide sufficient timing margin.
Asynchronous architectures, however, have the advantage
that only blocks that are sent tokens are active and only
those blocks actively processing tokens dictate the
throughput of the system. This enables designers to obtain
high average-case performance by focusing their efforts
only on the most commonly activated blocks. In addition,
advanced delay lines using speculative completion sensing
can be used to provide some data-dependent delay, leading
to improved average-case performance [11].

Micropipeline-based asynchronous designs have several
other advantages. Compared to dual-rail approaches, they
offer low area because they use single-rail datapath and
channels. They offer low power because they remove the
power-hungry clock distribution network and instead
consist of blocks that consume power only when actively
processing tokens. That is, micropipelines facilitate perfect
gated-clocking at a relatively fine granularity [2][6].
Compared to synchronous designs, they also offer lower
electromagnetic interference because the current used is
more evenly spread over time [3]. This can be very
important when considering mixing analog and digital
circuits on a single substrate. Lastly, pipelining long-range
communication channels late in the design cycle is
relatively easy and does not incur significant latency
overheads [8], mitigating the timing closure problem.

Proceedings of the International Symposium on Quality Electronic Design (ISQED�02)
0-7695-1561-4/02 $17.00 © 2002 IEEE

3.3 Fine-grain pipelining

A number of design styles targets higher performance by
using much smaller communicating blocks. Perhaps the
most aggressive design style is that proposed by Sun
researchers called GasP [30]. GasP is a very aggressive
fine-grain pipeline template style that uses a combination of
single-track channels for communicating control and single-
rail channels for communicating data. The datapath blocks
are decomposed into fine-grain pipeline stages, or blocks,
such that each block has a latency of 2-4 FO4 delays. The
scheme supports multi-gigahertz rates but has complex two-
sided timing assumptions in both the control and datapath
that must be accounted during all stages of the design.

At the other extreme, the most robust form of
asynchronous circuit design supports delay-insensitive
communication between blocks meaning that
communication will operate correctly independent of wire
delay along the channel, reducing the dependence on timing
analysis of long-range communication. Within a block, the
design can be quasi-delay-insensitive (QDI) [15], meaning
the circuit will operate correctly independent of gate delays
but that some internal wire forks can be isochronic,
meaning that the difference in arrival times of data at the
different ends of the fork must be negligible. The
communication between blocks is encoded using 1-of-N rail
encoding. This facilitates the use of robust completion
detection (CD) units, instead of matched delay lines, to
synchronize communication of data across channels [14].
For example, to determine when a 1-of-2 dual-rail channel
has valid data the data rails are fed into a simple OR gate.
When applied to wide datapaths, CD units naturally yield
blocks that have data-dependent delays. Unfortunately, at
the same time incur large control overhead that can reduce
even average performance [16].

Recently, Caltech researchers have proposed a solution
to this problem that is referred to in this paper as two-
dimensional fine-grain pipelining [5][12][13]. The basic
idea is that the blocks have both small latency (~2 FO4
delays) and operate only a small number of bits (e.g., 4
bits). Completion operation of wide datapaths is simply
pipelined across several communicating blocks and
performed in parallel with subsequent datapath operations.
In this way, the QDI assumption within a block is easier to
meet and the completion detection overhead is relatively
small. This means that high-performance can be achieved
without sacrificing robustness to timing.

At USC, we noticed that by introducing timing
assumptions to 2-D pipelines, even higher throughputs
could be achieved. In fact, there is a tradeoff between the
robustness to delay variations and performance. We
recently have developed several different families of 2-D
fine-grain pipeline templates that explore this tradeoff. In
[33], we extend the use of single-track handshaking

proposed in GasP to 1-of-N signaling of both data and
control of fine-grain 2-D pipeline blocks. We describe
single-track full-buffer (STFB) templates that define how
arbitrary linear and non-linear pipelines can be generated
with very high performance. In conjunction with
researchers from Columbia University, we also have
generalized high-speed linear pipeline structures [31] to
non-linear pipelines with more tolerance to timing
variations than our single-track designs [34]. Lastly, we
developed new very robust pipeline templates that, by
slightly relaxing the delay-insensitive channel restriction,
achieves significant improvement in throughput and
reduction in area over their Caltech QDI counterparts [35].
HSPICE simulations in 0.25u TSMC process with a 2.5V
power supply at 25

o
C for simple linear pipelines are given

in Table 1 and illustrate the tradeoff between speed and
robustness to timing.

Table 1: Performance vs. Robustness to Timing
2-D Template Style Timing assumptions Throughput

PCHB [12] DI/QDI 772 MHz

RSPCHB [35] QDI 920 MHz

LP2/2+ [34] Moderate 1.0 MHz

STFB [33] Aggressive 1.6 GHz

Compared to typical synchronous semi-custom flows
these circuits yield performance that is 2-5X times higher,
and are comparable to the most aggressive full-custom
design styles. The key points to stress is that this design
styles removes the need for complex clock distribution and
in some cases greatly simplifies the timing closure problem.
In particular, only those blocks deemed critical can be
designed aggressively and this decision can be largely
independent of the design style for less critical blocks. This
is in sharp contrast to synchronous design where slow paths,
even if rarely activated, need to be sped-up to meet timing.

An important additional advantage of these forms of 2-D
template is their low latency. Unlike typical synchronous
pipeline stages, they have no distinct register that stores
pipeline data and thus do not suffer from latch propagation
delay or setup and hold time overheads. Rather, the data is
stored at the output of the dynamic logic using a weak
staticizer that only negligibly impacts delay. When designed
properly, the latency through an asynchronous system
approximates the optimal latency through dynamic logic,
similar to the most aggressive forms of skew-tolerant
domino logic [23]. The key to this advantage is the use of
dynamic logic and thus, as with many full-custom
synchronous design techniques, a common need is CAD
tools to analyze and solve charge sharing.

One potential cost of 2-D pipelining is increased area:
each block has some form of completion detection unit and
control circuitry to support handshaking with neighboring

Proceedings of the International Symposium on Quality Electronic Design (ISQED�02)
0-7695-1561-4/02 $17.00 © 2002 IEEE

block. Moreover, communication between two blocks uses
dual-rail or 1-of-N signaling requiring significant more
wiring bandwidth. However, there is no global clock to
route and all storage elements are implemented through
area-efficient staticized dynamic nodes. One recent
aggressive asynchronous design achieved a factor of 3X
performance improvement at the cost of less than a 20%
increase in area [4].

Given the rate of technology scaling, the cost in area
may not be as critical as their relative power. The increased
control circuitry also can lead to higher energy
consumption; however, two design features mitigate this
point. First, in addition to removing the power-hungry
global clock, 2-D fine-grain pipelining facilitates the ability
to turn off specific bit-slices rather than complete functional
units. One recent aggressive asynchronous design achieved
40% lower power than its synchronous counterpart, at the
same voltage [4]. In addition, the high-throughput can yield
low energy by reducing the power supply. In fact, given that
energy is a function of the voltage squared, high-speed
asynchronous designs may yield very low energy
consumption for a given performance.

4. Conclusions

The introduction of 2-D pipelining in asynchronous
circuits has demonstrated that high-performance can be
achieved with design techniques that are very robust to
timing, greatly simplifying timing analysis. Moreover,
rather than having to ensure all paths through all blocks
meet timing as in synchronous design, only those blocks
deemed critical need be optimized, greatly simplifying the
timing closure problem. For those blocks for which higher
performance is needed, we reviewed a range of more
aggressive pipeline templates that facilitate higher
performance at the cost of increased design time to validate
moderate to aggressive timing assumptions. Moreover, we
argued that in many applications this high performance may
be converted to low energy consumption for a given
performance by reducing the power supply.

5. References

[1] International Technology Roadmap for
Semiconductors: 1999 edition. http://public.itrs.net
/files/1999_SIA_Roadmap/Home.htm.

[2] J. Kessels and P. Marston. Designing asynchronous
standby circuits for a low-power pager. In Proceedings
of the IEEE, 87(2): 257–267, Feb. 1999.

[3] C. H van Berkel, M. B. Josephs, S. M. Nowick.
Scanning the technology: applications of asynchronous
circuits. Proceedings of the IEEE, vol. 87:2, pp. 223-
233, Feb. 1999.

[4] K. Stevens, S. Rotem, R. Ginosar, P. A. Beerel, C. J.
Myers, K. Yun, R. Kol, C. Dike, and M. Roncken, An
asynchronous instruction length decoder. In IEEE
Journal of Solid State Circuits, 36(2): 217-228, Feb.
2001.

[5] A. J. Martin, A. Lines, R. Manohar, M. Nystroem, P.
Penzes, R. Southworth, and U. Cummings. The design
of an asynchronous MIPS R3000 microprocessor. In
Advanced Research in VLSI, pp. 164–181, Sept. 1997.

[6] S.B. Furber, D.A. Edwards, and J.D. Garside.
AMULET3: a 100 MIPS asynchronous embedded
processor. In Proc. International Conf. Computer
Design (ICCD), Sept. 2000.

[7] A. Bardsley, D. A. Edwards. The Balsa Asynchronous
Circuit Synthesis System. FDL 2000, Sept. 2000.

[8] W.J. Bainbridge, S. Furber Delay-insensitive system-
on-chip interconnect using 1-of-4 data encoding. In
Proc. ASYNC 2001, pp. 118—126, Mar. 2001.

[9] Chris J. Myers, Asynchronous Circuit Design, John
Wiley and Sons, July 2001.

[10] W. Belluomini, C. J. Myers, H. Peter Hofstee.
Verification of delayed-reset domino circuits using
ATACS, In Proc. of ASYNC, pp 3 –12, 1998

[11] S.M. Nowick, K.Y. Yun, and P.A. Beerel. Speculative
completion for the design of high-performance
asynchronous dynamic adders. In Proc. ASYNC, pp.
210–223, Apr. 1997.

[12] Andrew M. Lines. Pipelined asynchronous circuits.
Master’s thesis, California Institute of Technology,
1996.

[13] U. Cummings, A. Lines, and A. Martin. An
Asynchronous Pipeline Lattice Filter, In Proc. of
ASYNC, pp 126-133, Nov. 1994.

[14] Alain J. Martin. Synthesis of asynchronous VLSI
circuits. In J. Straunstrup, editor, Formal Methods for
VLSI Design, chapter 6, pp. 237–283, 1990.

[15] Alain J. Martin. The limitations to delay-insensitivity in
asynchronous circuits. In William J. Dally, editor,
Advanced Research in VLSI, pages 263–278. MIT
Press, 1990.

[16] T. Nanya, A. Takamura, M. Kuwako, M. Imai, T. Fujii,
M. Ozawa, I. Fukasaku, Y. Ueno, F. Okamoto, H.
Fujimoto, O. Fujita, M. Yamashina, and M. Fukuma.
TITAC-2: A 32-bit scalable-delay-insensitive
microprocessor. In Symposium Record of HOT Chips
IX, pages 19–32, Aug. 1997.

[17] M. Theobald and S.M. Nowick. Fast heuristic and
exact algorithms for two-level hazard-free logic
minimization, IEEE Transactions on CAD, vol. 17:11,
pp. 1130-1147, Nov. 1998.

Proceedings of the International Symposium on Quality Electronic Design (ISQED�02)
0-7695-1561-4/02 $17.00 © 2002 IEEE

[18] J. Cortadella, M. Kishinevsky, A. Kondratyev, L.
Lavagno and A. Yakovlev. Petrify: a tool for
manipulating concurrent specifications and synthesis of
asynchronous controllers. IEICE Trans. on Information
and Systems, Vol. E80-D, No. 3, pp. 315-325, Mar.
1997.

[19] M.A. Peña, J. Cortadella, A. Kondratyev and E. Pastor,
Formal verification of safety properties in timed
circuits, In Proc. of ASYNC, pp. 2-11, Apr. 2000.

[20] J. Kessels, A. Peeters The Tangram framework:
asynchronous circuits for low power. Proceedings of
ASP-DAC, pp. 255–260, 2001.

[21] I. E. Sutherland, Micropipelines. Communications of
the ACM, vol. 32, no. 6, pp. 720-738, June 1989.

[22] S. Schuster, W. Reohr, P. Cook, D. Heidel, M.
Immediato, and K. Jenkins. Asynchronous interlocked
pipelined CMOS circuits operating at 3.3-4.5 GHz. In
IEEE ISSCC Digest of Technical Papers, pp. 292–293,
2001.

[23] D. Harris and M. Horowitz. Skew-tolerant domino
circuits. IEEE Journal of Solid-State Circuits, pp.
1702-1710, Nov. 1997.

[24] I. Sutherland, B. Sproull, D. Harris, "Logical Effort:
Designing Fast CMOS Circuits", Morgan Kaufmann
Publishers, San Francisco, CA: 1999.

[25] V. Stojanovic and V. G. Oklobdzija. Comparative
analysis of master-slave latches and flip-flops for high-
performance and low-power systems. IEEE Journal of
Solid-State Circuits, 34(4):536--548, April 1999.

[26] http://www.synopsys.com/products/unified_synthesis/u
nified_synthesis_ds.pdf.

[27] http://www.cadence.com/products/pks.html.

[28] L.P. Carloni, K.L. McMillan and A.L. Sangiovanni-
Vincentelli. Theory of latency-insensitive design. IEEE
Transactions on CAD. Vol. 20, No. 9, Sept. 2001.

[29] T. Chelcea and S.M. Nowick. Robust Interfaces for
Mixed-Timing Systems with Application to Latency-
Insensitive Protocols, IEEE/ACM Design Automation
Conference (DAC), June 2001.

[30] I.E. Sutherland, and S. Fairbanks. GasP: a minimal
FIFO control. In Proc. of ASYNC, pp. 46–53, March
2001.

[31] M. Singh and S.M. Nowick. High-throughput
asynchronous pipelines for fine grain dynamic
datapaths. In Proc. of ASYNC, pp. 198–209. 2000.

[32] S. Tugsinavisut and P.A. Beerel. Control circuit
templates for asynchronous bundled-data pipelines. To
appear in DATE’2002.

[33] M. Ferretti and P.A. Beerel. Single-track asynchronous
pipeline templates using 1-of-N encoding. To appear in
DATE’2002.

[34] R.O. Ozdag, M. Singh, S. Nowick, and P. A. Beerel.
High-speed non-linear asynchronous pipelines. To
appear in DATE’2002.

[35] R.O. Ozdag and P.A. Beerel. High-speed QDI
asynchronous pipelines. To appear in ASYNC’2002.

[36] H. Kim, K. Stevens, P.A. Beerel. Relative Timing
Based Verification of Timed Circuits and Systems. To
appear in ASYNC’2002.

Proceedings of the International Symposium on Quality Electronic Design (ISQED�02)
0-7695-1561-4/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

