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Abstract 
 

 The 6-4 GasP family of asynchronous circuits has been sought for its 

potential advantages of ultra-high performance and low power especially in the processor 

and the network on chip (NoC) domains. However, the use of these circuits is currently 

limited to custom design where extensive SPICE simulations are required to verify timing 

correctness and performance. In order to incorporate these circuits in the standard ASIC 

designs, it is essential to establish a more efficient CAD flow.   

A fully automated characterization flow for developing timing libraries of single 

track circuits was shown in [13]. This thesis extends that flow to the GasP family of 

circuits and addresses the issue of validating the timing performance of these non-

standard circuits using static timing analysis. We first discuss some of the relative timing 

constraints that were identified to ensure the desired working of the GasP control circuits. 

Then we discuss the characterization flow used for developing timing libraries for these 

circuits. Thereafter, we discuss how a static timing analysis tool, Synopsys PrimeTime, 

was used to verify these relative timing constraints as well as perform setup and hold 

checks on a substantial industry design. We conclude this thesis by identifying the worst 

cases of operation for the relative timing constraints which can be used for post analysis 

debugging.
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Chapter 1 

Introduction 
 

The increasing power consumption and growing complexity of synchronous 

designs has led to a great deal of interest in asynchronous circuits. The presence of a 

single global clock in the synchronous designs has resulted into problems like clock tree 

synthesis, gated clocking design, hold time fixing, and clock skew management. As a 

result of this, globally asynchronous and locally synchronous (GALS) systems are 

gaining prominence. The GALS systems have shown several advantages including low 

power in the design of networks on chip (NoCs). 

 ARM and Sun Microsystems have already been exploring the designs of highly 

efficient processors using asynchronous templates. ARM worked with Handshake 

Solutions for the development of ARM996HS which is industry’s first clockless 

processor [10]. The ARM996HS is targeted towards low power applications in the 

biomedical and the automotive fields. The VLSI Research team of Sun Microsystems is 

working on designing high performance processors using the GasP family of 

circuits [8][2]. This chapter provides a background on Sun’s work and introduces the 

terminology used in the rest of the document. 

1.1 Single track handshaking 
 

In the absence of a global clock that controls the data flow; asynchronous designs 

rely on handshaking to transfer data between functional blocks. A particularly interesting 

form of handshaking is the single track protocol proposed by K. van Berkel [18]. In a 
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single track protocol a single wire carries both the forward and reverse handshake signals. 

A sender briefly drives the wire to one logic level, signaling the presence of data on 

adjacent data wires. The receiver, noticing that change in the wire’s state, copies the 

corresponding data and then briefly drives the wire to the other logic state to indicate that 

it has absorbed the previous data value. The single track protocol has been widely used 

by Beerel [7] and Sutherland [17] in the development of different asynchronous 

architectures. 

Single track signaling is attractive not only because a single wire occupies less 

space, but also because single track signaling consumes minimum energy per cycle. A 

transition must pass in each direction, and the single wire does exactly that with 

automatic return to the initial state after each handshake. These two advantages are offset 

by a timing issue inherent in the word “briefly.” Because sender and receiver share the 

signaling wire and drive it in opposite directions, each must take care to cease its drive 

promptly so that the other has free use of the wire. Proper operation of single-track 

systems depends on the proper behavior of each participant to drive only briefly.  

Another important problem with these single track circuits is their limited testing 

ability. In general, these circuits do not conform to the standard circuit templates 

supported by commercial timing libraries. Unavailability of standard timing libraries for 

these circuits thereby becomes the limiting factor for their verification by using 

commercial techniques like static timing analysis. Previous work [13] has shown that 

library characterization for single track circuits can be done. However, the presence of 

bidirectional pins and combinational loops in these circuits result in empty timing graphs 
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in static timing analysis tools like Synopsys PrimeTime. This thesis addresses the issue of 

timing verification of single track circuits by developing a flow for the GasP family of 

asynchronous control circuits which is such a single track system [17].  

1.2 GasP family of circuits 
 

The 6-4 GasP family evolved from an earlier circuit family called asynchronous 

symmetric pulse protocol (asP*) which was designed by Charles E. Molnar. In [12] 

Molnar articulated the basic control requirement for asynchronous pipelines where each 

stage fired to advance the data through the data latches. The last three letters in the name 

GasP acknowledge its asP* ancestry. The ‘6-4’ term represents the six logic gates in the 

forward direction between each stage and its successor, gates A B C D E F shown 

in Figure 1, and the four logic gates in the reverse direction, gates A B C X in Figure 1. 

A linear pipeline of GasP control circuits can be viewed as a cascade as shown 

in Figure 2 where the predecessor signal (PRED) of a stage is connected to the successor 

signal (SUCC) of the previous stage. Similarly the SUCC of a stage is connected to the 

PRED of the next stage. Two stages are connected through the single track wire called 

the state-wire which is used for handshaking between stages. 



 

Figure 1: GasP Plain 
 

 

Figure 2: GasP connections 
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s consumed the data. Second, it makes the successor state-wire full by pulling 

SUCC high to indicate the next 

wledgement of data consumption from the next stage which is 

indicated by the successor st

the NMOS keeper. Once the current stage fires, the NMOS keeper is turned off and the 

  When there is no token on SUCC (i.e. the successor state-wire is empty), the 

NOR gate is enabled to process a new token on PRED. When a new token arrives on 

PRED, it indicates that the previous GasP stage has fired and the data is getting advanced 

to the latches controlled by the current GasP stage. As the PRED signal goes high, the 

current GasP stage raises its FIRE signal to make its latches transparent. Apart from 

making the latches transparent, this FIRE signal performs two other tasks. First, it makes 

the predecessor state-wire empty by pulling PRED low to inform the previous GasP stage 

that it ha

GasP stage that the data is getting advanced to its data 

latches. 

The presence of a token on SUCC (i.e. the successor state-wire is full) indicates 

that the next stage is yet to consume its data and any new token on PRED will thereby 

have to wait to be processed. In other words, a GasP stage cant fire for the second time 

until it receives an ackno

ate-wire being empty. This prevents the second data from 

corrupting the first data. 

Notice that after the previous stage drives the PRED signal high, the current stage 

is responsible for actively maintaining the predecessor state-wire high through the PMOS 

keeper. Once the current stage fires, the PMOS keeper is turned off and the predecessor 

state-wire is pulled low. Similarly, after the next stage drives the SUCC signal low, the 

current stage is responsible for actively maintaining the successor state-wire low through 
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res are always statically driven thereby making the GasP family more robust to 

noise.  

 Fl
 

to take advantage of these 

features in their novel co

 the data-

path quite similar to the way the clock guides the data in synchronous systems.  

successor state-wire is pulled high. This handshake mechanism makes sure that both the 

state-wi

1.3 eet architecture 

In a generic processor that operates on the notion of a common clock signal, the 

clock speed has to be slow enough to accommodate each computation. As a result, there 

exists a “worst path” that limits the clock frequency even though other parts of the chip 

might be able to complete their operation in much less time. In contrast, each part of an 

asynchronous system takes as much or as little time as it needs. Coordinating the 

asynchronous actions, however, also takes time and chip area. If the efforts required for 

local coordination are small, an asynchronous system may, on average, be faster than a 

clocked system. Another advantage of asynchrony is the negligible power consumption in 

the idle parts of the chip as an asynchronous chip by default is in power down mode. The 

VLSI research team of Sun Microsystems Laboratories plans 

mputer design called FLEET [8][2].  

A top level overview of a linear pipeline in the FLEET architecture is explained in 

Figure 3. Here the GasP cells act as local clock generators that drive the respective 

latches opaque and transparent. In general, the GasP cells guide the data across



 

Figure 3: A linear pipeline in the FLEET Architecture 

1.4 Contributions of this thesis 
 
This thesis makes the following contributions: 

• Timing constraints for the GasP family of circuits that address both correct operation 

and power considerations are identified. 

• The presence of timing loops and bi-directional pins results in empty timing graphs in 

a commercial static timing analysis tool, Synopsys PrimeTime. As a result of this, 

verification of the timing constraints using a conventional static timing analysis flow 

is not possible. In order to overcome these challenges, pseudo pins and a novel split 

pin architecture were used. Thus a new static analysis flow was developed for the 

verification of the timing constraints imposed on the GasP family of circuits. 

• After verifying the timing constraints, it is essential to determine the cause of timing 

violations, if any. However, PrimeTime provides little insight towards determining 
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the exact cause of the timing violations in these complicated single track circuits. The 

worst case of operation for the violated timing constraints were identified which will 

help the designer in post-analysis debugging. 
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Chapter 2 

Timing Constraints for GasP 
 

In order to ensure the timing correctness of the GasP circuits a set of timing 

constraints need to be met. These constraints can be classified into two parts. First, there 

are a set of internal timing constraints for the GasP control cells where a particular signal 

is required to arrive before another signal. These constraints depend on the relative 

ordering of signals and hence are termed as Relative Timing (RT) constraints on control 

logic. Second, the latches in the data-path which are clocked by the GasP control circuits 

need to meet the setup and hold constraints. Since the setup and hold constraints are also 

based on the relative ordering of signals we examine both sets of constraints using the 

Relative Timing (RT) framework defined in [16]. Similar RT constraints for other single 

track circuits like SSTFB were identified in [9]. 

2.1 Relative Timing (RT) constraints on control logic 
 

The GasP family of circuits depends on the relative timing of logic gates to avoid 

drive conflict at the state-wire. Careful choice of the transistor sizes in GasP circuits 

enables the two participants to operate quickly while avoiding conflict. The transistors in 

the 6-4 GasP circuits are chosen to be strong enough so that each logic gate has 

approximately the same delay. This is possible because all but two of the logic gates 

drive fixed loads. The NOR gate, called A in Figure 1, drives only its own output 

capacitance, the capacitance of the relatively short wire to the inverter called B, and the 

input capacitance of inverter B. Likewise, B drives only its own output capacitance, a 
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short wire, and inverter C. In addition to driving both the inverter D and the NMOS 

transistor X and the wires to them, inverter C must drive the rather large load presented 

by the long control wire to the many latches that will capture the data. Thus inverter C 

tends to be rather large, but its load is the same in every module.  

However, the two lone transistors E and X drive loads that vary from module to 

module. Their major load is the capacitance of the state-wire between modules. If the 

neighbor module happens to be nearby, the state-wire load will be small, but if it happens 

to be far away, it may be much larger. The module designer cannot know the exact length 

of the state-wire until the module has been placed in the system. This variable state-wire 

load imposes the RT constraints on all the GasP modules. 

 Using the RT approach, two important failure modes were identified for the 

intended behavior of the GasP circuits in [11]. Apart from these two constraints the GasP 

control circuits are required to satisfy two other RT constraints for desired operation. 

These four constraints are illustrated the following sections and the behavior of the GasP 

design is represented by up- and down-going transitions (+ or -) of key signals to the 

latches and neighboring GasP stages: FIRE, PRED, and SUCC. In all these constraints 

the delay of the dotted path is required to be less than that of the solid path. These four 

RT constraints are broken down into two groups for conciseness as follows: 

2.1.1 Rail to rail constraints 
 

The rail to rail constraints ensure that the state-wire is able to reach the power and 

ground rails. This ensures that every circuit in the GasP control pipeline successfully 



 
 

11

completes the handshake with its nearest neighbors. Note that the 6-4 GasP circuit shown 

in Figure 1 has sets of five inverting gates that form closed loops. One such loop, called 

the successor loop, involves gates A B C D E. Whenever the inputs to the NOR gate A 

cause gate A to act, the successor loop will change the state of the successor state-wire in 

such a way as to discontinue that action. Similarly, the five gates A B C X F form a 

predecessor loop that serves a similar purpose. The five gates in each loop form, in effect, 

a pair of five-inverter ring-oscillators coupled to neighbors by the NOR logic function 

inside the GasP module and the state-wires through which the module communicates 

with its neighbors. It is also important to notice that these two loops in each GasP module 

meet at the NOR gate. Completion of either of the loops shuts off both of them. Failure 

can result if either of these two loops completes before the other is adequately underway. 

This results into two timing constraints that involve the difference in delay of the two 

loops.  

2.1.1.1 Predecessor loop constraint on the successor state-wire 
 

The first timing constraint, illustrated in Figure 4, states that PRED of the next 

GasP stage should go high before PMOS gate E of the current stage stops driving it; 

see Figure 1. This constraint has a margin of four gate delays. However, the presence of a 

large state-wire load from SUCC of stage a1 to PRED of stage a2 and a small state-wire 

load on PRED of stage a1 reduces this margin and may lead to a violation of this 

constraint. Moreover, if PMOS gate E in stage a1 fails to drive the state-wire all the way 

up before the predecessor loop shuts E off, data moving forward may be lost. 



 

Figure 4: Predecessor loop constraint on the successor state-wire 

2.1.1.2 Successor loop constraint on the predecessor state-wire 
 

The second timing constraint, illustrated in Figure 5, states that SUCC of the 

previous GasP stage should go low before NMOS gate X of the current stage stops 

driving it; see Figure 1. This constraint has a margin of four gate delays. However, the 

presence of a large state-wire load from PRED of stage a2 to SUCC of stage a1 and a 

small state-wire load on SUCC of stage a2 reduces this margin and may lead to a 

violation of this constraint. Moreover, if NMOS gate X in stage a2 fails to drive the state-

wire all the way down before the successor loop shuts X off, bubbles moving backward 

may be lost, resulting in duplication of data. 

 

Figure 5: Successor loop constraint on the predecessor state-wire 
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Notice that each constraint involves the relative ordering of two actions on the 

state-wire that leads to an adjacent module. When the first of the two actions completes, 

it turns off the driving action of both loops. Thus a very fast predecessor loop may 

prematurely terminate the drive of a slower successor loop, and vice versa. 

2.1.2 Short circuit constraints 
 

Each participant in a single-track signaling protocol must cease driving the state-

wire soon enough to make room for the action of the other participant. Were a participant 

to drive the wire for too long a time, both might drive it concurrently in opposite 

directions, consuming unnecessary energy and producing an indeterminate logic signal. 

Some single-track systems [7][18] make use of the analog properties of the state-wire. 

Each participant drives the wire “long enough” for it to pass some threshold voltage that 

will alert the other participant. Other single-track systems, including GasP, depend on the 

relative timing of logic gates to avoid drive conflict at the state-wire. This results in two 

timing constraints, one for each state-wire. 

2.1.2.1 Short circuit constraint on the successor state-wire 
 

The third timing constraint, illustrated in Figure 6, states that the PMOS gate E of 

the current stage must cease driving the state-wire before the NMOS gate X of the next 

stage is turned on. This constraint has a margin of zero gate delay and hence is really 

tight.  



FIRE+ 

PRED- SUCC+ 

FIRE + 

FIRE+ 

PRED+ SUCC+ 

FIRE + 
Stage a1 Stage a2  

Figure 6: Short circuit constraint on the successor state-wire 

2.1.2.1 Short circuit constraint on the predecessor state-wire 
 

The fourth timing constraint, illustrated in Figure 7, states that the NMOS gate X 

of the current stage must cease driving the state-wire before the PMOS gate E of the 

previous stage is turned on. This constraint has a margin of zero gate delay and hence is 

really tight.  

FIRE-

PRED- SUCC-

FIRE -

FIRE-

PRED- SUCC-

FIRE -
Stage a1 Stage a2  

Figure 7: Short circuit constraints on the predecessor state-wire 
 

Notice that both the short circuit constraints have a margin of zero gate delays and 

hence it is evident that these constraints will be violated much of the time. However these 
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constraints are specifically used for margin analysis. A margin is set up by the designer 

for the amount of short circuit allowed in the design. If there are violations beyond this 

margin, then there is increase in the total dynamic power consumption. However, it is 

important to note that the violation of this constraint does not result in functional failures. 

2.2 Relative Timing (RT) constraints on the data-path 
 

The GasP control circuits are used to clock the data-path consisting of latches. It 

is thereby essential for the data to meet setup and hold checks at every latch. An example 

for these checks is illustrated in Figure 8. 

 

Figure 8: Setup and Hold Checks 
 

 The entire FLEET architecture has been based on the premise that time 

borrowing in latches is an added advantage and not a luxury. Hence for verification 
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purposes, we should assume that no time borrowing is allowed between latches. In this 

scenario, the data has to be available before the transparent phase of the clock starts.   

 

Figure 9: RT constraints on the data-path 
 

It is important to recollect that the FIRE signal of the current stage (F2) goes high 

six gate delays after the FIRE signal of the previous stage (F1) had gone high. This is 

illustrated in Figure 9, which assumes a 10 gate delay cycle time, a forward latency(FL) 

of 6 gate delays and a backward latency(BL) of 4 gate delays. In order to meet the setup 

requirement, the data values coming from the F1-enabled latches should reach the F2-

enabled latches before the start of the five gate-delay transparency window for F2. 

From Figure 9, we can see that this means the transition time from the data inputs of the 

F1-enabled latches to the data inputs of the F2-enabled latches can be a maximum of six 

gate delays. For the hold time violations the second data should not corrupt the first data. 

In order to meet the hold requirement, the next data values coming from the F1-enabled 

 
 

16



 
 

17

latches should not reach the F2-enabled latches before the end of the current five gate-

delay transparency window for F2. From Figure 9, we can see that this means the 

transition time from the data inputs of the F1-enabled latches to the data inputs of the F2-

enabled latches has to be at least one gate delay. 
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Chapter 3 

Library Characterization for GasP 
 

The industry standard format for representing delay and power information of a 

library is the liberty format. The liberty description identifies the characteristics of a 

technology and the cells it contains. The procedure of creating a liberty file for single 

track circuits was shown in [13]. This thesis uses the same procedure to characterize the 

delay information of GasP cells. The delay model used is the non-linear delay model as it 

provides a reasonable tradeoff between accuracy and complexity. This delay model uses 

lookup tables indexed by input slews and load capacitance. There are three steps involved 

in such a delay characterization procedure. The first step is to identify the various timing 

arcs present in the different cells to be characterized. The second step is to carry out the 

spice simulations required to measure the propagation times and the slew rates for each of 

these arcs. The final step involves measuring the capacitance of the different pins present 

in the cell. The following sections go over these steps in detail. 

3.1 Defining timing arcs 
 

The timing arcs that identify the behavior of the GasP cells can be represented 

using a signal transition diagram as shown in Figure 10. In the figure, the ‘+’ symbol 

indicates a rising transition, the ‘-’ symbol indicate the falling transition, the ‘0Z’ symbol 

indicates the low to tri-state transition and the ‘1Z’ symbol indicates the high to tri-state 

transition. Notice that all the timing paths used to define the timing constraints in Chapter 

2 are covered in this signal transition diagram. 



 

Figure 10 : Complete signal transition diagram for GasP 
 

In order to reduce the complexity of the characterization process and to achieve a 

faster solution, we decided to compromise on accuracy by not including the FIRE  pin in 

the flow. The reason behind excluding FIRE   came from the fact that the timing arcs 

from FIRE to FIRE   were internal to the cell. The two arcs FIRE- to FIRE  + and 

FIRE+ to FIRE  - represented the rising and falling delays of the inverter D in . 

These delays will be essentially the same for all the GasP cells and hence can be easily 

estimated. These estimated values can then be used as timing margins while verifying the 

Relative Timing constraints on the control cells which will be discussed in .  

Figure 1

Chapter 4

The reduced signal transition diagram for GasP is shown in Figure 11. Notice that 

removing the FIRE   pin does not affect the timing paths passing through it. However, 

the timing paths which would have terminated on FIRE   will now have to terminate on 

FIRE.  

 
 

19



 

Figure 11: Reduced signal transition diagram for GasP 

3.2 Characterization of the timing arcs 

3.2.1 Setting up the simulation environments 
 

After identifying the timing arcs, the next step is to create appropriate simulation 

environments to characterize them. As mentioned earlier, the liberty file consists of 

lookup tables indexed by input slews and load capacitance.  In order to generate real 

world input waveforms, the pre-driver method mentioned in [13] was used. This method 

is shown in Figure 12 which uses a variable sized buffer B and a variable load 

capacitance CL. In order to characterize the timing arc PRED+ to FIRE+, the size of the 

input buffer B is changed for generating different input slews. Also, the load CL is varied 

based on the cell drive strength to generate a 2D table (6 x 6) for each timing arc. The 

table thus generated is expected to have enough points for interpolation and extrapolation. 
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Figure 12: Pre-driver method 

3.2.2 Measuring arc delays 
 

The industry standard for performing the worst case analysis to encounter on-chip 

variation is to implement multiple timing libraries.  The general paradigm of having fast 

and slow timing libraries allows a tool like PrimeTime to choose minimum and 

maximum delays for different timing paths. Recollect that all the RT constraints are of 

the form where one timing path A has to be shorter than the other timing path B. For 

worst case analysis, we need to verify that the maximum delay through timing path A has 

to be smaller than the minimum delay through timing path B. This is a conservative, yet 

safe approach. Thus, two timing libraries having the minimum and maximum delays for 

each arc are required for verification. In order to speed up the process of making the 

timing libraries, we chose to be less conservative by taking only the simultaneous 

switching effects of the NOR gate into account. Another more conservative approach of 

making the timing libraries would be to consider fast and slow circuit corners for each 

gate in the design. 

These two timing libraries were generated by using different initial conditions 

while measuring the various timing arcs. These conditions are articulated as follows: 
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1. PRED+ to FIRE+ 

a. Fast .lib: SUCC pin of the DUT is held at 0 with no initial conditions on the 

other pins. 

b. Slow .lib: SUCC pin of the DUT changes from 1 to 0 at the same time as the 

inverted PRED signal. This can be done by putting an inverter on the SUCC pin 

which is of the same strength as the inverter F shown in Figure 1. 

2. FIRE+ to SUCC+ 

a. Fast .lib: SUCC pin is set to 0 by using .ic command in spice. 

b. Slow .lib: Same as above. 

3. FIRE+ to PRED- 

a. Fast .lib: PRED pin is set to 1 by using .ic command in spice. 

b. Slow .lib: Same as above. 

4. PRED- to FIRE- 

a. Fast .lib: SUCC pin of the DUT changes from 0 to 1 at the same time as the 

inverted PRED signal. This can be done by putting an inverter on the SUCC pin 

which is of the same strength as the inverter F shown in Figure 1. 

b. Slow .lib: SUCC pin of the DUT is held at 0 with no initial conditions on the 

other pins. 

5. SUCC+ to FIRE- 

a. Fast .lib: The inverted PRED signal of the DUT changes from 0 to 1 at the 

same time as the SUCC pin changes from 0 to 1. This can be done by putting an 
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inverter on the SUCC pin which is of the same strength as the inverter F shown 

in Figure 1. 

b. Slow .lib: PRED pin of the DUT is held at 1 with no initial conditions on the 

other pins. 

6. SUCC- to FIRE+ 

a. Fast .lib: PRED pin of the DUT is held at 1 with no initial conditions on the 

other pins. 

b. Slow .lib: The inverted PRED of the DUT changes from 1 to 0 at the same time 

as the SUCC pin changes from 1 to 0. This can be done by putting an inverter on 

the SUCC pin which is of the same strength as the inverter F shown in Figure 1. 

3.3 Measuring pin capacitances: 
 

The liberty format requires pin capacitances for all pins. A standard delay 

matching technique used to measure these pin capacitances is shown in Figure 13. In 

order to measure the capacitance on PRED, the input to output delay ‘d1’ of buffer B is 

measured. The DUT is then replaced by a variable capacitor CV and its value is swept till 

the input to output delay ‘d2’ of buffer B matched the delay ‘d1’. The capacitance at 

which the delays match is the capacitance of PRED. 



 

Figure 13: Measuring pin capacitances 

3.4 Generating the Liberty files 
 

Sun’s internal CAD tool Electric [6] was used to generate the two liberty files.  

The flow used by Electric is shown in Figure 14, where it uses the layout and a constraint 

file as inputs for generating the final liberty file. Electric automatically generates the 

required Spice netlists and their stimuli by using the information provided in the 

constraint file.  These files are then fed to Hspice for simulation and performing the 

necessary measurements. The data output from Hspice which is in the .mt# file format is 

used by Electric to generate the liberty file.  
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Figure 14: Characterization flow 
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Chapter 4 

Static Timing Analysis for GasP 
 

After the generation of the timing libraries, the last step is to verify the articulated 

timing constraints using static timing analysis. Static timing analysis validates the timing 

performance of a design by checking all possible paths for timing violations. Synopsys 

PrimeTime is a gold standard static timing analysis tool which measures minimum and 

maximum delays through timing paths and verifies them against the given timing 

constraints. However, PrimeTime is a tool designed to verify synchronous designs and 

hence it heavily relies on the notion of having a global clock against which it verifies the 

timing constraints. As a result of this, a number of challenges were encountered in 

making PrimeTime correctly interpret a netlist containing asynchronous cells like GasP. 

The first part of this chapter discusses these problems and their solutions. These solutions 

are then used to develop a complete flow for timing verification as shown in the second 

part. 

4.1 Challenges in interpreting asynchronous netlists 

4.1.1 Bi-directional pins 
 

In the single track protocol, a single state-wire is driven by the two 

communicating modules that are connected to it. As a result of this the PRED and SUCC 

pins act as both input as well as output pins and hence are termed as bi-directional pins. 

When these pins are instantiated in a Verilog netlist that is fed to PrimeTime, each pin is 

broken by PrimeTime as a pin having one input port and one output port. We believe that 

it is a characteristic feature of PrimeTime to break the timing paths at every input port. 



This was inferred from observing that when a netlist having bi-directional pins was given 

to PrimeTime, it generated empty timing graphs. As the timing paths are broken at bi-

directional pins, the timing information is lost at these pins as shown in Figure 15. 

FIRE+ 

PRED- SUCC+ 

FIRE -

The timing path FIRE+ to FIRE-
is broken at PRED and hence 
all the timing information is lost

 

Figure 15: Bi-directional pin problem 
 

 In order to overcome this problem pertaining to the bi-directional pins, we 

propose a split pin architecture shown in Figure 16. The split pin architecture requires 

inherent changes to be made to the Verilog netlist as well as the timing libraries. In the 

Verilog netlist, all the bidirectional pins need to be split into different input and output 

pins. As shown in Figure 16, PRED is split into PRED_IN and PRED_OUT and SUCC is 

split into SUCC_IN and SUCC_OUT. The PRED_IN pin of a GasP stage is connected to 

the SUCC_OUT pin of the previous stage and the SUCC_IN pin of a GasP stage is 

connected to the PRED_OUT pin of the next stage as shown in Figure 17. Similar 

changes are required to be made to the timing libraries where timing information 

pertaining to the PRED and SUCC pins is distributed among these separate input and 

output pins. As a consequence of splitting the pins, the measured short circuit constraints 

would be less conservative. However, this effect can be compensated by taking the effect 

 
 

27



of short circuit constraint into account during the characterization of the timing arcs 

FIRE+ to PRED- and FIRE+ to SUCC+. 

 

Figure 16:  Split pin architecture 
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FIRE

PRED_IN

SUCC_IN

To Data
Latches

SUCC_OUT

PRED_OUT

FIRE

PRED_IN

SUCC_IN

To Data
Latches

SUCC_OUT

PRED_OUT

 

Figure 17: Connectivity of the split pin architecture 

4.1.2 Handling loops 
 

As all asynchronous architectures are designed using some handshaking protocol, 

there are implicit combinational loops present in such designs. The GasP architecture also 

has inherent timing loops, one of which is shown in Figure 18. 

FIRE

PRED_IN

SUCC_IN

To Data
Latches

SUCC_OUT

PRED_OUT

FIRE

PRED_IN

SUCC_IN

To Data
Latches

SUCC_OUT

PRED_OUT

Stage a1 Stage a2  

Figure 18: Loops in GasP 
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PrimeTime has two loop breaking techniques: static loop breaking and dynamic 

loop breaking. The static loop breaking technique can disable timing paths of interest and 

thus result in incorrect timing reports. Although, the dynamic loop breaking does not 

disable any timing path, it is impractical due to the large run-times and heavy memory 

usage associated with it. Hence, both these techniques do not work for asynchronous 

circuits [13]. 

4.1.2.1 Explicitly breaking timing loops 
 

As shown in [13], the timing loops are required to be broken explicitly by using 

the command set_disable_timing. The timing arcs to be disabled have been carefully 

chosen so that the critical timing information is never lost. The timing arc from 

SUCC_IN to FIRE is a non critical arc for the predecessor loop constraint on the 

successor state-wire as well as the short circuit constraint on the successor state-wire. 

Hence this arc can be disabled while verifying these two constraints. Similarly, the timing 

arc from PRED_IN to FIRE can be disabled while verifying the successor loop constraint 

on the predecessor state-wire and the short circuit constraint on the predecessor state-wire.  

4.1.2.2 Loops that cannot be broken 
 

When a timing loop consists of only two timing arcs, the delay and slew 

information of one timing arc is dependent on the delay and slew information of the other 

timing arc. Hence both timing arcs are critical and disabling any one arc will result in 

incorrect delay calculations. The GasP cells have two such timing arcs out of which one 

is shown in Figure 19. 



 

Figure 19: Loops that cannot be broken 
 

Since both the timing arcs are critical from a timing point of view, we decided not 

to disable either of them. Instead we chose to add a pseudo pin named FIRE_PS as shown 

in Figure 20. Adding the pseudo pin resulted in breaking the loop by not allowing it to 

terminate on FIRE and hence the loss of timing information is prevented. Note that, the 

FIRE_PS pin is only associated to the falling transition on FIRE.  As a result of this, the 

timing arcs SUCC_OUT+ to FIRE- and PRED_OUT- to FIRE- will now terminate on 

FIRE_PS. The addition of FIRE_PS requires slight modifications to the Verilog netlist 

and the timing libraries. The Verilog netlist requires an additional pin in the definition of 

every GasP module. It is essential to note that this pin should be connected to a pseudo 

load which is similar to the load on FIRE for obtaining correct timing reports. This can be 

easily done by either editing the DSPF file or by instantiating a pseudo load in the 

Verilog netlist so that the load information on FIRE_PS is same as that on FIRE. As far 

as the changes in the timing libraries are concerned, an additional pin needs to be added 

to the cell definition of the GasP cell. The timing information pertaining to the falling 
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edge of FIRE then needs to be removed from the pin definition of FIRE and added to the 

pin definition of FIRE_PS. 

 

Figure 20 : Adding a pseudo pin 

4.1.3 Lack of a global clock 
 

Asynchronous architectures lack the presence of a global clock and rely on local 

handshakes for data transfer. However, PrimeTime relies on the presence of a global 

clock to break a design into various timing paths [15]. In the synchronous world, these 

paths start at a clock edge where data is launched and end at the clock edge where data is 

captured. In contrast to this, the timing paths for GasP discussed in the previous chapters 

do not have a guiding clock edge. The method of non-sequential data to data checks was 

introduced in [13] to overcome this problem. PrimeTime can perform setup and hold 

checking between two data signals, neither of which is defined to be a clock, at any two 

pins in the design using the set_data_check command [14]. 
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Figure 21: Using set_data_check command 
 

The relative timing constraints stemming from a point of divergence can be 

modeled using the set_data_check command and the two points of convergence are 

modeled as the constrained and related pins. An example pertaining to the rail-to-rail 

constraints discussed in section 2.1.1.1 is shown in Figure 21. Here the delay of the 

dotted path has to be less than the solid path. In other words we want to constraint the 

rising edge on PRED pin relative to the falling edge on FIRE pin and thus the names 

constrained pin and related pin. As a consequence, the above data check will be met only 

if PRED+ happens $delay amount of time before FIRE- happens. Notice that we would 

have liked to constraint the rising edge on FIRE  pin instead of the falling edge on FIRE 

pin. However we chose to ignore the inverter delay while modeling the timing libraries. 
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This inverter delay is taken into account while deciding the value of $delay and thus the 

effect of not having the FIRE  pin is made negligible. 

4.2 Timing verification flow for GasP 
 

The timing verification flow involves verification of the RT constraints imposed 

on the GasP control cells as well as on the data-path. In order to verify the RT constraints 

on the data-path, it is essential to obtain the timing information pertaining to the FIRE 

signals which act as locally generated clock signals for the data-path. We thereby divide 

the complete flow into two parts. In the first part we verify the RT constraints on the 

GasP control cells and obtain the phase differences between the FIRE signals. Using the 

phase differences obtained from the first part, we can then verify the RT constraints on 

the data-path in the second part. 

4.2.1 Part 1 of the verification flow 

4.2.1.1 Verifying RT constraints on the control cells 
 

The four RT constraints defined for the GasP control cells are verified in two runs 

as they require different initial conditions. As mentioned previously the timing arc from 

SUCC_IN to FIRE is a non critical arc for the predecessor loop constraint on the 

successor state-wire as well as the short circuit constraint on the successor state-wire. In 

the first run, this timing arc is disabled and the two constraints are verified for each GasP 

cell. An example is shown in Figure 22 where the predecessor loop constraint on the 

successor state-wire is being verified for a linear GasP pipeline. In the second run the 

timing arc from PRED_IN to FIRE is disabled for the verification of the successor loop 



constraint on the predecessor state-wire as well as the short circuit constraint on the 

predecessor state-wire. 

 

Figure 22: Verifying the RT constraints 

4.1.2 Measuring phase differences between fire signals 

4.1.2.1 Measuring phase difference for setup checks 
 

In the previous chapters, we explained that the worst case for setup time violation 

on a latch will be caused due to an early arriving signal clock signal (F2) with respect to 

the arrival of clock signal (F1) on the previous latch. Thus we need to measure the 

shortest time from F1 to F2 to take the worst case into account. Recall that all the shortest 

times are characterized in the fast.lib. Thus by using the delay values from the fast.lib we 

can measure the relative phase differences between the fire signals as shown in Figure 23. 
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Figure 23: Measuring phase difference for setup checks 

4.1.2.2 Measuring phase difference for hold checks 
 

In the previous chapters, we also explained that the worst case for hold time 

violation F2-enabled latch happens when it is transparent and the clock signal (F1) on the 

F1-enabled latch arrives early. In this case, both the latches are simultaneously 

transparent for more time and hence are more likely to cause a hold time violation. Thus 

we need to find the shortest time from F2 to F1 to take the worst case into account. As all 

the shortest times are characterized in the fast.lib, we can use those delay values to find 

the relative phase differences between the fire signals as shown in Figure 24. 
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Figure 24: Measuring phase difference for hold checks 

4.2.2 Part 2 of the verification flow 
 

The last step in the verification flow is to use the phase differences between the 

clocks obtained from Part 1 to define the clocks in the PrimeTime script and verify the 

RT constraints on the data-path as shown in Figure 25. In this step the setup and hold 

checks are performed separately in two different runs as each run requires different 

clocks. 
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Figure 25: Verifying the RT constraints on the data-path 
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Chapter 5 

Evaluating the effects of operating environments 
 

After verifying the relative timing constraints using PrimeTime, the next step is to 

interpret the timing reports and to determine if any timing constraint was violated. 

Although PrimeTime verifies the timing constraints correctly, it offers very little insight 

for the designer in understanding the cause of timing violations in these complicated 

single track circuits. In this chapter, we discuss the effects of the operating environments 

on the performance of an asynchronous pipeline to identify the worst cases of operation 

for the RT constraints defined in Chapter 2. Using the analysis presented in this chapter, 

the designer can then simulate the violated paths using dynamic simulation to determine 

the source of the violation. This analysis can also be useful during the functional 

verification of these circuits. 

The effects of the operating environments can be observed at the micro level as 

well as the macro level. At the micro level, the speed of the cells used in the pipeline can 

be affected by the arrival times of their inputs. This phenomenon has been elaborated as 

the Charlie Effect. At the macro level, the throughput of the pipeline is affected by the 

region in which they operate. In the subsequent sections, we first give a background on 

these two effects and then discuss their impacts on the different RT constraints.  

 

 

 
 



5.1 Background 

5.1.1 The Charlie Effect 
 

The Charlie Diagram, named in the honor of the late Charles E. Molnar specifies 

the delay through a RendezVous element as a function of the separation time between the 

input arrivals [5]. For a two-input NOR gate shown in Figure 26, let tA and tB be the 

arrival times of the inputs A and B. Both the inputs have high-to-low transitions which 

results in the output C to have a low-to-high transition. Let the arrival time of the output 

be denoted by tC.  

 

Figure 26: NOR gate 
 

Charlie Diagrams measure the output delay of a gate from the average of the 

arrival times of the input events. Figure 27, shows a typical Charlie Diagram where this 

delay is denoted by D(s) and is plotted as a function of s, where s is the half the 

separation time between the input arrivals. When s > 0, the input A arrives last, and when 

s < 0 the input B arrives last.  
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In summary, 

D(s) = tC – (tA + tB)/2 

s = (tA – tB)/2 

As seen in Figure 27, the curve of D(s) versus s resembles a hyperbola. For large 

separations of the input events, the output time approaches the time of the last input plus 

some constant. Thus, the Charlie Diagram has asymptotes with slopes of +/- 1 [19].   

The input to output delays with respect to the individual inputs is represented as 

follows:  

DA(s) = tC – tA = D(s) - s  

DB(s) = tC – tB = D(s) + s 

 

Figure 27: Charlie Diagram 
 

 Consider a scenario where input A changes after input B. If A changes a long 

time after B, the NMOS controlled by B will be in its cut-off region and the PMOS 
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controlled by B will be fully conducting as A changes. Furthermore, the node between 

the two PMOS transistors will be close to the power rail which allows a relatively fast 

transition on the output C. On the other hand, if A changes only slightly after B, then the 

two transistors controlled by B will both be partially conducting as A changes. This 

results in a greater delay from the transition of A to the transition of C. Similar effects 

occur if A changes before B. These are the simultaneous switching effects described 

in [3][4]. 

The dependence of the output delay on the relative arrival times described above 

is reflected in the curve of the Charlie Diagram approaching the asymptotes 

monotonically from above. Returning to the scenario where input A changes after B, we 

note that if A changes a long time after B, then s is large and positive and the delay DA(s) 

is small. Conversely, if A changes only slightly after B, then s is smaller and the delay 

DA(s) increases. Because of the dependence of gate delay on the relative arrival time of 

the inputs is naturally modeled by Charlie Diagram, this dependence is termed as the 

“Charlie Effect”. 

5.1.2 Operating regions 
 

The throughput of all asynchronous linear pipelines depends on the region in 

which they operate. Based on the availability of a data or a space (i.e. bubble), these 

pipelines operate in the data-limited region, the bubble-limited region or the full 

throughput region. In the data-limited region, the speed of the pipeline is limited by the 

availability of the data and is illustrated in Figure 28. In this region the throughput of the 

pipeline increases as the data values are inserted more frequently into the pipeline.  



 

Figure 28: Data limited region 
 

In the bubble limited region, the output environment cannot consume the data 

provided by the pipeline and is illustrated in Figure 29. This results in the successor state-

wire remaining full for a longer duration. As a result of this, the data values are stalled at 

the predecessor state-wire and hence they start accumulating in the pipeline. 

In the full throughput region, the next data is inserted into the first stage of the 

pipeline at the same time as the second stage consumes the first data and thus creates a 

space for the next token. This is illustrated in Figure 30. Notice that in the full throughput 

case both the inputs of the NOR gate switch at the same time. As a result of this, all the 

signals have a cycle time of 10 gate delays because the two ring oscillators having five 

inverting gates are running at full speed. 
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Figure 29: Bubble limited region 
 
 

 

Figure 30: Full throughput region 
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5.2 Charlie Effects on the RT constraints for control logic 
 

The three operating conditions result in different delays for two timing arcs 

namely the timing arc SUCC- to FIRE  - and the timing arc PRED+ to FIRE+. The 

timing arc SUCC- to FIRE  - is dependent on when the next instruction arrives and the 

timing arc PRED+ to FIRE+ is dependent on when the next bubble arrives. All the other 

timing arcs complete by themselves as they are either pass through the single input gates 

or they pass through the NOR gate for a falling transition on the output of the NOR gate. 

Note that the falling transition on the output of the NOR gate requires the presence of 

only one input.  

The Charlie Effect affects only the rising transition on the output of the NOR gate 

where the speed of the NOR gate varies depending on the arrival times of its two inputs. 

The NOR gate has minimum delay when one of the inputs arrives earlier than the other 

input. This happens in the data limited case and the bubble limited case. The NOR gate 

has maximum delay when both the inputs arrive at the same time which happens in the 

full throughput case. Even though the timing arc SUCC- to FIRE  - is dependent on the 

arrival of the next instruction, it has minimum delay for the bubble limited case. Similarly, 

though the timing arc PRED+ to FIRE+ is dependent on the arrival of the next bubble, it 

has minimum delay for the data limited case.  

Both the timing arcs SUCC- to FIRE  - and PRED+ to FIRE+ are used for the 

evaluation of the short circuit constraints.  As shown in  and , both these Figure 6 Figure 7
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arcs fall on the solid path which has to be larger than the dotted path. Hence the worst 

case for these constraints happens when these timing arcs have minimum delays. In 

conclusion, the data limited case and the bubble limited case must be used while 

verifying these short circuit constraints through dynamic simulation. 

5.3 Charlie Effects on the RT constraints for the data-path 

5.3.1 Finding the worst case for the setup constraint 
 

Let us consider a transition phase of a GasP pipeline from the full throughput case 

into the data limited case. This will help us evaluate the difference between the two cases. 

As mentioned previously, the NOR gate has a maximum delay in the full throughput case. 

Let us take this delay to be 1 gate delay. We also know that in the data limited case, the 

NOR gate operates slightly faster. Let us take this delay to be 0.5 gate delay. After 

making these assumptions, we can make our analysis based on Figure 31. 



 

P1 

S1/P2 

Full Throughput Data limited 

0 5 10 15 18.5 20.5 24 30 4 

The setup time 
from F1 to F2 has 
changed from 6 
to 5.5 

F2 

F1 

Figure 31: Worst case for setup checks 
 

As illustrated in Figure 31, the setup check from F1 to F2 is 6 gate delays in the 

full throughput case and is reduced to 5.5 in the data limited case due to a slightly faster 

NOR gate. This leads us to the conclusion that the data limited case is worse than the full 

throughput case. The next question that comes into mind is “what happens in the bubble 

limited case?” 

In the bubble limited case the successor state-wire of a particular cell is stuck at 

full and hence that cell can’t fire again till its successor state-wire becomes empty. As a 

result of this, the phase difference between F1 going high and F2 going high will always 

be greater than 6 gate delays. Hence we can conclude that the data limited case is the 

worst case for the setup checks. 
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5.3.2 Finding the worst case for the hold constraint 
 

Let us now consider a transition phase of a GasP pipeline from the full throughput 

case into the bubble limited case. This will help us evaluate the difference between the 

two cases. Similar to the previous case we will assume the NOR gate delay to be 1 gate 

delay in the full throughput case. We also know that in the bubble limited case, the NOR 

gate operates slightly faster. Let us take this delay to be 0.5 gate delay. After making 

these assumptions, we can make our analysis based on Figure 32. 
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Figure 32: Worst case for hold checks 
 

As illustrated in Figure 32, the hold time check from F1 to F2 has changed from 1 

to 1.5 for the bubble limited case. Hence as shown in Figure 32, the third data launched 

by F1 gets more time to corrupt the second data that is getting latched by F2. This can 
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result in a hold time violation. Thus we can conclude that the bubble limited case is 

worse than the full throughput case. 

The hold time violations occur because the second data tries to corrupt the first 

data. This happens because of the overlapping transparent periods of the adjacent fire 

signals. However in the data limited case, the second fire signal arrives later than the 

usual 5 gate delays. This results in no overlap between the transparent periods of F1 and 

F2. Hence the data limited case can never be the worst case for hold time violations. 
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Chapter 6 

Example 
 

In this chapter, we discuss an example on which the timing verification flow was 

successfully tested. The FLEET architecture has an on-deck stage which acts a three-way 

branch that passes instructions ahead. The on-deck stage decides which way to pass the 

incoming instructions based on the flags set by the predicate circuit. The predicate circuit 

has to make its decisions in time for the efficient working of the on-deck stage. This 

desired behavior imposes heavy timing constraints on the latches and flip-flops used in 

the predicate circuit. Hence we chose to verify the constraints on the predicate circuit as a 

part of this thesis. 

6.1 The Predicate circuit 
 

The predicate circuit uses the eighteen instruction bits received by the on-deck 

stage and an external flag named flag C to set the two flags, named flag A and flag B. 

This predicate circuit is illustrated in Figure 33. As shown in the figure, a six-bit 

instruction field (in[1:6]) for flag A and a separate six-bit instruction field (in[7:12]) for 

flag B define the function that computes the next values for the two flags. The remaining 

six bits of the instruction (in[13:18]) decide whether the new values of the two flags are 

going to be latched or the flags retain their old values. This is represented in the clock 

gating circuit that generates the signal Clk_DF which is used to latch the new values for 

the two flags. 



 

Figure 33: The Predicate circuit 
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6.1.1 Three input AndOrLatch 
  

One of the important components in the predicate circuit is the three-input 

AndOrLatch. The internal details of this component are shown in Figure 34. The three 

instructions bits are allowed to pass through the latches during the transparent phase of 

the enable signal. The output of these latches is combined with the three flags by the 

three NAND gates. The output of the NAND gates is then combined with a three input 

NAND gate which causes the entire function to be of the And-Or form and hence the 

name AndOrLatch. 

 

Figure 34: 3ip-AndOrLatch 
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6.2 Creating timing libraries and the Verilog netlist 
 

The fast and slow timing libraries were created using Sun’s internal CAD tool 

Electric. The fast timing library (fast.lib) is illustrated in Appendix A. Due to the 

presence of Sun’s proprietary information in these libraries; we have chosen to use fixed 

values for the GasP Plain cell used in the fast.lib. Notice that we have put the timing 

information pertaining to the falling edge of the FIRE pin in the timing section of the 

pseudo pin FIRE_PS. The Verilog netlist shown in Appendix B takes this into account. A 

pseudo load has also been added in the Verilog netlist so that the pin FIRE_PS has the 

same load as the FIRE pin. 

6.3 PrimeTime scripts 
 

The two PrimeTime scripts used for the two-part timing verification flow are 

shown in Appendix C and Appendix D. The PrimeTime script of Appendix C is used to 

verify the RT constraints on the GasP control cells and generate the necessary timing 

information required for verify the RT constraints on the data-path. This information is 

then used by the PrimeTime script of Appendix D to verify RT constraints on the data-

path. The script shown in Appendix C takes on-chip variation into account by using the 

notion of max and min libraries as shown in Figure 35. 

set_operating_conditions -analysis_type on_chip_variation -min 
fast -max slow -min_library fleet_fast -max_library fleet_slow
set_min_library fleet_slow -min_version fleet_fast

 

Figure 35 : On-chip variation in PrimeTime 
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A small subset of the script in Appendix C which is used to verify the predecessor 

loop constraint on the successor state wire is shown in Figure 36. Here the timing path 

from SUCC_IN to FIRE is disabled in order to break the loop shown in Figure 18. In the 

next step, we create a clock on the FIRE pin which is the point of divergence for this 

constraint. Thereafter we issue a data-to-data check between the constrained pin 

PRED_IN and the related pin FIRE_PS. The results of this data-to-data check are then 

reported in a text file. 

 

Figure 36: Verification of RT constraints on the GasP control cells 
 

After the verification of the RT constraints on the GasP control cells, the script 

in Appendix C measures the phase difference between clocks for the setup and hold 

checks. This is shown in Figure 37. As seen previously, we first disable the timing path 

SUCC_IN to FIRE to break the loop and then we report the phase difference in a text file. 

 

Figure 37: Measuring phase difference between fire signals for setup checks 
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The phase information thus received is then used by the script in Appendix D to 

verify the setup and hold checks on the data-path. As shown in Figure 38, we first define 

the clocks using the phase information. We then define the input conditions and generate 

the various timing reports. 

 

Figure 38: Verification of RT constraints on the data-path 

6.4 Interpreting Timing Reports 
 

The timing reports generated by PrimeTime for all the constraints are listed 

in Appendix E through Appendix K. These reports enable margin analysis and allow the 

designer to identify the paths where the timing constraints were violated. A subset of the 

timing report presented in Appendix H is shown in Figure 39. Note that all the delay 

values are in nano-seconds. PrimeTime first calculates the delay for the two timing paths, 

namely the constrained path and the relative path. Then it verifies whether the delay on 

the constrained path is less than the delay on the relative path.  

As seen from Figure 39, the data on the constrained path at the inA pin of the 

three input NAND gate is required to arrive before the latching signal on the relative path 

arrives on the inC pin. As indicated by the last line of the timing report, the data on the 

inA pin arrives 40ps before the data on the pinC pin and hence the timing constraint is 
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met. Similarly the other timing reports can also be interpreted. Note that even though the 

short circuit constraints produced a violation of 10ps, the design was passed as the 

designer had chosen to set a margin of 50ps for the short circuit violation.  

Startpoint: andOr3wL_5/latch10_1 (negative level-sensitive latch clocked    
by MO/FIRE')

Endpoint: nand3_1 (rising clock gating-check end-point clocked by DF/FIRE)
Path Group: **clock_gating_default**
Path Type: max

Point                                             Incr       Path
-------------------------------------------------------------------
clock MO/FIRE' (fall edge)                        0.20       0.20
clock network delay (propagated)                  0.05       0.25
andOr3wL_5/latch10_1/clk (latch10)                0.00       0.25 f
andOr3wL_5/latch10_1/Q (latch10)                  0.03       0.28 r
andOr3wL_5/andOr3_1/inA[1] (andOr3)               0.00       0.28 r
andOr3wL_5/andOr3_1/nand10sy_1/out (nand10sym)    0.03       0.32 f
andOr3wL_5/andOr3_1/nand3in6_1/out (nand3in6_6)   0.07       0.39 r
andOr3wL_5/andOr3_1/out (andOr3)                  0.00       0.39 r
andOr3wL_5/out (andOr3wLat)                       0.00       0.39 r
nand3_1/inA (nand3in6_6)                          0.00       0.39 r
data arrival time                                            0.39

clock DF/FIRE (rise edge)                         0.43       0.43
clock network delay (propagated)                  0.00       0.43
nand3_1/inC (nand3in6_6)                                     0.43 r
clock gating setup time                           0.00       0.43
data required time                                           0.43
-------------------------------------------------------------------
data required time                                           0.43
data arrival time                                           -0.39
-------------------------------------------------------------------
slack (MET)                                                  0.04

 

Figure 39 : Timing Report 
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Chapter 7 

Conclusions and Future Work 
 

A timing verification flow for single track asynchronous circuits is a pre-requisite 

for incorporating these circuits in standard ASIC designs. An efficient timing analysis 

flow can then be used to enable synthesis, timing driven place and route and also ECO 

flows of substantially larger designs. This thesis presents the issues and solutions 

encountered in establishing such a verification flow for a single track circuit family like 

GasP.  First, we identified the timing constraints which are necessary to be satisfied to 

ensure correct operation of the GasP control cells and the associated data-path logic. 

Second, we characterized the timing information pertaining to the GasP control cells in 

the industry standard Liberty format. Third, we used a static timing analysis tool, 

Synopsys PrimeTime, to verify the identified timing constraints. Finally, we identified 

the worst cases of operation which can be used to simulate the timing violations. 

 The work presented in this thesis is promising as it enables ASIC designers to use 

the GasP control cells in the standard ASIC flow. The developed flow is a pre-cursor for 

timing sign-off of Sun’s FLEET architecture which uses the GasP control cells for local 

handshaking. The availability of GasP timing libraries has also made it possible to 

perform back annotated Verilog simulations which consume substantially less time for 

larger designs as compared to Spice simulations. Another extension to this flow is to 

enable timing driven place and route using commercial CAD tools like Cadence 

Encounter. The liberty characterization flow can also be enhanced to take power 

consumption into account and thereby enable power analysis. Such a liberty file can then 
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be used for power driven place and route which is gaining importance with the reducing 

technologies. 

As a part of future work, we believe that the flow presented in this thesis can be 

easily extended to other asynchronous circuit families like USC’s Static Single Track Full 

Buffer (SSTFB) and Intel’s Asynchronous Bus Connector (ABC). Both these circuit 

families have different relative timing constraints that guide their operation and 

identifying them would be the only change required to the current flow. The current flow 

can thus be made generic by establishing connection with a tool like ANALYZE [1] that 

automatically generates the relative timing constraints for a given circuit template. 
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Appendix A 

Fast timing library 
 
library (fleet_fast) { 
  technology (cmos) ; 
  delay_model : table_lookup ; 
  library_features(report_delay_calculation); 
  capacitive_load_unit (1.0, pf) ; 
  time_unit : 1ns ; 
  voltage_unit : 1V ; 
  current_unit : 1A ; 
  input_threshold_pct_rise : 50.0 ; 
  input_threshold_pct_fall : 50.0 ; 
  output_threshold_pct_rise : 50.0 ; 
  output_threshold_pct_fall : 50.0 ; 
  slew_lower_threshold_pct_rise : 20.0 ; 
  slew_upper_threshold_pct_rise : 80.0 ; 
  slew_lower_threshold_pct_fall : 20.0 ; 
  slew_upper_threshold_pct_fall : 80.0 ; 
  pulling_resistance_unit : 1ohm ; 
  default_fanout_load : 1.0 ; 
  default_inout_pin_cap : 1.0 ; 
  default_input_pin_cap : 1.0 ; 
  default_output_pin_cap : 0.0 ; 
  operating_conditions (fast) { 
    voltage : 0.85 ; 
    temperature : 110.0 ; 
    process : 1.0 ; 
  } 
  default_operating_conditions : fast; 
lu_table_template(delay_template_cap_P_plain_6x1) { 
 variable_1 : total_output_net_capacitance; 
 index_1 ("0.010,0.015,0.020,0.025,0.030,0.035"); 
} 
 
lu_table_template(delay_template_P_rise_plain_6x1) { 
 variable_1 : input_net_transition; 
 index_1 ("0.1,0.2,0.3,0.4,0.5,0.6"); 
} 
 
lu_table_template(delay_template_P_fall_plain_6x1) { 
 variable_1 : input_net_transition; 
 index_1 ("0.1,0.2,0.3,0.4,0.5,0.6"); 
} 
 
lu_table_template(delay_template_S_rise_plain_6x1) { 
 variable_1 : input_net_transition; 
 index_1 ("0.1,0.2,0.3,0.4,0.5,0.6"); 
} 
 
lu_table_template(delay_template_S_fall_plain_6x1) { 
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 variable_1 : input_net_transition; 
 index_1 ("0.1,0.2,0.3,0.4,0.5,0.6"); 
} 
 
lu_table_template(delay_template_cap_S_plain_6x1) { 
 variable_1 : total_output_net_capacitance; 
 index_1 ("0.010,0.015,0.020,0.025,0.030,0.035"); 
} 
cell(GASP_PLAIN) { 
 
 cell_leakage_power : 0.0; 
 
 pin (PRED_IN) { 
  direction : input; 
  capacitance : 0.010; 
  } 
 
 pin (PRED_OUT) { 
  direction : output; 
  capacitance : 0.010; 
 
  timing() { 
 
   related_pin : "FIRE"; 
   timing_type : combinational_fall; 
   timing_sense : negative_unate; 
   cell_fall(delay_template_cap_P_plain_6x1) { 
    values("0.04,0.04,0.04,0.04,0.04,0.04"); 
    } 
   fall_transition(delay_template_cap_P_plain_6x1) { 
    values("0.1,0.2,0.3,0.4,0.5,0.6"); 
    } 
   } 
  } 
  
 pin (FIRE) { 
  direction : output; 
  capacitance : 0.010; 
 
  timing() { 
 
   related_pin : "PRED_IN"; 
   timing_type : combinational_rise; 
   timing_sense : positive_unate; 
    
   cell_rise(delay_template_P_rise_plain_6x1) { 
    values("0.15,0.15,0.15,0.15,0.15,0.15"); 
    } 
   rise_transition(delay_template_P_rise_plain_6x1) { 
    values("0.1,0.2,0.3,0.4,0.5,0.6"); 
    } 
   } 
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  timing() { 
 
   related_pin : "SUCC_IN"; 
   timing_type : combinational_rise; 
   timing_sense : negative_unate; 
   cell_rise(delay_template_S_rise_plain_6x1) { 
    values("0.11,0.11,0.11,0.11,0.11,0.11"); 
    } 
   rise_transition(delay_template_S_rise_plain_6x1) { 
    values("0.1,0.2,0.3,0.4,0.5,0.6"); 
    } 
   } 
  } 
 
 pin (FIRE_PS) { 
  direction : output; 
  capacitance : 0.010; 
 
 
  timing() { 
 
   related_pin : "PRED_OUT"; 
   timing_type : combinational_fall; 
   timing_sense : positive_unate; 
   
   cell_fall(delay_template_P_fall_plain_6x1) { 
    values("0.16,0.16,0.16,0.16,0.16,0.16"); 
    } 
   fall_transition(delay_template_P_fall_plain_6x1) { 
    values("0.1,0.2,0.3,0.4,0.5,0.6"); 
    } 
 
   } 
 
  timing() { 
 
   related_pin : "SUCC_OUT"; 
   timing_type : combinational_fall; 
   timing_sense : negative_unate; 
 
   cell_fall(delay_template_S_fall_plain_6x1) { 
    values("0.12,0.12,0.12,0.12,0.12,0.12"); 
    } 
   fall_transition(delay_template_S_fall_plain_6x1) { 
    values("0.1,0.2,0.3,0.4,0.5,0.6"); 
    } 
   } 
  } 
 
 pin (SUCC_IN) { 
  direction : input; 
  capacitance : 0.010; 
  }  



 
 

64

  
 pin (SUCC_OUT) { 
  direction : output; 
  capacitance : 0.010; 
 
  timing() { 
 
   related_pin : "FIRE"; 
   timing_type : combinational_rise; 
   timing_sense : positive_unate; 
   cell_rise(delay_template_cap_S_plain_6x1) { 
    values("0.08,0.08,0.08,0.08,0.08,0.08"); 
    } 
   rise_transition(delay_template_cap_S_plain_6x1) { 
    values("0.1,0.2,0.3,0.4,0.5,0.6"); 
    } 
   } 
 
  } 
 } 
} 
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Appendix B 

Verilog netlist for the predicate circuit 
 
module inv20B(in, out); 
  input in; 
  output out; 
endmodule   /* inv20B */ 
 
module inv30(inA, out); 
  input inA; 
  output out; 
endmodule   /* inv30 */ 
 
module nand10sym(inA, inB, out); 
  input inA; 
  input inB; 
  output out; 
endmodule   /* nand10sym */  
 
module nand3in6_6(inA, inB, inC, out); 
  input inA; 
  input inB; 
  input inC; 
  output out; 
endmodule   /* nand3in6_6 */  
 
module nor10sym(inA, inB, out); 
  input inA; 
  input inB; 
  output out; 
endmodule   /* nor10sym */ 
 
module latch10(D, clk, mc, Q); 
  input D; 
  input clk; 
  input mc; 
  output Q; 
endmodule   /* latch10 */ 
 
module flip_flop10(D, clk, mc, Q); 
  input D; 
  input clk; 
  input mc; 
  output Q; 
endmodule   /* flip_flop10 */ 
 
module andOr3(inA, inB, out); 
  input [1:3] inA; 
  input [1:3] inB; 
  output out; 
  wire net_1, net_2, net_3; 
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  nand10sym nand10sy_1(.inA(inA[1]), .inB(inB[1]), .out(net_1)); 
  nand10sym nand10sy_2(.inA(inA[2]), .inB(inB[2]), .out(net_2)); 
  nand10sym nand10sy_3(.inA(inA[3]), .inB(inB[3]), .out(net_3)); 
  nand3in6_6 nand3in6_1(.inA(net_1), .inB(net_2), .inC(net_3), .out(out)); 
 
endmodule   /* andOr3 */ 
 
module andOr3wLat(clk, flag_A, flag_B, flag_C, \in[1] , \in[2] ,  
      \in[3] , mc, out); 
  input clk; 
  input flag_A; 
  input flag_B; 
  input flag_C; 
  input \in[1] , \in[2] , \in[3] ; 
  input mc; 
  output out; 
  wire [1:3] Q; 
 
  latch10 latch10_1(.D( \in[1] ), .clk(clk), .mc(mc), .Q(Q[1])); 
  latch10 latch10_2(.D( \in[2] ), .clk(clk), .mc(mc), .Q(Q[2])); 
  latch10 latch10_3(.D( \in[3] ), .clk(clk), .mc(mc), .Q(Q[3])); 
  andOr3 andOr3_1(.inA(Q[1:3]), .inB({flag_A, flag_B, flag_C}),  
      .out(out)) 
endmodule   /* andOr3wLat */ 
 
module GASP_PLAIN (PRED_IN,PRED_OUT,FIRE,FIRE_PS,SUCC_IN,SUCC_OUT); 
input PRED_IN; 
input SUCC_IN; 
output FIRE; 
output FIRE_PS; 
output PRED_OUT; 
output SUCC_OUT; 
endmodule   /* GASP_PLAIN */ 
 
 
module predicate(Pin, Sin, flag_C_F, flag_C_T, in, mc,  Pout, Sout, predBar); 
  input Pin; 
  input Sin; 
  input flag_C_F; 
  input flag_C_T; 
  input [1:18] in; 
  input mc; 
  output Pout; 
  output Sout; 
  output predBar; 
 
  wire FIRE_MO,FIRE_MO_PS,S_MO_IN,S_MO_OUT,FIRE_DF,FIRE_DF_PS; 
  wire Clk_MO, ok_A,ok_B,Clk_DF; 
  wire flag_A_F, flag_A_T, flag_B_F, flag_B_T; 
  wire net_1, net_2, net_3, net_4, net_5, net_6, net_7, net_8, net_9, net_10; 
  wire net_11,net_12,net_13,net_14; 
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  GASP_PLAIN MO 
(.PRED_IN(Pin),.PRED_OUT(Pout),.FIRE(FIRE_MO),.FIRE_PS(FIRE_MO_PS),.SUCC_IN(S_MO_IN),
.SUCC_OUT(S_MO_OUT)); 
  GASP_PLAIN DF 
(.PRED_IN(S_MO_OUT),.PRED_OUT(S_MO_IN),.FIRE(FIRE_DF),.FIRE_PS(FIRE_DF_PS),.SUCC_I
N(Sin),.SUCC_OUT(Sout)); 
 
  inv20B inv20B_1(.in(FIRE_MO), .out(Clk_MO)); 
  inv20B inv20B_2(.in(FIRE_MO_PS), .out(net_11)); 
 
  nand3in6_6 nand3_1(.inA(ok_A), .inB(ok_B), .inC(FIRE_DF), .out(Clk_DF)); 
  nand3in6_6 nand3_2(.inA(net_12), .inB(net_13), .inC(FIRE_DF_PS), .out(net_14)); 
 
  andOr3wLat andOr3wL_1(.clk(Clk_MO), .flag_A(flag_A_T),  
      .flag_B(flag_B_T), .flag_C(flag_C_T), .\in[1] (in[1]), .\in[2]  
      (in[3]), .\in[3] (in[5]), .mc(mc), .out(net_1)); 
  andOr3wLat andOr3wL_2(.clk(Clk_MO), .flag_A(flag_A_F),  
      .flag_B(flag_B_F), .flag_C(flag_C_F), .\in[1] (in[2]), .\in[2]  
      (in[4]), .\in[3] (in[6]), .mc(mc), .out(net_2)); 
 
  andOr3wLat andOr3wL_3(.clk(Clk_MO), .flag_A(flag_A_T),  
      .flag_B(flag_B_T), .flag_C(flag_C_T), .\in[1] (in[7]), .\in[2]  
      (in[9]), .\in[3] (in[11]), .mc(mc), .out(net_3)); 
  andOr3wLat andOr3wL_4(.clk(Clk_MO), .flag_A(flag_A_F),  
      .flag_B(flag_B_F), .flag_C(flag_C_F), .\in[1] (in[8]), .\in[2]  
      (in[10]), .\in[3] (in[12]), .mc(mc), .out(net_4)); 
 
  andOr3wLat andOr3wL_5(.clk(Clk_MO), .flag_A(flag_A_T),  
      .flag_B(flag_B_T), .flag_C(flag_C_T), .\in[1] (in[13]), .\in[2]  
      (in[15]), .\in[3] (in[17]), .mc(mc), .out(ok_A)); 
  andOr3wLat andOr3wL_6(.clk(Clk_MO), .flag_A(flag_A_F),  
      .flag_B(flag_B_F), .flag_C(flag_C_F), .\in[1] (in[14]), .\in[2]  
      (in[16]), .\in[3] (in[18]), .mc(mc), .out(ok_B)); 
 
  flip_flop10 flop_1(.D(net_1), .clk(Clk_DF), .mc(mc), .Q(net_5)); 
  flip_flop10 flop_2(.D(net_2), .clk(Clk_DF), .mc(mc), .Q(net_6)); 
  flip_flop10 flop_3(.D(net_3), .clk(Clk_DF), .mc(mc), .Q(net_7)); 
  flip_flop10 flop_4(.D(net_4), .clk(Clk_DF), .mc(mc), .Q(net_8)); 
 
  nand10sym nand10sy_1(.inA(net_5), .inB(net_6), .out(flag_A_T)); 
  nand10sym nand10sy_2(.inA(net_5), .inB(net_6), .out(net_9)); 
  inv30 inv30_1(.inA(net_9), .out(flag_A_F)); 
 
  nand10sym nand10sy_3(.inA(net_7), .inB(net_8), .out(flag_B_T)); 
  nand10sym nand10sy_4(.inA(net_7), .inB(net_8), .out(net_10)); 
  inv30 inv30_2(.inA(net_10), .out(flag_B_F)); 
 
  nor10sym nor10sym_1(.inA(ok_A), .inB(ok_B), .out(predBar)); 
 
endmodule   /* predicate */ 
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Appendix C 

PrimeTime script for verifying the RT constraints on the 
control logic and obtaining phase differences for verifying the 
RT constraints on the data-path 
 
#reading the design 
set netlist predicate.v 
set top predicate 
read_lib fleet_slow.lib 
read_lib fleet_fast.lib 
read_verilog $netlist 
set link_path "fleet_slow $netlist" 
link_design -keep_sub_designs $top 
set_operating_conditions -analysis_type on_chip_variation -min fast -max slow -min_library fleet_fast -
max_library fleet_slow 
set_min_library fleet_slow -min_version fleet_fast 
 
#predecessor loop constraint on the successor state-wire 
set_disable_timing -from SUCC_IN -to FIRE {MO DF}  
create_clock -period 0.4 MO/FIRE 
set_data_check -clock MO/FIRE -rise_to DF/PRED_IN -fall_from MO/FIRE_PS -setup -0.04 
report_timing -from MO/FIRE -max_paths 1 > fwd_path_report1.txt 
remove_data_check -clock MO/FIRE -rise_to DF/PRED_IN -fall_from MO/FIRE_PS 
remove_clock -all 
 
#short circuit constraint on the successor state-wire 
create_clock -period 0.4 MO/SUCC_OUT 
set_data_check -clock MO/SUCC_OUT -fall_to MO/FIRE_PS -rise_from DF/FIRE  -setup 0.04 
report_timing -from MO/SUCC_OUT -max_paths 1 > fwd_path_report2.txt 
remove_data_check -clock MO/SUCC_OUT -fall_to MO/FIRE_PS -rise_from DF/FIRE 
remove_clock -all 
remove_disable_timing -from SUCC_IN -to FIRE {MO DF} 
 
#successor loop constraint on the predecessor state-wire 
set_disable_timing -from PRED_IN -to FIRE {MO DF} 
create_clock -period 0.4 DF/FIRE 
set_data_check -clock DF/FIRE -fall_to MO/SUCC_IN -fall_from DF/FIRE_PS -setup 0.0 
report_timing -from DF/FIRE -max_paths 1 > rev_path_report1.txt 
remove_data_check -clock DF/FIRE -fall_to MO/SUCC_IN -fall_from DF/FIRE_PS 
remove_clock -all 
 
#short circuit constraint on the predecessor state-wire 
create_clock -period 0.4 DF/PRED_OUT 
set_data_check -clock DF/PRED_OUT -fall_to DF/FIRE_PS -rise_from MO/FIRE  -setup -0.04 
report_timing -from DF/PRED_OUT -max_paths 1 > rev_path_report2.txt 
remove_data_check -clock DF/PRED_OUT -fall_to DF/FIRE_PS -rise_from MO/FIRE 
remove_clock -all 
remove_disable_timing -from PRED_IN -to FIRE {MO DF} 
 
#using the fast.lib for obtaining phase information 
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remove_lib fleet_slow 
set link_path "fleet_fast $netlist" 
link_design -keep_sub_designs $top 
 
#obtaining phase difference between fire signals for setup checks 
set_disable_timing -from SUCC_IN -to FIRE {MO DF} 
create_clock -period 0.4 MO/FIRE 
set_max_delay 1 -from MO/FIRE -to DF/FIRE 
report_timing -from MO/FIRE -max_path 1 > setup_phase_report.txt 
remove_disable_timing -from SUCC_IN -to FIRE {MO DF} 
remove_clock -all 
 
#obtaining phase difference between fire signals for hold checks 
set_disable_timing -from PRED_IN -to FIRE {MO DF} 
create_clock -period 0.4 DF/FIRE 
set_max_delay 1 -from DF/FIRE -to MO/FIRE 
report_timing -from DF/FIRE -max_path 1 > hold_phase_report.txt 
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Appendix D 

PrimeTime script to verify the RT constraints on the data-path 
 
#reading the design 
set netlist predicate.v 
set top predicate 
read_lib fleet_fast.lib 
read_verilog $netlist 
set link_path "fleet_fast $netlist" 
echo $link_path 
link_design -keep_sub_designs $top 
 
#defining the clocks for setup checks 
create_clock MO/FIRE -period 0.400 -waveform { 0.2 0.4 } 
create_clock DF/FIRE -period 0.400 -waveform { 0.43 0.63 } 
set_propagated_clock {MO/FIRE DF/FIRE} 
set_clock_transition 0.01 -rise {MO/FIRE DF/FIRE} 
set_clock_transition 0.01 -fall {MO/FIRE DF/FIRE} 
 
#setting the input conditions 
set_input_delay -0.1 -clock MO/FIRE {in*} 
set_input_transition 0.01 in* 
set_false_path -from flag_C_F 
set_false_path -from flag_C_T 
set timing_slew_propagation_mode worst_arrival 
 
#generating timing reports for setup checks 
report_timing -from flop*/clk -to flop*/D -max_paths 3 -nworst 3 -delay_type max > setup_report1.txt 
report_timing -group **clock_gating_default** -max_paths 3 -nworst 3 -delay_type max > 
setup_report2.txt 
report_timing -from andOr*/latch*/clk -to flop*/D -max_paths 3 -nworst 3 -delay_type max > 
setup_report3.txt 
 
#defining the clocks for hold checks 
create_clock MO/FIRE -period 0.400 -waveform { 0.2 0.4 } 
create_clock DF/FIRE -period 0.400 -waveform { 0.45 0.65 } 
set_propagated_clock {MO/FIRE DF/FIRE} 
set_clock_transition 0.01 -rise {MO/FIRE DF/FIRE} 
set_clock_transition 0.01 -fall {MO/FIRE DF/FIRE} 
 
#generating timing reports for hold checks 
report_timing -from flop*/clk -to flop*/D -max_paths 3 -nworst 3 -delay_type min > hold_report1.txt 
report_timing -group **clock_gating_default** -delay_type min -max_paths 3 -nworst 3 > hold_report2.txt 
report_timing -from andOr*/latch*/clk -to flop*/D -max_paths 3 -nworst 3 -delay_type min > 
hold_report3.txt 
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Appendix E 

PrimeTime report for the predecessor loop constraint on the 
successor state-wire 
 
**************************************** 
Report : timing 
 -path_type full 
 -delay_type max 
 -max_paths 1 
Design : predicate 
Version: Z-2006.12-SP1 
Date   : Tue Oct 14 02:49:39 2008 
**************************************** 
 
 
  Startpoint: MO/FIRE (clock source 'MO/FIRE') 
  Endpoint: DF (falling edge-triggered data to data check clocked by MO/FIRE) 
  Path Group: MO/FIRE 
  Path Type: max 
 
  Point                                         Incr       Path 
  ------------------------------------------------------------------------- 
  clock MO/FIRE (rise edge)                0.00       0.00 
  clock source latency                           0.00       0.00 
  MO/FIRE (GASP_PLAIN)                0.00       0.00 r 
  MO/SUCC_OUT (GASP_PLAIN)    0.08       0.08 r 
  DF/PRED_IN (GASP_PLAIN)       0.00       0.08 r 
  data arrival time                                   0.08 
 
  clock MO/FIRE (rise edge)                 0.00       0.00 
  clock source latency                       0.00       0.00 
  MO/FIRE (GASP_PLAIN)                      0.00       0.00 r 
  MO/PRED_OUT (GASP_PLAIN)           0.04       0.04 f 
  MO/FIRE_PS (GASP_PLAIN)                   0.16       0.20 f 
  data check setup time                      0.04       0.24 
  data required time                                    0.24 
  ------------------------------------------------------------------------- 
  data required time                                    0.24 
  data arrival time                                                        -0.08 
  ------------------------------------------------------------------------- 
  slack (MET)                                           0.16 
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Appendix F 

PrimeTime report for the short circuit constraint on the 
successor state-wire 
 
**************************************** 
Report : timing 
 -path_type full 
 -delay_type max 
 -max_paths 1 
Design : predicate 
Version: Z-2006.12-SP1 
Date   : Tue Oct 14 02:49:39 2008 
**************************************** 
 
 
  Startpoint: MO/SUCC_OUT 
               (clock source 'MO/SUCC_OUT') 
  Endpoint: MO (rising edge-triggered data to data check clocked by MO/SUCC_OUT) 
  Path Group: MO/SUCC_OUT 
  Path Type: max 
 
  Point                                      Incr       Path 
  ------------------------------------------------------------------------- 
  clock MO/SUCC_OUT (rise edge)             0.00       0.00 
  clock source latency                       0.00       0.00 
  MO/SUCC_OUT (GASP_PLAIN)             0.00       0.00 r 
  MO/FIRE_PS (GASP_PLAIN)                0.12       0.12 f 
  data arrival time                                     0.12 
 
  clock MO/SUCC_OUT (rise edge)             0.00       0.00 
  clock source latency                       0.00       0.00 
  MO/SUCC_OUT (GASP_PLAIN)             0.00       0.00 r 
  DF/FIRE (GASP_PLAIN)                      0.15       0.15 r 
  data check setup time                     -0.04       0.11 
  data required time                                    0.11 
  ------------------------------------------------------------------------- 
  data required time                                    0.11 
  data arrival time                                    -0.12 
  ------------------------------------------------------------------------- 
  slack (VIOLATED)                                     -0.01 
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Appendix G 

PrimeTime report for the successor loop constraint on the 
predecessor state-wire 
 
**************************************** 
Report : timing 
 -path_type full 
 -delay_type max 
 -max_paths 1 
Design : predicate 
Version: Z-2006.12-SP1 
Date   : Tue Oct 14 02:49:39 2008 
**************************************** 
 
 
  Startpoint: DF/FIRE (clock source 'DF/FIRE') 
  Endpoint: MO (falling edge-triggered data to data check clocked by DF/FIRE) 
  Path Group: DF/FIRE 
  Path Type: max 
 
  Point                                      Incr       Path 
  ------------------------------------------------------------------------- 
  clock DF/FIRE (rise edge)                 0.00       0.00 
  clock source latency                       0.00       0.00 
  DF/FIRE (GASP_PLAIN)                     0.00       0.00 r 
  DF/PRED_OUT (GASP_PLAIN)               0.04       0.04 f 
  MO/SUCC_IN (GASP_PLAIN)                   0.00       0.04 f 
  data arrival time                                    0.04 
 
  clock DF/FIRE (rise edge)                 0.00       0.00 
  clock source latency                       0.00       0.00 
  DF/FIRE (GASP_PLAIN)                      0.00       0.00 r 
  DF/PRED_OUT (GASP_PLAIN)             0.04       0.04 f 
  DF/FIRE_PS (GASP_PLAIN)                   0.16       0.20 f 
  data check setup time                      0.00       0.20 
  data required time                                    0.20 
  ------------------------------------------------------------------------- 
  data required time                                    0.20 
  data arrival time                                    -0.04 
  ------------------------------------------------------------------------- 
  slack (MET)                                           0.16 
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Appendix H 

PrimeTime report for the short circuit constraint on the 
predecessor state-wire 
 
**************************************** 
Report : timing 
 -path_type full 
 -delay_type max 
 -max_paths 1 
Design : predicate 
Version: Z-2006.12-SP1 
Date   : Tue Oct 14 02:49:39 2008 
**************************************** 
 
 
  Startpoint: DF/PRED_OUT 
               (clock source 'DF/PRED_OUT') 
  Endpoint: DF (rising edge-triggered data to data check clocked by DF/PRED_OUT) 
  Path Group: DF/PRED_OUT 
  Path Type: max 
 
  Point                                      Incr       Path 
  ------------------------------------------------------------------------- 
  clock DF/PRED_OUT (fall edge)             0.20       0.20 
  clock source latency                       0.00       0.20 
  DF/PRED_OUT (GASP_PLAIN)              0.00       0.20 f 
  DF/FIRE_PS (GASP_PLAIN)                   0.16       0.36 f 
  data arrival time                                     0.36 
 
  clock DF/PRED_OUT (fall edge)             0.20       0.20 
  clock source latency                       0.00       0.20 
  DF/PRED_OUT (GASP_PLAIN)                0.00       0.20 f 
  MO/FIRE (GASP_PLAIN)                      0.11       0.31 r 
  data check setup time                      0.04       0.35 
  data required time                                    0.35 
  ------------------------------------------------------------------------- 
  data required time                                    0.35 
  data arrival time                                    -0.36 
  ------------------------------------------------------------------------- 
  slack (VIOLATED)                                     -0.01 
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Appendix I 

PrimeTime report showing the phase relation between FIRE 
signals 
 
**************************************** 
Report : timing 
 -path_type full 
 -delay_type max 
 -max_paths 1 
Design : predicate 
Version: Z-2006.12-SP1 
Date   : Tue Oct 14 02:49:39 2008 
**************************************** 
 
# Phase relation for setup checks 
 
  Startpoint: MO/FIRE (clock source 'MO/FIRE') 
  Endpoint: DF/FIRE (internal path endpoint) 
  Path Group: **default** 
  Path Type: max 
 
  Point                                      Incr       Path 
  ------------------------------------------------------------------------- 
  clock source latency                       0.00       0.00 
  MO/FIRE (GASP_PLAIN)                      0.00       0.00 r 
  MO/SUCC_OUT (GASP_PLAIN)           0.08       0.08 r 
  DF/FIRE (GASP_PLAIN)                      0.15       0.23 r 
  data arrival time                                     0.23 
 
 
# Phase relation for hold checks 
 
  Startpoint: DF/FIRE (clock source 'DF/FIRE') 
  Endpoint: MO/FIRE (internal path endpoint) 
  Path Group: **default** 
  Path Type: max 
 
  Point                                      Incr       Path 
  ------------------------------------------------------------------------- 
  clock source latency                       0.00       0.00 
  DF/FIRE (GASP_PLAIN)                      0.00       0.00 r 
  DF/PRED_OUT (GASP_PLAIN)             0.04       0.04 f 
  MO/FIRE (GASP_PLAIN)                      0.11       0.15 r 
  data arrival time                                     0.15 
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Appendix J 

PrimeTime report for setup checks on the data-path 
 
**************************************** 
Report : timing 
 -path_type full 
 -delay_type max 
 -nworst 3 
 -max_paths 3 
 -group **clock_gating_default** 
Design : predicate 
Version: Z-2006.12-SP1 
Date   : Tue Oct 14 02:50:30 2008 
**************************************** 
 
 
  Startpoint: andOr3wL_5/latch10_1 
               (negative level-sensitive latch clocked by MO/FIRE') 
  Endpoint: nand3_1 (rising clock gating-check end-point clocked by DF/FIRE) 
  Path Group: **clock_gating_default** 
  Path Type: max 
 
  Point                                                   Incr       Path 
  --------------------------------------------------------------------------------------------------- 
  clock MO/FIRE' (fall edge)                            0.20       0.20 
  clock network delay (propagated)                      0.05       0.25 
  andOr3wL_5/latch10_1/clk (latch10)                    0.00       0.25 f 
  andOr3wL_5/latch10_1/Q (latch10)                     0.03       0.28 r 
  andOr3wL_5/andOr3_1/inA[1] (andOr3)                   0.00       0.28 r 
  andOr3wL_5/andOr3_1/nand10sy_1/out (nand10sym)       0.03       0.32 f 
  andOr3wL_5/andOr3_1/nand3in6_1/out (nand3in6_6)      0.07       0.39 r 
  andOr3wL_5/andOr3_1/out (andOr3)                      0.00       0.39 r 
  andOr3wL_5/out (andOr3wLat)                           0.00       0.39 r 
  nand3_1/inA (nand3in6_6)                              0.00       0.39 r 
  data arrival time                                                 0.39 
 
  clock DF/FIRE (rise edge)                              0.43       0.43 
  clock network delay (propagated)                      0.00       0.43 
  nand3_1/inC (nand3in6_6)                                          0.43 r 
  clock gating setup time                                0.00       0.43 
  data required time                                                0.43 
  --------------------------------------------------------------------------------------------------- 
  data required time                                                0.43 
  data arrival time                                                -0.39 
  --------------------------------------------------------------------------------------------------- 
  slack (MET)                                                       0.04 
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Appendix K 

PrimeTime report for hold checks on the data-path 
 
**************************************** 
Report : timing 
 -path_type full 
 -delay_type min 
 -nworst 3 
 -max_paths 3 
 -group **clock_gating_default** 
Design : predicate 
Version: Z-2006.12-SP1 
Date   : Tue Oct 14 02:51:13 2008 
**************************************** 
 
 
  Startpoint: flop_4 (falling edge-triggered flip-flop clocked by DF/FIRE') 
  Endpoint: nand3_1 (rising clock gating-check end-point clocked by DF/FIRE) 
  Path Group: **clock_gating_default** 
  Path Type: min 
 
  Point                                                   Incr       Path 
  --------------------------------------------------------------------------------------------------- 
  clock DF/FIRE' (fall edge)                             0.05       0.05 
  clock network delay (propagated)                      0.04       0.09 
  flop_4/clk (flip_flop10)                               0.00       0.09 f 
  flop_4/Q (flip_flop10)                                 0.05       0.15 r 
  nand10sy_3/out (nand10sym)                           0.04       0.19 f 
  andOr3wL_5/flag_B (andOr3wLat)                        0.00       0.19 f 
  andOr3wL_5/andOr3_1/inB[2] (andOr3)                   0.00       0.19 f 
  andOr3wL_5/andOr3_1/nand10sy_2/out (nand10sym)       0.04       0.23 r 
  andOr3wL_5/andOr3_1/nand3in6_1/out (nand3in6_6)      0.04       0.27 f 
  andOr3wL_5/andOr3_1/out (andOr3)                      0.00       0.27 f 
  andOr3wL_5/out (andOr3wLat)                           0.00       0.27 f 
  nand3_1/inA (nand3in6_6)                              0.00       0.27 f 
  data arrival time                                                 0.27 
 
  clock DF/FIRE (fall edge)                              0.25       0.25 
  clock network delay (propagated)                      0.00       0.25 
  nand3_1/inC (nand3in6_6)                                          0.25 f 
  clock gating hold time                                 0.00       0.25 
  data required time                                                0.25 
  --------------------------------------------------------------------------------------------------- 
  data required time                                                0.25 
  data arrival time                                                -0.27 
  --------------------------------------------------------------------------------------------------- 
  slack (MET)                                                       0.02 
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