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Abstract 
 

While ultra-deep-submicron design presents increasingly 
difficult challenges for standard synchronous design 
practices, recent research in asynchronous design 
techniques is making asynchronous circuits an increasingly 
practical alternative. These challenges include the 
increasing pressure for low-power, the growing challenge of 
predicting increasing impact of wire load and delay, and the 
performance penalty associated with supporting 
communication between different clock domains. This 
paper reviews the different solutions to these problems that 
the spectrum of existing asynchronous design techniques 
support. It focuses on techniques for fine-grain two-
dimensional pipelining that yield ultra-high-speed at 
nominal power supplies and very low-energy at reduced 
power supplies. 

1. Introduction 

The performance and power gap between semi-custom 
standard-cell-based and full-custom synchronous design 
styles is typically more than 2X and seems to be growing 
larger [1]. Standard-cell-based synchronous methodologies 
restrict the form of clocking, registers, and combinational 
logic to conform to the abilities of mature CAD tools. 
Moreover, the challenging task of estimating and 
accounting for relatively increasing wire delays in deep sub-
micron technology is limiting performance and causing the 
so-called timing closure problem. In full-custom 
methodologies, this problem is addressed through carefully 
designed macro cells that have superior wiring and density 
than possible using semi-custom techniques. In particular, 
these macro cells may take advantage of advanced forms of 
clocking, registers, and combinational logic, including 
various forms of dynamic logic, thereby facilitating higher 
performance and lower power at the cost of 2-3X increase 
in design time [1]. 

This basic tradeoff between design time and quality of 
design also exists in asynchronous design with some 
significant differences [3].  Asynchronous circuits are 
typically decomposed into blocks that synchronize and 
communicate data with some form of request/acknowledge 
handshaking. Asynchronous methodologies differ in the 
size of these blocks, ranging from blocks similar in size to 
synchronous semi-custom pipeline stages (20 fanout-of-
four, FO4, deep) to fine-grain pipelining where each block 
implements the logic associated with something as small as 
a 1-bit addition (2 FO4 deep) along with the necessary 
handshaking to asynchronously receive inputs and send 
outputs. The basic tradeoff within each of these 
asynchronous techniques is the tolerance to timing 
variations. The most robust form of asynchronous circuit 
design makes very little assumptions about the delay of 
gates and wires, i.e., they can have unbounded delay. The 
most aggressive form of circuit design uses timing 
assumptions both within and across blocks that must be 
verified pre and post layout. 

This paper analyzes these tradeoffs in more detail, 
focusing on recent design styles of asynchronous two-
dimensional fine-grain pipelining. We assert that achieving 
high-performance in robust asynchronous circuits provides 
throughputs comparable to full-custom design with design-
time that can be comparable to semi-custom efforts.  When 
combined with the natural integration of fast and slow 
components, the optimal clock gating that arises from 
handshaking-based communication, and voltage scaling, the 
circuits can also yield lower energy consumption for a 
given performance. 

2. Synchronous design styles: semi-custom 
versus full-custom 

Semi-custom standard-cell-based design methodologies 
offer good performance with typically 12-month design 
times [1]. They are supported by a large array of mature 
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CAD tools that range from simulation, synthesis, 
verification, and test. A large library of standard-cell 
components that have been carefully designed, verified, and 
characterized supports the synthesis task. This library is 
generally limited to static CMOS gates because they are 
robust to different environmental loads and have high noise 
margins, thus requiring little block-level analog 
verification. Standard-cell designs also use standard 
clocking and limited gated-clocking strategies to facilitate 
automation and reduce design times, reducing the options 
for saving power.  In addition, standard flip-flops are often 
used to simplify timing analysis despite the incurrence of 
significant data to clock output overheads.  

Moreover, the time-to-market advantage of standard-cell 
based designs is being attacked by the increasingly difficult 
task of estimating wire delay. In deep-submicron design 
wire-delays are relatively increasing and the traditional 
separation of front and backend design tasks is breaking 
down because logic and gate design choices do not account 
for the amount of wire delay actually incurred. This timing-
closure problem has forced numerous shipment schedules to 
slip. EDA vendors have now developed a new suite of 
emerging CAD tools that address aspects of physical design 
much earlier in the design process [26][27].  

Full-custom design houses, however, have found that 
these challenges can be overcome with more manual design 
effort that incur longer design cycles of an average of 36 
months. In addition, the use of advanced dynamic logic 
styles has been an area of growing interest in full-custom 
designs [10][22][23]. Domino logic is estimated to be 30% 
faster than static logic because of the improving logical 
effort derived by the removal of PMOS logic [24]. 
Traditional domino logic however still suffers from 
overhead associated with clock skew and latch delays. 
More advanced flip-flops and latches have been developed 
that somewhat improve the clock skew overhead and reduce 
the latch delays [25]. At the extreme, the latches and thus 
their overhead can be entirely removed using multiple 
overlapping clocks in a widely used technique, recently 
named skew-tolerant domino logic [23].  

The basic cost of this higher performance is the reduced 
noise margin and the increased need for extensive analog 
verification, both pre and post layout. In particular, 
dynamic logic suffers from charge-sharing problems that 
require more manual and extensive analog simulation. In 
addition, many advanced forms of dynamic logic, have very 
aggressive timing assumptions that must be accounted for 
during the entire design process and verified both pre and 
post layout.  These timing assumptions are particularly 
difficult to verify because they involve two-sided non-local 
constraints [10][36]. For example, in self-resetting domino 
logic, the precharge signal is a pulse that has a two-sided 
timing constraint. The pulse must be sufficiently long to 
allow the circuit sufficient time to precharge. The pulse, 

however, cannot be too long, however, because new data 
may arrive at the inputs of the dynamic gate while the 
precharge signal is still asserted, causing significant short-
circuit current. 

3. Asynchronous channel-based design 

Many asynchronous designs are composed of blocks 
synchronizing and communicating data using handshaking 
via channels. These channels are a bundle of wires upon 
which a protocol controls the communication of data, also 
called a  “token”.  Numerous forms of channels have been 
developed that trade off robustness to timing variations and 
power/performance. Bundled-data channels communicate 
with a single request-line bundled with a unidirectional data 
bus coupled with an acknowledgement wire, as illustrated 
in Figure 1a. These channels are area and power efficient 
but incur a timing assumption every place they are used. 
Alternatively, data can be sent with 1-of-N channels that 
use N data wires to send log2N bits of data, as illustrated in 
Figure 1b. The most well known form of this channel is 
dual-rail that uses two data wires per bit of data. These 
facilitate delay-insensitive communication between blocks, 
reducing the amount of timing verification required. Note 
that 1-of-4 channels provide 2-bits of data by changing only 
1 wire, yielding lower power than conventional dual rail 
channels [8]. In addition, single-track 1-of-N channels are 
also possible in which the sender drives the wire in one 
direction whereas the receiver acknowledges the wire by 
resetting it, as illustrated in Figure1c. The handshaking 
protocols across these channels are either 2-phase, 4-phase, 
or a mixture.  

 
Figure 1. Three types of asynchronous channels. 

An asynchronous block is a combination of datapath and 
control circuitry that may have multiple input channels to 
receive tokens and multiple output channels to send tokens.  
The operation of the block is to read a subset of input 
tokens, process the data, and send output tokens. In all 
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cases, the handshaking protocol guarantees that input 
tokens are processed only when valid data exists and output 
tokens are sent only when the output channels have reset. In 
linear pipelines, such as simple FIFOs, each pipeline stage, 
or block, has a single input and output channel. In real 
systems, however, non-linear pipelines are common, 
involving blocks with multiple input and output channels. 
In many cases, tokens on input channels are conditionally 
read based on the value of another input channel and output 
channels are conditionally written to based on the results of 
the computation. For example, a 2-way split block has two 
input channels, one for data and one for control, and two 
output channels. This block waits for tokens on both the 
(binary) control and data channels and the output channels 
to reset. Then, based on the binary value of the control 
token, it sends the data token to the corresponding output 
channel and then repeats [12].  

As mentioned earlier, the size and implementation 
design style of asynchronous blocks varies greatly among 
different design styles and this section reviews several 
different varieties. 

3.1 Globally asynchronous locally synchronous 
(GALS) design 

In globally asynchronous, locally synchronous the 
blocks are as large as synchronous design techniques can 
efficiently handle.  A standardized channel interfaces allows 
synchronous blocks to communicate despite vast 
differences in internal frequency and design styles. This is 
particularly important because the Semiconductor Industry 
Association estimates that long-range wires may have a 
delay that is equivalent to between 5 and 20 clock cycles 
[1].  Either communication will need to operate at reduced 
frequencies or techniques to pipeline the communication 
must be adopted [29]. Because the latency of the 
communication will be particularly difficult to estimate 
before layout, latency-insensitive design techniques have 
gained significant interest [28]. Because the blocks are 
latency-insensitive, it is very easy to add additional storage 
buffers late in the design cycle to pipeline long-range 
channels, thereby increasing communication frequency with 
little to no latency overhead. A perceived advantage of 
GALS is that asynchronous circuits are limited to the 
periphery of blocks where careful design libraries and 
interface design techniques can be employed. One problem 
with these interface techniques, however, is that they 
require synchronizers which themselves incur a significant 
latency penalty. 

3.2 Micropipelines 

In micropipelines, first introduced in [21], the size of the 
communicating block is typically similar to that of a 

standard synchronous pipeline stage (~20 FO4 latency). 
The block consists of control and datapath logic. The 
datapath logic is typically designed using standard-cell 
static CMOS logic, enabling the full use of mature 
synchronous synthesis techniques. The control logic 
implements the request/acknowledge control circuitry that 
facilitates communication across the bundled-data channels 
between blocks.  The tools Balsa and Tangram 
automatically generate the control logic using syntax 
translation from a high-level language [7][20]. The control 
logic can also be synthesized using Petri-net or FSM based 
specifications [9][17][18] or derived from recently 
developed bundled-data control templates [32]. In all cases, 
the control logic requires the use of a delay line that 
matches the longest delay in the datapath to guarantee that 
the control circuit generates requests only after data is 
valid.  

Because the pipeline stages, or blocks, of a 
micropipeline are similar in size to that of synchronous 
pipelines, their worst-case performance is comparable to 
that of synchronous blocks. In fact, one of the big 
challenges in micropipeline design is to ensure that the 
matched delay line and control circuitry is designed 
carefully not to incur large control overhead.  Careful 
timing verification is required to ensure that the delay line 
is long enough to provide sufficient timing margin. 
Asynchronous architectures, however, have the advantage 
that only blocks that are sent tokens are active and only 
those blocks actively processing tokens dictate the 
throughput of the system. This enables designers to obtain 
high average-case performance by focusing their efforts 
only on the most commonly activated blocks. In addition, 
advanced delay lines using speculative completion sensing 
can be used to provide some data-dependent delay, leading 
to improved average-case performance [11]. 

Micropipeline-based asynchronous designs have several 
other advantages. Compared to dual-rail approaches, they 
offer low area because they use single-rail datapath and 
channels. They offer low power because they remove the 
power-hungry clock distribution network and instead 
consist of blocks that consume power only when actively 
processing tokens. That is, micropipelines facilitate perfect 
gated-clocking at a relatively fine granularity [2][6]. 
Compared to synchronous designs, they also offer lower 
electromagnetic interference because the current used is 
more evenly spread over time [3]. This can be very 
important when considering mixing analog and digital 
circuits on a single substrate.  Lastly, pipelining long-range 
communication channels late in the design cycle is 
relatively easy and does not incur significant latency 
overheads [8], mitigating the timing closure problem. 
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3.3 Fine-grain pipelining 

A number of design styles targets higher performance by 
using much smaller communicating blocks. Perhaps the 
most aggressive design style is that proposed by Sun 
researchers called GasP [30]. GasP is a very aggressive 
fine-grain pipeline template style that uses a combination of 
single-track channels for communicating control and single-
rail channels for communicating data. The datapath blocks 
are decomposed into fine-grain pipeline stages, or blocks, 
such that each block has a latency of 2-4 FO4 delays.  The 
scheme supports multi-gigahertz rates but has complex two-
sided timing assumptions in both the control and datapath 
that must be accounted during all stages of the design. 

At the other extreme, the most robust form of 
asynchronous circuit design supports delay-insensitive 
communication between blocks meaning that 
communication will operate correctly independent of wire 
delay along the channel, reducing the dependence on timing 
analysis of long-range communication. Within a block, the 
design can be quasi-delay-insensitive (QDI) [15], meaning 
the circuit will operate correctly independent of gate delays 
but that some internal wire forks can be isochronic, 
meaning that the difference in arrival times of data at the 
different ends of the fork must be negligible. The 
communication between blocks is encoded using 1-of-N rail 
encoding. This facilitates the use of robust completion 
detection (CD) units, instead of matched delay lines, to 
synchronize communication of data across channels [14]. 
For example, to determine when a 1-of-2 dual-rail channel 
has valid data the data rails are fed into a simple OR gate. 
When applied to wide datapaths, CD units naturally yield 
blocks that have data-dependent delays. Unfortunately, at 
the same time incur large control overhead that can reduce 
even average performance [16].  

Recently, Caltech researchers have proposed a solution 
to this problem that is referred to in this paper as two-
dimensional fine-grain pipelining [5][12][13]. The basic 
idea is that the blocks have both small latency (~2 FO4 
delays) and operate only a small number of bits (e.g., 4 
bits). Completion operation of wide datapaths is simply 
pipelined across several communicating blocks and 
performed in parallel with subsequent datapath operations. 
In this way, the QDI assumption within a block is easier to 
meet and the completion detection overhead is relatively 
small. This means that high-performance can be achieved 
without sacrificing robustness to timing.  

At USC, we noticed that by introducing timing 
assumptions to 2-D pipelines, even higher throughputs 
could be achieved. In fact, there is a tradeoff between the 
robustness to delay variations and performance. We 
recently have developed several different families of 2-D 
fine-grain pipeline templates that explore this tradeoff. In 
[33], we extend the use of single-track handshaking 

proposed in GasP to 1-of-N signaling of both data and 
control of fine-grain 2-D pipeline blocks. We describe 
single-track full-buffer (STFB) templates that define how 
arbitrary linear and non-linear pipelines can be generated 
with very high performance.  In conjunction with 
researchers from Columbia University, we also have 
generalized high-speed linear pipeline structures [31] to 
non-linear pipelines with more tolerance to timing 
variations than our single-track designs [34]. Lastly, we 
developed new very robust pipeline templates that, by 
slightly relaxing the delay-insensitive channel restriction, 
achieves significant improvement in throughput and 
reduction in area over their Caltech QDI counterparts [35]. 
HSPICE simulations in 0.25u TSMC process with a 2.5V 
power supply at 25

o
C for simple linear pipelines are given 

in Table 1 and illustrate the tradeoff between speed and 
robustness to timing.  

Table 1: Performance vs. Robustness to Timing 
2-D Template Style Timing assumptions Throughput 

PCHB [12] DI/QDI 772 MHz 

RSPCHB [35] QDI  920 MHz 

LP2/2+ [34] Moderate  1.0 MHz 

STFB [33] Aggressive  1.6 GHz 
 

Compared to typical synchronous semi-custom flows 
these circuits yield performance that is 2-5X times higher, 
and are comparable to the most aggressive full-custom 
design styles. The key points to stress is that this design 
styles removes the need for complex clock distribution and 
in some cases greatly simplifies the timing closure problem. 
In particular, only those blocks deemed critical can be 
designed aggressively and this decision can be largely 
independent of the design style for less critical blocks.  This 
is in sharp contrast to synchronous design where slow paths, 
even if rarely activated, need to be sped-up to meet timing.  

An important additional advantage of these forms of 2-D 
template is their low latency. Unlike typical synchronous 
pipeline stages, they have no distinct register that stores 
pipeline data and thus do not suffer from latch propagation 
delay or setup and hold time overheads. Rather, the data is 
stored at the output of the dynamic logic using a weak 
staticizer that only negligibly impacts delay. When designed 
properly, the latency through an asynchronous system 
approximates the optimal latency through dynamic logic, 
similar to the most aggressive forms of skew-tolerant 
domino logic [23].  The key to this advantage is the use of 
dynamic logic and thus, as with many full-custom 
synchronous design techniques, a common need is CAD 
tools to analyze and solve charge sharing. 

One potential cost of 2-D pipelining is increased area: 
each block has some form of completion detection unit and 
control circuitry to support handshaking with neighboring 
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block. Moreover, communication between two blocks uses 
dual-rail or 1-of-N signaling requiring significant more 
wiring bandwidth.  However, there is no global clock to 
route and all storage elements are implemented through 
area-efficient staticized dynamic nodes. One recent 
aggressive asynchronous design achieved a factor of 3X 
performance improvement at the cost of less than a 20% 
increase in area [4]. 

Given the rate of technology scaling, the cost in area 
may not be as critical as their relative power. The increased 
control circuitry also can lead to higher energy 
consumption; however, two design features mitigate this 
point. First, in addition to removing the power-hungry 
global clock, 2-D fine-grain pipelining facilitates the ability 
to turn off specific bit-slices rather than complete functional 
units. One recent aggressive asynchronous design achieved 
40% lower power than its synchronous counterpart, at the 
same voltage [4]. In addition, the high-throughput can yield 
low energy by reducing the power supply. In fact, given that 
energy is a function of the voltage squared, high-speed 
asynchronous designs may yield very low energy 
consumption for a given performance.  

4. Conclusions 

The introduction of 2-D pipelining in asynchronous 
circuits has demonstrated that high-performance can be 
achieved with design techniques that are very robust to 
timing, greatly simplifying timing analysis.  Moreover, 
rather than having to ensure all paths through all blocks 
meet timing as in synchronous design, only those blocks 
deemed critical need be optimized, greatly simplifying the 
timing closure problem. For those blocks for which higher 
performance is needed, we reviewed a range of more 
aggressive pipeline templates that facilitate higher 
performance at the cost of increased design time to validate 
moderate to aggressive timing assumptions. Moreover, we 
argued that in many applications this high performance may 
be converted to low energy consumption for a given 
performance by reducing the power supply. 
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