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Abstract 

Asynchronous design is increasingly becoming an attractive alternative to synchronous 

design because of  its potential for high-speed, low-power, reduced electromagnetic 

interference, and faster time to market. To support these design efforts, numerous design 

styles and supporting CAD tools have been proposed.  We adopt a template-based 

methodology that facilitates hierarchical design using standard asynchronous channel 

protocols, removes the need for complicated hazard-free logic synthesis, and naturally 

provides fine-grain pipelines with high throughput. We propose seven different templates 

that provide tradeoffs between throughput and robustness to timing. The most robust 

templates are quasi-delay-insensitive in that they work correctly regardless of  delays on 

individual gates. The most aggressive templates use timing assumptions that can be 

satisfied with additional care during transistor sizing, floorplanning, and layout.  

We propose a complete design methodology for template-based designs using standard 

hardware description languages and the Cadence design framework. We demonstrate the 

advantages of the templates and methodology by designing an asynchronous sequential 

channel decoder based on the Fano algorithm. Spice simulations, on the extracted layout, 

show that the circuit runs at 450MHz and consumes 32mW at 25oC.  The asynchronous 

chip runs about 2.15 faster and consumes 1/3 the power of its synchronous counterpart.  
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C h a p t e r  1  

1. Introduction 

Digital VLSI circuit design styles can be mainly classified as either synchronous, 

asynchronous or some mixture. Synchronous designs, consists of  subsystems, which are 

controlled by one or more clocks that control synchronization and communication 

between blocks, have dominated the design space since the 1960’s. Combinational logic is 

placed in between clocked registers that hold the data. The delay through the 

combinational logic plus relevant setup time should be smaller than the clock cycle time.  

In fact, the data at the inputs of  the registers may exhibit glitches or hazards as long as 

they are guaranteed to settle before the sample clock edge arrives. Asynchronous 

methodologies, in contrast, use event-based handshaking to control synchronization and 

communication between blocks. This chapter first reviews various synchronous design 

methodologies and then describes some potential advantages of  asynchronous design, 

before providing a more detailed overview of  the thesis. 

Synchronous design methodologies can be classified in one of  two main categories; 

standard cell design and full custom design. Semi-custom standard-cell-based design 

methodologies offer good performance with typically 12-month design times [1]. They are 

supported by a large array of  mature CAD tools that range from simulation, synthesis, 

verification, and test. The synthesis task is divided into architecture definition, logic/gate-

level design, and physical design. 

A large library of  standard-cell components that have carefully been designed, verified, 
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and characterized supports the synthesis task. This library is generally limited to static 

CMOS based gates for a variety of  reasons. Compared to more advanced dynamic logic 

families, standard CMOS static logic has higher noise margin and thus requires far less 

analog verification, significantly reducing design time. 

Standard-cell designs also use standard clocking strategies to facilitate more automation 

and reduced design times. The forms of  gated clocking are limited, reducing power 

efficiency.  Standard flip-flop based designs are used to simplify timing analysis despite the 

incurrence of  significant data to clock output overheads.  

Moreover, the time-to-market advantage of  standard-cell based designs is being 

attacked by the increasingly difficult task of  estimating wire-delay. In submicron designs, 

the process of  architecture, logic, and technology mapping design could proceed somewhat 

independently from placement and routing of  the cells, power grid, and the clocks because 

wire-delays were negligible compared to gate-delays.  In deep-submicron design, however, 

the relative delay of  long-range wires are increasing and becoming harder to estimate. This 

is causing the traditional separation of  logic synthesis and physical design tasks to break 

down because synthesis is not properly accounting for actual wire delays. This timing-

closure problem has forced numerous shipment schedules to slip. EDA vendors have now 

developed a new suite of  emerging CAD tools that address aspects of  the physical design 

must occur much earlier in the design process.  

In the future, predictions suggest that long-range wires may have 5 to 20 clock cycles in 

delay making estimation particularly critical [1]. In particular it is predicted that that high-

speed clock regions communicating at perhaps reduced frequencies may become prevalent, 

but the semi-custom CAD support for multiple clock domains is just emerging. The 
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simplest approach involves adding synchronizers between clock domains that incurs a 

significant latency penalty. 

Some manufacturers have extended the standard cell design technique to the design of  

datapaths and other higher-level functions such as microprocessors and their peripherals. 

On the other hand the design can also be implemented by optimizing every transistor of  

the layout. This technique is called full custom design, and is generally preferred when one 

or many aspects of  the chip need to be optimized beyond what is readily available in a 

semi-custom approach. Since the designer controls the transistor size, placement of  the 

smallest functional blocks and the main routing method, the end result in general is much 

better than standard cell design. In the full custom method, design time is traded in for 

higher performance, reduced area or power consumption, since all possible circuit 

techniques can be applied, where as in standard cell design, the CAD tool only has a limited 

number of  pre-laid out cells that need to be broad enough to suit every customers need.  

Full-custom design houses have found that these challenges with standard cell design 

can be overcome with longer design cycles of  an average of  36 months. In particular, the 

use of  advanced logic dynamic logic styles has been an area of  growing interest in full-

custom designs [2] [3] [4] [5]. Domino logic is estimated to be 30% faster than static logic 

because of  the improving logical effort derived by the removal of  PMOS logic. Traditional 

domino logic however still suffers from overhead associated with clock skew and latch 

delays. More advanced flip-flops and latches have been developed that somewhat improve 

the clock skew overhead and reduce the latch delays. At the extreme, the latch delays can be 

removed using multiple overlapping clocks in a widely used technique, recently named 

skew-tolerant domino logic [5]. 
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In addition to the problems of  clock distribution and skew is the problem of  heat and 

power consumption. Many of  the gates switch because they are connected to the clock, not 

because they have new input data to evaluate. The biggest gate of  all is the clock driver, 

and it must switch all the time to provide the correct timing, even if  only a small part of  

the chip has anything useful to do. Although gating the clock is an option to send the clock 

signal to only those who need it, stopping and starting a high-speed clock is not easy. 

To reduce power consumption, particularly in memories and long-distance on-ship and 

off-chip communication, low-voltage signalling has been commonly used. These also suffer 

from reduced noise margins, requiring more manual design practices and extensive analog 

simulation. 

The basic cost that achieving this higher performance and low-power presents is the 

reduced noise margin and the increased need for more careful, manual design practices and 

extensive analog verification, pre and post layout. 

The increasing limitations and growing complexity of  both standard-cell and full-

custom synchronous design have led to a change of  focus on digital circuit design. In 

particular, circuits that lack a global controlling clock, namely asynchronous circuits have 

demonstrated potential benefits in many aspects of  system design (e.g. [6], [7], [8], [9], [10], 

[11], [12], [13],[14]). Asynchronous circuits have several advantages over their synchronous 

counterparts, including:  

 1) Elimination of  clock skew: Clock skew is defined as the arrival time difference of  

the clock signal to different parts of  the circuit. In general in standard cell design, to avoid 

this problem, the clock pulse is increased to assure correct operation, which yields slower 

running circuits. However in full custom design buffer insertion, or careful clock tree 
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design and analysis to improve clock routing and clock power are some of  the methods 

synchronous designers are using to handle this problem. Although full custom design 

approach leads to reduction or even elimination of  clock skew, for synchronous design this 

is still a problem that needs to be worked on. On the other hand, since asynchronous 

circuits have no global clock that controls the data flow, there is no clock skew problem.  

 2) Lower power consumption: In general, the constant activity of  the clock signal causes 

synchronous systems to consume power even though some parts of  the circuit may not be 

processing any data. Even though some improvements in full custom design, such as clock 

gating avoid sending the clock signal to the un-active parts the clock driver has to 

constantly provide a powerful clock to able to reach all the parts of  the circuit. Although 

asynchronous circuits in general have more transitions due to the hardware overhead, they 

generally have transitions only in areas that are active in the current computation.  

 3) Average case performance: Synchronous circuit designers have to consider the worst-

case scenario when setting the clock speed to ensure that all the data has stabilized to 

before being latched. However asynchronous circuits detect and react when the 

computation is completed, yielding average case performance rather than worst case [14].  

 4) Easing of  global timing issues: since in synchronous circuits the slowest path dictates 

the clock speed, designers try to optimize all the paths to achieve the highest possible clock 

rate. In particular there maybe long wires, which require large buffers and consume 

significant power even though they may be non-critical or maybe infrequently driven.  In 

contrast in asynchronous circuits optimizing the frequently used paths is easier [9].  

 5) Better technology migration potential: Since the technology which the circuit is 

implemented improves rapidly, for synchronous circuits better performance often can only 
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be achieved by migrating all the system components to the new technology where as for 

asynchronous design the communication between blocks only occur when the completion 

of  the processing is detected, therefore different delays introduced with different 

technologies can be easily substituted into a system without altering other structures.  

 6) Automatic adaptation to physical properties: The delay on a path may change to the 

variations in the fabrication process, temperature, and power supply voltage. Synchronous 

system designers must consider the worst case and set the clock period accordingly. 

However asynchronous circuits naturally adapt to changing conditions since the slowdown 

on any path does not affect the functionality of  the system [15].   

 7) Improved EMI: In a synchronous design, all activity is locked into a very precise 

frequency. The result is nearly all the energy is concentrated in very narrow spectral bands 

at the clock frequency and its harmonics. Therefore, there is substantial electrical noise at 

these frequencies. Activity in an asynchronous circuit is uncorrelated, resulting in a more 

distributed noise spectrum and a lower peak noise value [16]. 

1.1 Asynchronous Circuit Design Flow 

 

The USC Asynchronous CAD and VLSI group, jointly with the Columbia 

Asynchronous group, is currently developing a complete asynchronous circuit design 

methodology that will support automated design exploration of  both high-performance 

and low-power asynchronous circuits. The basic steps of  the methodology are illustrated in 

Figure 1.1. First a language based, model such as CSP [17] and Verilog [18], is used as the 

input description. This input description describes the desired top-level functionality of  the 

chip and maybe annotated with overall constraints on power, energy consumption, 

throughput, latency, chip area, etc. Note that details regarding internal structure or the 
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specific asynchronous protocols used are specifically not included in the description. After 

generating this input description and verifying its correctness, the next step in the 

methodology is to explore and finalize a basic architecture for the design. This basic 

architecture should identify the number and relative characteristics of  the basic blocks in 

the design (register files, ALUs, multipliers, etc.) To automate this step we expect to adapt 

variations in classical high-level synthesis, i.e., scheduling, resource sharing, and binding. After 

architectural design is complete, the next step in the methodology is micro-architecture 

design. In this step the designer can choose to implement the architecture with various 

methods ranging from fine grain pipelines template-based using delay insensitive cells to 

components relying on bounded delay based with no pipelining at all. Depending on the 

style chosen, various optimizations can be applied, namely selection of  the handshaking 

protocol, defining the level of  pipelining, and slack optimization for pipelined designs. 

Once this initial mirco-architecture is created, next step is to identify critical components 

and perform handshaking optimization to achieve higher performance and lower power. Based 

on the final micro-architecture, a gate or transistor level design is generated. This can be 

done either automatically using new template-based synthesis techniques that our group is 

creating or manually. 
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Figure 1-1: Asynchronous circuit design flow under development 
 

Finally, placement and routing will be applied very a similarly to that required synchronous 

circuit design.  In every step all the design process, verification and performance analysis 

tools are used to verify correct functionality and overall performance. The focus this 

proposal is the generation of  new templates for template-based design, as well as to help 

develop the above CAD frame for the automated design of  asynchronous systems.   
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1.2 Expected Contributions of  the Thesis 

Our research group’s goal is to produce a complete design method for asynchronous 

systems, including specification, synthesis, verification, simulation, and testing and to 

develop a suite of  CAD tools supporting the design method. And by using these CAD 

tools to design high-performance and energy-efficient asynchronous microprocessors, and 

systems-on-a-chip. As part of  an ongoing research to accomplish these goals the we:  

• Develop two new quasi delay insensitive, high-speed templates targeted at non-

linear pipelines, which are faster and smaller than other quasi delay insensitive 

templates. Quasi delay insensitive templates are the most robust asynchronous 

building blocks for designs based on templates. By using templates we can mimic 

ease of  design of  the standard cell design methodology in synchronous design. We 

also show the implementation of  some of  the non-linear structures. 

• To achieve higher speeds, we then develop five new bounded delay pipeline 

templates by modifying and further improving the templates developed by 

Columbia University, which are based on timing assumptions to shorten 

handshaking time and achieve higher speeds. In particular, the templates developed 

by Columbia University were targeted for linear pipelines such as FIFOs. Real life 

designs however, require more complex structures that require the template to also 

function correctly with non-linear pipelines. To extend the existing pipelines we 

modify each template to handle non-linear pipelines with little impact on 

performance.  

• We then implement a communication algorithm as a design example in both 

synchronous and asynchronous methods to show the advantages of  asynchronous 
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design over synchronous design as well as to help the development of  a CAD 

environment, which is mainly targeted for template, based design. The 

asynchronous implementation of  the algorithm will also be used to study the trade 

offs among different asynchronous templates from timed to delay insensitive.   

 

1.3 Thesis Organization 

The organization of  the reminder of  this proposal is as follows. Chapter 2 presents 

background on asynchronous circuit design styles, and linear and non-linear pipeline 

applications, Chapter 3 presents the new high speed QDI pipelines, Chapter 4 presents the 

extension to the pipelines introduced by Columbia University and the introduction of  five 

new timed templates, Chapter 5 presents the design example in synchronous, and Chapter 

6 presents in asynchronous. Finally, Chapter 7 presents our semi-custom asynchronous 

design flow.  
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C h a p t e r  2  

2. Background 

This section presents the basics of  asynchronous circuit design and classifies many of  

the existing asynchronous circuit design styles according to data encoding method, 

handshaking style, granularity of  pipelines and circuit style. Then we describe the 

differences between logic synthesis-based methodologies and those that rely more on a 

template-based methodology. We then focus on existing templates that support the design 

of  complex fine-grain pipelines and analyze their performance.  

2.1 Data Encoding Styles 

Single rail [19] communication between functional blocks consists of  one request wire 

and one wire per data bit from the sender to the receiver and one acknowledgment wire 

from the receiver to the sender. Dual rail communication often consists of  two wires per 

data bit from the sender to the receiver and one acknowledgment wire from the receiver to 

the sender. In addition, dual-rail designs can have an additional request line [20]. 1-of-N 

communication is a generalization of  dual rail communication in which [log2N] bits are sent 

using N wires.   

An acknowledgment signal from the receiver to the sender is used to tell the sender 

that the data is no longer needed. The logic that drives this acknowledgment signal often 

involves completion sensing circuitry that helps determine when the receiver is done using the 

current data bits. In single rail communication, completion sensing circuits are 

implemented with bundled data lines [19] or more sophisticated speculative completion 

sensing circuitry [21], [22], that includes delay lines that match the critical paths of  the 

 11



functional unit. On the other hand, completion sensing of  dual rail designs can be done 

using specialized logic that actively identifies when the computation is done. This latter 

logic relies on the dual-rail nature of  the data and can be implemented without relying on 

timing assumptions and thus, is more robust to variations in delay than its delay-line 

counterparts. Completion sensing, however, requires more circuitry than delay lines and, if  

not done wisely, can incur a significant performance, power and area penalty.  

The functional units can be implemented using static or dynamic logic. Often 

functional units that communicate using dual rail or 1-of-N styles are implemented using 

dual rail dynamic logic [23] [24], but since static logic is also possible [23]. Functional units 

that communicate using single rail are more commonly implemented using static logic that 

is often smaller and consumes less power than dynamic counterparts. Designs implemented 

with dynamic logic, however, can generally achieve higher throughput than their static logic 

counterparts. Consequently, they can run at lower voltages to achieve a given throughput 

requirement and, thus may yield a lower power design than their single rail counterparts.  

2.2 Handshaking Styles 

 

Asynchronous circuits consist of  functional units that communicate control and data 

information using various handshaking styles. The most dominant forms of  handshaking 

styles two-phase [25] and four-phase handshaking [26] are shown in Figure 2.1. In two-phase 

handshake protocol, a request and an acknowledge wire is used to implement handshaking 

between the sender and the receiver. In two-phase handshake protocol, all transitions are 

functional and consequently every pair of  consecutive request/acknowledge transitions 

forms a complete handshake. Two-phase single rail communication is usually seen with 

static logic functional units that use bundled-data for completion sensing. Due to some 
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difficulties in designing complex two-phase control circuits, a novel single-track 

handshaking protocol has been suggested by van Berkel and Bink [27]. This handshaking 

protocol is achieved by combining the request and acknowledge lines into one wire and is 

illustrated in Figure 2.1 (b). Where two-phase handshaking involves two events per cycle, 

four-phase handshaking requires four events, as shown in Figure 2.1 (c). Since four events 

are used to designate a complete handshaking cycle, half  of  these are essential for 

functional computation and the other half  are not actively used to communicate data. 

Nevertheless, this reset phase is very useful for precharging dynamic units. Figure 2.1 (d) 

shows a four-phase handshaking protocol for dual-rail dynamic units [23] [24]. Other 

protocols extend the data valid region through the reset phase [19] [28], to more efficiently 

use four-phase handshaking with static functional units. 
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2.3 Delay Models 

 

Most design techniques require some timing assumptions or constraints on the wires 

and/or components to ensure correct operation. For example, in synchronous circuit 

design, the data input to every register must satisfy all setup and hold times. The delay 

assumptions in asynchronous circuits widely vary based on design styles as outlined below.  

• Delay insensitive (DI): Delay insensitive designs [29] [30], require no timing 

assumptions on wither wires or gates. That is, DI circuits work correctly for any 

arbitrary, time-varying gate and wire delay. This is the most conservative and robust 

design style, but it has been shown that very few gate-level delay insensitive designs 

can exist [31]. That said, delay insensitivity can more easily and practically be 

achieved at a block level where blocks communicate only through delay insensitive 

channels.   

• Quasi delay insensitive (QDI): Quasi delay insensitive design [32] [24] is a practical 

approximation to delay insensitive design. QDI circuits work correctly regardless of  

delays in gates and all wires except in cases of  wire forks designated isochronic. The 

difference in time at which the signal arrives at the ends of  an isochronic fork must 

be less than the minimum gate delay. If  these isochronic forks are guaranteed to be 

local to a small component, these circuits can be practically as robust as DI circuits. 

The QDI assumption has also been extended to include assumptions of  isochronic 

propagation through a number of  logic gates [33].  

• Speed independent (SI): SI design [23] [34], assumes that gate delay can be arbitrary but 
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that all wire delay is negligible. From a delay perspective SI design basically assumes 

that all forks are isochronic. For the design of  small control circuits, thus timing 

assumption is generally satisfied.  

• Scalable delay insensitive (SDI): SDI approaches [36] [21], are motivated by the 

observation that SI design should not be used for any circuit that spans significant 

chip area. Consequently, in SDI design the chip area is divided into many regions, 

SI circuit design is used within each region, and communication between regions is 

done delay insensitively.  

• Bounded delay: In bounded delay models each gate is given a minimum and 

maximum delay and the circuit must work if  the delay of  all gates are within these 

bounds. These timed circuits can often be faster, smaller and lower power than 

their QDI or SI counterparts, but require more careful timing verification during 

physical design [37].  

• Relative timing: In relative timing based circuits, a list of  relative orderings of  events 

identifies sets of  path pairs, where for each pair of  paths, one path must be 

longer/shorter than each other to ensure correctness. These circuits can have the 

same benefits of  times circuits and may be easier to validate [38] [39] [40].  

2.4 Synthesis Based Design 

2.4.1 Fundamental Mode Huffman Circuits 

 

In this model, the circuit design flow is similar to that of  the design of  synchronous 

circuits[15]. The circuit is usually expressed as a flow table [41]. The flow table has a row for 

each internal state, and a column for each combination of  inputs. The entries indicate the 
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next state entered and output generated when the column’s input combination is seen while 

in the row’s state. States where the next state is identical to the current state are called stable 

states.  It is assumed that each unstable state leads directly to a stable state, with at most one 

transition occurring on each output variable. Similar to finite state machine synthesis in 

synchronous systems, state reduction and state encoding is performed on the flow table, 

and Karnaugh maps generated for each of  the resulting signals.  

There are several points that need to be considered for this design method. The system 

responds to input changes rather than clock ticks therefore the circuit may enter some 

intermediate states if  multiple inputs change at the same time. Therefore it must be 

guaranteed that these intermediate states should still lead to the intended stable state, 

irrespective of  the order of  how inputs change.  

Another concern is hazard removal. Since hazards, static or dynamic, can cause the 

circuit to enter an unstable state, they must be eliminated by adding a sum-of-products 

circuit that has functionally redundant products. 

Due to the restriction of  only one input changing to the combinational logic at a time, 

several requirement need to be forced on the implementation of  sequential circuits. First, 

the combinational logic must settle in response to a new input before the present state 

entries change. The state encoding must assure a single bit transition for state transitions. 

The last requirement is that the next external input transition cannot occur until the entire 

system settles to a stable state.  

While the fundamental mode assumption makes logic design easy, it also increases cycle 

time. There are proposed solutions, which carefully analyze an implementation to relax the 

fundamental mode assumption, however because of  the limitations on the multiple input 
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changes, this design methodology has never achieved wide acceptance for complex system 

design. Burst-mode circuits, covered in the next section, overcome the limitations on 

multiple input changes. 

2.4.2 Burst-Mode Circuits 

 

The burst-mode design style developed by [42], [43], [44] is based on the earlier work at 

HP laboratories by [45], attempts to move even closer to synchronous design than the 

Huffman method [15]. In this method, circuits are specified via a standard state-machine, 

where each arc is labeled by a non-empty set of  inputs (an input burst) and a set of  outputs 

(an output burst). The assumption is that, in a given state, only the specified inputs on one of  

the input bursts leaving that state can occur. The inputs are allowed to occur in any order. 

The state reacts to the inputs only when all of  the expected inputs have occurred. The state 

machine then fires the specified output bursts and enters the specified next state. New 

inputs are only allowed to occur after the system has completely reacted to the previous 

input burst. Therefore, the burst-mode method still requires the fundamental-mode 

assumption, but only between transitions in different input bursts. Another restriction is 

that no input burst can be a subset in another input burst leaving the same state.  

Burst-mode circuits can be implemented in various ways, including similar techniques 

to those of  Huffman circuits.  

The problems with both the fundamental-mode and burst-mode circuits that restrict 

these circuits are the fact that circuits often are not simple single gate small state machines, 

but instead complex systems with multiple control state machines and datapath elements. 

These methods do not discuss system decomposition for complex circuits. Also, these 

methodologies cannot design datapath elements. This is because datapath elements tend to 
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have multiple input signals changing in parallel, and the fundamental-mode assumption 

would be easily violated. Although one solution for datapath implementation is to use 

synchronous components with careful add-hoc optimization, another issue is the increased 

delay by the additional delay elements to satisfy the fundamental-mode assumption. Not 

only is the delay increased but it must also be able to work under worst-case scenario.   

2.4.3 Event-Based Design  

Petri nets and other graphical notations are a widely used alternative to specify and 

synthesize asynchronous circuits. In this model, an asynchronous system is viewed not as 

state-based, but rather as a partially ordered sequence of  events.  A Petri net [46] is a 

directed bipartite graph, which can describe both concurrency and choice. The net consists 

of  two kinds of  vertices: places and transitions. Tokens are assigned to the various places in 

the net. An assignment of  tokens is called a marking, which captures the state of  the 

concurrent system. When all the conditions preceding a transition are true the action may 

fire which removes the tokens from the preceding places and marks the successor places. 

Hence, starting from an initial marking, tokens flow through the net, transforming the 

system from one marking to another. As tokens flow, they fire transitions in their path 

according to certain firing rules.  

Patil proposed the synthesis of  Petri nets into asynchronous logic arrays. In this approach, 

the structure of  the Petri net is mapped directly into hardware. Many modern synthesis 

methods use a Petri net as a behavioral specification only, not as a structural specification. 

Using reachability analysis, the Petri net is typically transformed into a state graph, which 

describes the explicit sequencing behavior of  the net. An asynchronous circuit is then 

derived from the state graph.  
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More general glasses of  Petri nets include Molnar et al.’s I-Nets [47], and Chu’s Signal 

Transition Graphs or STGs [48]. These nets allow both concurrency and a limited form of  

choice. Chu developed a synthesis method, which transforms an STG into a speed-

independent circuit, and applied the method to a number of  examples.  

Petrify is a tool for manipulating concurrent specifications and synthesis and 

optimization of  asynchronous control circuits[49]. Given a Petri net, or a STG it generates 

another Petri net or STG, which is simpler than the original description and produces an 

optimized net-list of  an asynchronous controller in the target gate library while preserving 

the specified input-output behavior. An ability of  back annotating to the specification level 

helps the designer to control the design process. 

For transforming a specification petrify performs a token flow analysis of  the initial 

Petri net and produces a transition system. In the initial transition system, all transitions 

with the same label are considered as one event. The transition system is then transformed 

and transitions relabeled to fulfill the conditions required to obtain a safe irredundant Petri 

net. For synthesis of  an asynchronous circuit petrify performs state assignment by solving 

the Complete State Coding problem. State assignment is coupled with logic minimization and 

speed-independent technology mapping to a target library. The final netlist is guaranteed to 

be speed-independent, i.e., hazard-free under any distribution of  gate delays and multiple 

input changes satisfying the initial specification. The tool has been used for synthesis of  

Petri nets and Petri nets composition, synthesis and re-synthesis of  asynchronous 

controllers and can be also applied 

2.5 Template-Based Design 

A different approach is for asynchronous design is to view the system as 
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communication blocks or processes, called templates that encapsulate all the design 

constraints inside the modules. These templates will have requirements of  their 

environment that must be met, and which will restrict how these templates are used. 

However, such restrictions or internal timing constraints are much simpler than those of  

most other methodologies, and the proper template will usually be obvious from the 

functionality required.  

Template-based design is somewhat similar to standard cell design in synchronous logic. 

Templates can be either pre-designed to implement simple logic functions, with 

handshaking, or can synthesized to create more complex ones.  

The advantage of  template-based design is the ease of  manual design. In general a 

datapath is created, and the control unit is designed around the datapath. Once a general 

architecture is created the rest of  the task is to implement the blocks of  the architecture 

using templates. Also template-based design has the potential advantage, which is currently 

being investigated, of  being able to be used as a backend to a synchronous CAD tool. The 

highly optimized synchronous design can be converted to an asynchronous one by 

replacing every gate with its asynchronous handshaking counterpart template. However 

additional optimization might be required to improve the performance of  the system.   

2.5.1 Template-Based Compilation Systems 

Although template-based system can ease manual design, their main power is seen 

when they are coupled with a high-level language and automatic translation software. The 

following section presents some well-known methodologies, which have their own 

language for easy compilation of  asynchronous systems.  
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2.5.1.1 Caltech’s Design Methodology 

Caltech’s communicating processes compilation technique [50], translates programs 

written in a language similar Communicating Sequential Processes into asynchronous 

circuits, which communicate on channels. The source language describes circuits by 

specifying the required sequences of  communications in the circuit.  

Caltech’s translation process is accomplished in several steps: (1) in process decomposition, 

a process is refined into an equivalent collection of  interacting simpler processes; (2) in 

handshaking expansion, each “communication channel” between processes is replaced by a 

pair of  wires, and each atomic “communication action” is replaced by a handshaking 

protocol on the wires; (3) in production-rule expansion, each handshaking expansion is replaced 

by a set of  “production rules (PRs)”, where each rule has a “guard” that insures it is 

activated (i.e., “fires”) under the same semantics as specified by the earlier handshaking 

expansion; and finally, (4) in operator reduction, PRs are grouped into clusters, and each 

cluster is than mapped to a basic hardware component. It is important to realize that many 

of  these steps require subtle choices that may have significant impact on circuit area and 

delay. Although heuristics are provided for many of  the choices, much of  the effort is 

directed towards aiding a skilled designer instead of  creating autonomous tools. This has 

the benefit in that the designer can usually make better decisions, provided that the 

designer is skilled enough. 

Caltech has later moved to using more standardized, pre-designed, less complex 

building blocks, which simplify the design method, explained above. Caltech’s template-

based design methodology has moved from the synthesis of  complex templates to chip 

implementation using smaller, and simpler templates, which have very standard design 
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guidelines. These templates are in general targeted for implementing fine grain pipelined 

chips.  

2.5.1.2 Tangram and Balsa 

Another compiler-based approach developed by van Berkel, Rem and others [51], at 

Philips Research Laboratories and Eindhoven University of  Technology uses the Tangram 

language. Tangram, which is based on CSP, is a specification language for concurrent 

systems. A system is specified by Tangram program, which is then compiled by syntax-

directed translation into an intermediate representation called a handshake circuit. A 

handshake circuit consists of  a network of  handshake processes, or components, which 

communicate asynchronously using handshaking protocols. The circuit is then improved 

using peephole optimization and, finally components are mapped to VLSI implementations.  

Although Tangram is also syntax derived like Caltech’s design methodology, it also 

targets non-pipelined designs, which can support non-linear sequential processing as well as 

pipeline processing. 

The Tangram compiler has been successfully used at Philips for several experimental 

DSP designs and electronics; including counter, decoders, image generators, and an error 

corrector for a digital compact cassette player.  

Balsa [52], developed at University of  Manchester, adopts syntax-directed compilation 

into handshaking components and closely follows Tangram. A circuit described in Balsa is 

compiled into a communicating network composed from a small (~35) set of  handshake 

components.  Balsa can be thought as of  an public extension to Tangram. In particular the 

support for separate compilation and the use of  a flexible communication enclosed input 

choice mechanism are claimed as useful additions to the expressiveness of  Tangram. New 
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handshake components (which are the constituent parts of  handshake circuits) are 

proposed which are used to implement this choice mechanism as well as more generalized 

forms of  the existing Tangram system components. 

2.5.2 Micropipelines  

Micropipelines, introduced by Ivan Sutherland, use standard synchronous datapath 

logic to build asynchronous pipelines [25]. A micropipeline has altering computation stages 

separated by storage elements and control circuitry. This approach uses transition signaling 

for control along with bundled data. Sutherland describes several designs for the storage 

elements, called “event-controlled registers”, which respond symmetrically to rising and 

falling transitions on inputs.  

Computation on data in a micropipeline is accomplished by adding logic computation 

blocks between register stages. Since these blocks will slow down the data moving through 

them, the accompanying transition is delayed as well by the explicit delay elements, which 

must have at least as much delay in them as the worst-case logic block delay. The major 

benefit of  the micropipeline design style is that the registers or latches at the boundaries of  

pipeline stages filter out logic hazards within the combinational logic. Thus, standard 

synchronous combinational logic design styles and supporting CAD tools can be used.  

Although micropipelines is a powerful design style, which elegantly implements elastic 

pipelines, there are some problems with them as well. It delivers worst-case performance by 

adding delay elements to the control path to match worst-case computation times. Also 

there are delay assumptions that must be carefully verified. Finally, there is little guidance 

currently on how to use micropipelines for more complex (add speculative completion 

pros and cons) systems.  

 24



2.5.3 Ad Hoc Design 

Our final design methodology is ad hoc design. Although it may not seem like a design 

methodology, the ad hoc design approach implemented buy a skilful designer can lead to 

very competitive results. A design can be completely implemented in an ad hoc fashion, or 

can be initially developed using one of  the methods above and then be optimized in an ad 

hoc sense.  

An asynchronous design can be implemented the same way a synchronous design 

would, using synchronous components for the datapath. A matched delay can be used to 

indicate the completion of  the computation. The control circuit can be implemented by 

modifying a synchronous FSM to work with input transitions rather than a global clock.  

Another approach is the use self-resetting logic. Although self-resetting logic has a 

number of  difficult to satisfy timing assumptions careful ad hoc design can achieve high 

throughput with self-resetting asynchronous circuits. The synchronous parts of  the circuit 

can be replaced with self-resetting logic. Important aspects of  self-resetting design such as 

data insertion and pulse generation would require an ad hoc approach. Or alternatively, an 

asynchronous circuit can be implemented using any of  the approaches presented above 

and can be later optimized for speed, area or power using verifiable ad hoc optimizations. 

2.6 Linear and Non-Linear Asynchronous Pipelines 

This section presents the basics of  linear and non-linear fine-grain asynchronous 

pipelines where each pipeline stage is derived through one of  several basic templates. 
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2.6.1 Linear Pipelines  

A pipeline is a linear sequence of  functional stages where the output of  one stage is 

connected to the input of  the next stage. Data signals, which flow from the inputs to the 

outputs of  the pipeline, are also called as data tokens. A linear pipeline has no forking or 

joining stages. The tokens in the pipelines remain in a first in first out order (FIFO). In 

synchronous design the sequential functional stages are registers. These registers hold the 

data tokens and are controlled by a global clock signal. Depending on the implementation, 

on rising or falling edge of  the clock, all the registers sample new data values which wait at 

their inputs. Since all the registers “see” the clock signal at the same time, the movement of  

one data token to the next register is synchronized to all other data tokens, and they all 

move at the same time. However there is no central global clock in asynchronous design 

therefore a data token in one stage only moves to the next stage if  it is empty. The 

handshaking protocol between the two stages (the sender and the receiver) determines how 

the two stages inform each other when there is an empty space, when the data has been 

sent, if  the data has been received by the next stage (receiver) and when the previous data 

holding stage (sender) can reset its data. The handshaking protocol is accomplished 

through a communication channel between the sender and the receiver. Although in this section 

we explain a communication channel under the context of  pipelines, a communication 

channel can exist between any two asynchronous units. An asynchronous communication 

channel shown in Figure 3.1 is a bundle of  wires and a protocol to communicate data 

between a sender and a receiver. For single rail encoding one wire per bit is used to 

transmit the data and an associated request line is sent to identify when data is valid. The 

associated channel is called a bundled-data channel. Alternatively for dual rail encoding the 
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data is sent using two wires for each bit of  information. Extensions to 1-of-N encoding 

also exist.  

Both single-rail and dual-rail encoding schemes are commonly used, and there are 

tradeoffs between each.  Dual-rail and 1-of-N encoding allow for data validity to be 

indicated by the data itself  and are often used in QDI designs. Single-rail, in contrast, 

requires the associated request line, driven by a matched delay line, to always be longer than 

the computation, as we described in section 2.1.  

 

 

Figure 2-2: Pipeline channels 
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Figure 2-3: Synchronous vs. asynchronous pipelines 
 

Figure 2-3 illustrates the difference between typical synchronous and asynchronous linear 

pipelines 

Abstractly the operation of  a general asynchronous pipeline with four-phase 

handshaking can be described as follows. Initially the pipeline is empty, and all the data 

lines as well as the handshaking signals req (the request signal) and ack (the acknowledgment 

signal) are de-asserted. The request signal req can be used if  the data lines are single rail, to 

inform the next stage the arrival of  data. On the other hand if  the data lines are 

implemented with dual rail, conventionally, there is no need for the req signal. When the 
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first stage evaluates and generates an output the req signal is also assert. When the second 

stage evaluates it asserts its req signal as well as the ack signal to acknowledge the first stage 

that it has consumed the data. The first stage responds to this acknowledge signal by 

resetting its outputs. The first stage can only generate new data when the acknowledge 

signal is de-asserted, indicating that the second stage is ready to consume the second data 

token. When the third stage evaluates it will generate an ack signal to the second stage, 

which will cause it to reset its outputs as well as lower its ack and req signal. Since the 

second stage has lowered its ack signal it can now consume a second data token.  

2.6.2 Fine Grain Pipelining 

The design methodology in this thesis is targets fine grain pipelining and small cells, 

where the forward latency is two gate delays. Fine grain pipelining is achieved by dividing 

the processing blocks to even smaller cells where each cell has its own input and output 

completion detector. For example a 32 bit multiplier can be implemented by using a 32 bit 

input completion detector at the inputs and a 32 bit output completion detector at the 

outputs. When the multiplier completes it processing and generates a 32 bit output, the 

output completion detector detects it and combined with the input completion detector 

generates and acknowledge. However the multiplier can only accept a new input only when 

the whole multiplier has finished processing. Therefore the throughput is limited to how 

fast the multiplier can multiply two numbers, generate and acknowledge and then reset. As 

in the synchronous case the throughput of  the multiplier can be increased by further 

pipelining the multiplier. In asynchronous design, this can be done by constructing the 

multiplier using small number of  cells such as adders and other logic gates which have their 

own input and output completion detectors. Not only now can the multiplier accept new 
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input as soon as the first row of  logic in the multiplier has evaluated and reset but also 

simplifies the 32 bit completion detectors into 1 bit input and output completion detectors. 

For a 2 dimensional structure such as a multiplier this is called 2D Fine Grain Pipelining.  

Also since fine grain pipelining uses pre-designed templates it has an added benefit of  cell 

reuse and faster design time.  

2.6.3 Performance Analysis of Linear Pipelines 

Determining the performance of  an asynchronous pipeline can be more complex 

than determining the performance of  a synchronous pipeline. In an asynchronous pipeline, 

control signals govern token flow with local handshaking. Each four phase token is 

composed of  a data element and a reset spacer. At any instant, the pipeline stages not 

occupied by data elements or reset spacers can be described as containing a hole or bubble. 

Control logic only allows an element to flow forward when the stage it will occupy is empty. 

When an element does flow forward, it leaves behind an empty slot. Thus, bubbles flow 

backward as they displace forward-flowing data elements and reset spacers. The 

performance can be limited by the supply of  tokens, the supply of  bubbles or the local 

control handshaking between two pipeline stages. In a pipeline, the left or input 

environment supplies data tokens and the right or output environment supplies bubbles.  

 In an asynchronous pipeline the time it takes for a data token to flow from the 

inputs to the outputs of  one pipeline stage is defined as forward latency. The reverse or 

backward latency specifies the delay from the acknowledgment of  a stage’s output to the 

acknowledgment of  the predecessor’s output.  The time difference two tokens passing 

through the same pipeline stage is called cycle time. The cycle time is the total of  the forward 

and backward latency.  
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 In an asynchronous pipeline, the per-stage forward or backward latency depends on 

the implementation of  the circuit and the handshaking protocol. Pipeline stages, which can 

hold one data token using only one stage, are called full buffers (also known as high capacity or 

slack). Pipeline stages, which need two stages two hold one data token are called half  buffers. 

Assuming that the right environment is not operating, or has stalled handshaking with the 

last stage of  an asynchronous pipeline, and the left environment keeps inserting as much 

data tokens as it can, the maximum possible tokens that the pipeline can hold is defined as 

the static slack of  the pipeline.  Assuming that the left environment is asserting and the right 

environment is consuming data tokens as fast as the pipeline can operate, the number of  

tokens needed for the pipeline to operate at the highest throughput is called the dynamic 

slack of  the pipeline. 

 For a pipeline where the forward latency is less than the backward latency, the cycle 

time is dominated by the backward latency. For the opposite case the cycle time will be 

dominated by the forward latency. The following figure illustrates the throughput vs. 

number of  tokens for a linear asynchronous pipeline. The left side of  the triangle shows 

the characteristic of  an asynchronous pipeline operating in a data-limited region. In this 

region, as the data tokens are inserted more frequently the pipeline operates at a higher 

throughput. The speed of  the pipeline is limited by how fast data can be inserted into the 

pipeline.  The right side of  the triangle shows the characteristic of  an asynchronous 

pipeline operating in a bubble-limited region. In this region the right environment cannot 

consume the data provided by the asynchronous pipeline and therefore the data tokens 

start to accumulate in the pipeline. Another way to view this region is to say that the 

handshaking between pipeline stages is limiting the throughput at which tokens can be 
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processed and therefore the overall pipeline performance starts to degrade. The figure has 

two throughput vs. tokens triangles. The left one is for a forward-latency limited pipeline 

and the right one is for a backward-latency limited pipeline. 
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Figure 2-4: Throughput vs. tokens graphs 
 

 In order to determine the latencies and cycle time of  a pipeline built out of  a 

particular configuration of  components in each stage, it is necessary to analyze the 

dependencies of  the required sequences of  transitions. These dependencies can be drawn 

in a marked graph [53], in which the nodes of  the graph correspond to specific rising and 

falling transitions of  circuit components, and the edges depict the dependencies of  each 

transition on the output of  other components. Unfolded dependency graphs are 

functionally equivalent to Signal Transition Graphs.  STG’s can be used to determine both 

the forward latency and the cycle time. The local cycle time is determined by cyclic paths in 

the STG. These cycles occur because a pipeline processes successive data tokens and the 

components in each stage go through a series of  transitions. The transitions eventually 
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return a stage to the same state, where the state is defined by the output values of  each 

component. Each transition in a STG can fire only when all of  its predecessors have 

executed their specified transitions, and cannot fire again until all of  its predecessors have 

fired again.  

2.6.4 Non-Linear Pipelines 

Recently many new asynchronous pipelines have been introduced. However most of  

them have been targeted for linear pipeline applications such as FIFOs. Real designs, 

however, require more complicated non-linear pipeline structures. In particular, linear 

pipeline stages have only a single input and a single output channel, where as non-linear 

pipelines stages can have multiple input and output channels. This section presents an 

overview of  the challenges involved in designing non-linear pipelines. In particular we 

address issues with (i) synchronization with multiple destinations (for forks), and (ii) 

synchronization with multiple sources (for joins). 

To introduce these issues we focus on forks and joins. A join is a pipeline stage with 

multiple input channels whose data is merged into a single output channel.  A fork is a 

pipeline stage with one input channel and multiple output channels. Complex forks and 

joins can involve conditionally reading from or writing to channels based on the value of  a 

control channel that is unconditionally read, as in a merge or split channel. Abstract 

illustrations of  these channels are shown in Figure 3.4. 
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Figure 2-5: a) a fork and b) a join  
 

Since a fork has multiple output channels, it must receive an acknowledgment signal 

from all of  them before it precharges. A join, on the other hand, receives inputs from 

multiple channels and must broadcast its acknowledgment signal to all its input stages.  

A join acts as a synchronization point for data tokens. The acknowledgment from the 

join should only be generated when all the input data has arrived. Otherwise a stage feeding 

a join, referred to as A, that is particularly slow in generating its data token may receive an 

acknowledgment signal when it should not, violating the 4-phase protocol. If  the 

acknowledgment signal is de-asserted before the slow stage A generates its token, the token 

is not consumed by the join, as it should be. In fact, this token may cause the join to 

generate an extra token at its output, thereby corrupting the intended synchronization. 

A conditional split is a combined fork and join where a control channel is used to 

determine   which output   is generated. The control may indicate to send the input data to 

any of  the output channels, any combination of  the output channels, or none of  them. 

The third option is also known as a skip.   

A conditional join is a join where the control signal, select, comes from another 

pipeline stage. The select signal controls which incoming channel should be read. 
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Figure 2-6: Fundamental non-linear pipeline structures  
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C h a p t e r  3  

3. New High Speed QDI Asynchronous Pipelines 

In this chapter we introduce two new QDI templates that provide significant 

performance improvements over those proposed by Caltech without sacrificing quasi delay 

insensitivity. The key idea is to reduce the complexity of  internal circuitry by intelligently 

reducing concurrency and using an additional wire for communication between pipeline 

stages. We present two templates: one that is a half-buffer which requires two pipeline 

stages to hold one data token and one full-buffer template that can itself  hold one data 

token.  

We first give background on Caltech’s commonly used QDI templates, the Weak-

Conditioned Half  Buffer (WCHB), the Precharged Half  Buffer (PCHB), and the 

Precharged Full Buffer (PCFB) templates [24]. 

 

3.1 Caltech’s QDI templates 

3.1.1 WCHB 

Figure 3-1 shows a WCHB template for a linear pipeline with a left (L) and right (R) 

channel and an optimized WCHB dual-rail buffer. L0 and L1, R0 and R1 identify the false 

and true dual rail inputs and outputs, respectively. Lack and Rack are active-low 

acknowledgment signals. Note that we do not show staticizers that are required to hold 

state at the output of  all C-elements.   
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The operation of  the buffer is as follows. After the buffer has been reset, all data lines 

are low and acknowledgment lines, Lack and Rack, are high. When data arrives by one of  

the input rails going high, the corresponding C-element output will go low, lowering the 

left-side acknowledgment Lack. After the data is propagated to the outputs through one of  

the inverters, the right environment will assert Rack low, acknowledging that the data has 

been received. Once the input data resets, the template raises Lack and resets the output.  

Since the L and R channels cannot simultaneously hold two distinct data tokens, this 

circuit is said to be a half  buffer or has slack ½ [24]. This WCHB buffer has a cycle time of  

10 transitions, which is significantly faster than buffers based on other QDI pipeline 

templates. 

Another feature of  the WCHB template is that the validity and neutrality of  the output 

data R implies the validity and neutrality of  the corresponding input data L. This is called 

weak-conditioned logic [20] and we will discuss its advantages and disadvantages after we 

discuss non-linear pipeline templates. 

 

Figure 3-1: WCHB 
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3.1.2 PCHB and PCFB 

Figure 3-2 shows the template for a pre-charged half-buffer (PCHB). Unlike the 

WCHB, the test for validity and neutrality is checked using an input completion detector. 

The input completion detector is denoted as LCD and the output completion detector as 

RCD.  

 

Figure 3-2: a) PCHB and b) PCFB templates 
 

 

Figure 3-3: a) PCHB and b) PCFB STG 
 

 

 38



The function block need not be weak-conditioned logic and thus can evaluate before all 

the inputs have arrived (if  the logic allows). However, the template only generates an 

acknowledgment signal Lack after all the inputs have arrived and the output has evaluated. 

In particular, the LCD and the RCD are combined using a C-element to generate the 

acknowledgment signal.  

A few minor aspects of  this template should also be pointed out. First, because the C-

element is inverting the acknowledgment signal is an active-low signal.  Second, the Lack 

signal is often buffered using two inverters before being sent out. Another two inverters are 

also often added to buffer the internal signal en that controls the function block. For 

simplicity, these buffering inverters will not be shown in the figures in this paper.  

The protocol for a PCHB pipeline stage is captured by the STG for a three-stage 

pipeline illustrated in Figure 3-3. From the STG, it is possible to derive the pipeline’s 

analytical cycle time:  

TPCHB =3. tEval + 2. tCD + 2. tc+  tprech 

Due to the extra buffering and bubble shuffling, the cycle time generally amounts to 14 

gate delays or transitions.   

The PCFB template and its STG are shown in Figure 3-2(b) and Figure 3-3(b). The 

PCFB is more concurrent than the PCHB because its L and R handshakes reset in parallel 

at the cost of  requiring an additional state variable. The PCFB analytical cycle time is: 

 TPCFB =2. tEval + 2. tCD + 2. tc+  tprech 

which generally amounts to 12 transitions. Here tCD takes two transitions, one of  the C-

elements takes one transition, and the other takes two transitions.   
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3.1.3 Why Input Completion Sensing? 

A join is a pipeline stage with multiple input channels whose data is merged into a 

single output channel.  A fork is a pipeline stage with one input channel and multiple 

output channels. Complex forks and joins can involve conditionally reading from or writing 

to channels based on the value of  a control channel that is unconditionally read, as in a 

merge or split channel. 

Since a fork has multiple output channels, it must receive an acknowledgment signal 

from all of  them before it precharges. A join, on the other hand, receives inputs from 

multiple channels and must broadcast its acknowledgment signal to all its input stages.  

A join acts as a synchronization point for data tokens. The acknowledgment from the 

join should only be generated when all the input data has arrived. Otherwise a stage feeding 

a join, referred to as A, that is particularly slow in generating its data token may receive an 

acknowledgment signal when it should not, violating the 4-phase protocol. If  the 

acknowledgment signal is deasserted before the slow stage A generates its token, the token 

is not consumed by the join, as it should be. In fact, this token may cause the join to 

generate an extra token at its output, thereby corrupting the intended synchronization. 

Validity of  data should be checked on all input channels before the acknowledgment 

signal is asserted to prevent the incorrect insertion of  a token caused by a slow/late input 

channel. Neutrality should be checked to guarantee that the previous stages have been 

precharged, so that the acknowledgment signal is not deasserted too early, thereby violating 

the four-phase protocol on any stage slow to precharge. 
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The templates presented in this section check validity and neutrality in different ways. 

Because the function block in WCHB template is weak-conditioned, the output completion 

detector implicitly checks validity and neutrality of  the input data token. In the WCHB 

buffer the weak conditioned function block is a simple C-element. However, for more 

complex non-linear pipelines, weak-conditioned function blocks unfortunately require 

complex nmos and pmos networks. This results in slower forward latency and bigger 

transistor sizes. As an example, a weak-conditioned dual-rail OR is shown in Figure 3-4. 

 

Figure 3-4: An OR gate implementation using weak conditioned logic 
 

3.2 New QDI Templates 

One optimization that can be applied to the PCHB and PCFB templates is to merge 

the LCD of  one stage with the RCD of  the other by adding an additional request line to 

the channel. This is shown in Figure 3-5 for a PCHB template.  
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Figure 3-5: Optimized PCHB for a 1-of-N+1 channel 
 

The request line indicates the assertion/de-assertion of  the input data, as in the 

bundled-data channel. However in contrast to a bundled-data channel, the data is sent 

using 1-of-N encoding, yielding what we call a 1-of-N+1 channel. The request line, at least 

from the channel point of  view, may appear redundant. However, the request line enables 

the removal of  the input completion detector thereby saving area and reducing capacitance 

on the data lines. Moreover, the request line does not significantly impact performance, the 

template is still QDI, and the communication between stages remains delay-insensitive.  

In this section we propose two new 1-of-N+1 QDI templates that intelligently reduce 

concurrency to reduce the stack size of  the function blocks and thereby improve 

performance.  

3.2.1 RSPCHB 

The key goal of  the RSPCHB compared to the PCHB is to eliminate the need of  the 

enable signal en from the control of  the function block. We now explain that the need for 

this enable signal is only to support concurrency in the system that effectively does not 

improve performance.  
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More specifically, in the PCHB template the output of  the LCD and RCD are 

combined using a C-element to generate the acknowledgment signal Lack. This supports 

the integration of  the handshaking protocol with the validity and neutrality of  both input 

and output data, which removes the need for the function block to be weak-conditioned, 

but also requires the use of  the en signal. It is this replacement however that introduces 

more concurrency than is necessary.   

In particular, in the case of  a join, the non-weak-conditioned function block may 

generate an output as soon as one the input channels provide data. In response, the RCD 

of  the join will assert its output. Meanwhile, any subsequent stage can receive this data, 

evaluate, assert both its LCD and RCD outputs, and assert its acknowledgment signal. 

Although the join can receive this acknowledgment, it will not precharge until after en is 

asserted. The en signal delays the precharge of  the circuit until after the acknowledgement 

to the input stages has been asserted. This delay is critical to prevent the precharge from 

triggering the RCD to deassert which would prevent the C-element from ever generating 

the acknowledgment.  

If  only the generation of  the acknowledgment signal from any stage subsequent to the 

join was delayed until all input data to the join has arrived and been acknowledged, then the 

en signal could be safely removed.  In fact, such a delay of  the acknowledgement would not 

generally impact performance because the join is the performance bottleneck for the 

subsequent stages. Therefore, this added concurrency is essentially unnecessary. 

We propose a different pipeline template, which reduces this unnecessary concurrency 

to eliminate the internal en signal, thereby reducing the transistor stack sizes in the function 

block. We refer to this new QDI pipeline template, illustrated in Figure 3.6(a), as a Reduced 
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Stack Precharged Half  Buffer (RSPCHB). A specific form of  this template for dual-rail data is 

shown in Figure 3-6(b). Notice that we optimized the RCD block by tapping its inputs 

before the output inverter and using a NAND gate instead of  an OR gate. 

The unique feature of  the RSPCHB is that it derives the request line from the output 

of  the C-element instead of  the RCD. (In particular, since the output of  the C-element is 

active low and the request line is active high, the output of  the C-element is sent through 

an inverter before driving Rreq.) The impact of  this change is that the assertion/de-

assertion of  Rreq is delayed until after all Lreq’s are asserted/de-asserted.  

 

 

Figure 3-6: a) Abstract and b) detailed QDI RSPCHB pipeline template 
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Figure 3-7: The STG of the RSPCHB 
 

As a consequence, the acknowledgment from a subsequent stage of  the join may be 

delayed until well after its data inputs and outputs are valid. More specifically, the stage will 

delay the assertion of  its acknowledgment signal until all Lreq’s are asserted which can 

occur arbitrarily later than the associated data lines becoming valid. This extra delay, 

however, has no impact on steady-state system performance because the join stage is the 

bottleneck, waiting for all its inputs to arrive before generating its acknowledgement.  In 

fact, this change yields a template with no less concurrency than WCHB. 

The advantage of  this generation of  the request line is that the function block does not 

need to be guarded by the enable signal. In particular, it is now sufficient to guard the 

function block solely by the Pc signal because the Pc signal now properly identifies when 

inputs and outputs are valid. Namely, the function block is allowed to evaluate when Pc is 

deasserted which occurs only after all inputs and outputs data lines are reset. Similarly, it is 
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allowed to precharge when Pc is asserted which occurs only after all input and output data 

lines are valid. 

The RSPCHB is still QDI, however, the communications along the input channels to 

joins become QDI instead of  delay-insensitive (other channels remain delay-insensitive). In 

particular, the assumption that must be satisfied is that the data should reset before the join 

stage enters a subsequent evaluation cycle. If  we assert that the fork between the function 

block, the RCD, and the next stage is isochronic [33], this assumption is satisfied. In 

particular, the data line at the receiver side is then guaranteed to reset before the request 

line Rreq resets because only after the data lines reset can the RCD trigger the C-element, 

subsequently triggering Rreq. The analytical expression for the timing margin associated 

with this isochronic fork assumption can be derived from the abstract STG of  the 

RSPCHB shown in Figure 3-7. In particular, the delay difference between the resetting of  

the data and the associated request line should be less than: 

TMargin =2. tInv + 1. tCD + 3. tc 

This margin is between 6 and 8 gate delays depending on buffering and is easily 

satisfied with modern routers. 

Notice that this timing assumption only applies to input channels of  join stages 

because non-join stages must receive both valid data and a valid Lreq before generating 

valid output data or valid Rreq. 

The analytical cycle time of  the RSPCHB can be derived from the STG shown in 

Figure 3.7 as: 

TRSPCHB = Max( 3. tEval + 2. tCD + 2. tc+  tprech ,   tEval + 2. tCD + 4. tc+  tprech ) 

With bubble shuffling, RSPCHB and PCHB have equal numbers of  transitions per 
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cycle. The advantage of  RSPCHB is that the lack of  an LCD and reduced stack size of  the 

function block, which reduces capacitive load, and yields significantly faster overall 

performance. The cost of  this increase in performance is that it requires one extra 

communicating wire between stages. 

A fork can be implemented easily by either using a C-element to combine the 

acknowledgment signals from the forking stages or by combining them by increasing the 

stack size of  the function block. Similarly a join can be implemented, by combing the 

request lines in the C-element and forking back the acknowledgment signal.  

 

 

 

Figure 3-8: Conditional a) join and b) split using RSPCHB 
 

Consider the slightly more complicated template for a conditional join in which a 

control channel S is used to select which input channel to read and write the read data 
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token to the single output channel illustrated in Figure 3-8(a). The template has one C-

element per input channel, each responsible for generating the associated 

acknowledgement signal. Each C-element is triggered by not only the RCD output, but also 

the corresponding control channel bit. The collection of  C-elements are simply ORed to 

generate the Lreqs because the C-elements are mutually exclusive.  This template can be 

easily extended to handle more complex conditionals in which multiple inputs can be read 

for some values of  the control. 

The template for the conditional fork is shown in Figure 3-8(b). Here, the functional 

block, the RCD and the C-element are repeated for each output channel. The select data 

lines ensure only one function block evaluates. All C-elements are combined using an AND 

gate to generate the acknowledgement for the select channel. (This is because both the C-

element outputs and the acknowledgement signal are active low.) This template can easily 

be extended to handle the generation of  multiple outputs in response to some values of  

the control. 

A common example of  a conditional fork is a skip in which depending on the control 

value the input is consumed but no output is generated. The implementation has a skip 

output acting as an internal N+1 output rail that is not externally routed and is triggered 

upon the skip control value.  A skip in which all control values generate no output is called 

a bit bucket [54]. 

Figure 3-9 shows a one-bit memory implemented using a RSPCHB template. A and C 

represent the input and output channels. B is the internal storage. S is an input control 

channel that selects the write or read operation. When S0 is high, the memory stores the 

value at the input channel A to the internal storage B. When S1 is high, on the other hand, 
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the memory is read, that is, the stored memory value is written to the output channel C. 

For a write, both input data and control channels are acknowledged, while for a read, only 

the control channel is acknowledged. 

The write and read operations are as follows. After reset, the memory, stored in the 

dual-rail Memory Unit, MU (similar to [24]) is initialized to some value and one of  the rails 

of  the internal signal B is high. When an input A is applied and S0 is high, one of  rails of  

B is asserted high, thereby storing the data. The Memory Completion Detector, MCD, detects 

that the value in the memory is updated, and asserts its output.  The output of  the MCD as 

well as the request lines from the data and control channel drive a C-element, which 

generates the acknowledgment signal LackA. When S1 is high, on the other hand, the 

internal data stored in B is sent to the output channel C. When an acknowledgment is 

received from the output channel C, the outputs are reset but the data stored remains 

unchanged. The control channel S is acknowledged for both write and read operations 

using an AND gate driven by the two C-element outputs.  

Notice that the memory is actually implemented by merging two RSPCHB units. The 

first one is used to store data (write), and the second one to send it to the outputs (read). 

The MCD detects the completion of  the write operation and resets when all inputs are 

lowered.  

The MCD can be simplified by replacing the pmos transistors driven by A0 and A1 

with a pmos transistor driven by LackA. However this requires that the delay difference 

between the data lines of  channel A and its associated request line is not long enough to 

cause short circuit current. This restriction can be removed by also controlling the nmos 

stack by also adding one more nmos transistor driven by the LackA signal. The overall 
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benefit however is not clear.  

 

Figure 3-9: A RSPCHB 1-bit memory 
 

3.2.2 RSPCFB 

Our second new 1-of-N+1 QDI pipeline template is a full buffer constructed by 

merging our RSPCHB with a modified WCHB. An abstract illustration of  this reduced stack 

pre-charged full buffer (RSPCFB) is shown in Figure 3-10(a) and a more detailed 

implementation for dual-rail data is shown in Figure 3-10(b).  

The RSPCFB has two new features. First, the inverters from both of  the half  buffers 

have been removed to keep the forward latency of  the new template at two gate delays. We 

assert that the inverters between the two half  buffers can safely be removed because the 

RSPCHB has little gate load and wire load can be minimized by placing/routing this 

template as a single unit. The output inverters are only necessary if  this unit is driving a 

significant load and can be added as necessary. (However a staticizer, not shown, is still 
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necessary.) Second, the WCHB has to be modified to accept an input request signal and 

generate an output request signal. This input request signal drives a C-element whose other 

input is the RCD output. This C-element then triggers the internal acknowledgement to 

the RSPCHB part instead of  the RCD alone. In addition, the output request signal is 

implemented by simply tapping of  a signal from the RCD output. One other difference is 

that the request signal is now active low because the inverters have changed locations (i.e., 

bubble shuffling [50]). 

The circuit operates as follows. The RCD of  the RSPCHB part detects the evaluation 

of  the function block and asserts its output. The output of  the RCD drives the C-element, 

which generates the acknowledgment signal Lack to the previous stage after all the request 

lines associated with the data also arrive. If  the next stage is ready to accept new data, the 

acknowledgment signal Rack should already be de-asserted, allowing the C-elements in the 

forward path to pass the data to the next stage. Subsequently, the WCHB’s RCD will assert 

its output asserting the request signal to the next stage. The output of  the RCD also drives 

the C-element Cb, which asserts the internal acknowledgement back to the RSPCHB part, 

allowing the function block to precharge. When the acknowledgment signal Rack is de-

asserted, the C-element in the forward path will de-assert its outputs. This will trigger the 

WCHB’s RCD to de-assert Rreq, the C-element Cb to de-assert the internal 

acknowledgement back to the RSPCHB, and thereby enable the function block to re-

evaluate.  
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Figure 3-10: a) Abstract and b) detailed RSPCFB 
 

Notice that the Rreq of  the RSPCFB is taken from the output of  the RCD instead of  

the C-element, unlike the RSPCHB. This is because the WCHB part has weak-conditioned 

logic, which will not reset until all inputs, including inputs from the RSPCHB part, have 

reset. This implicitly avoids the problem of  preventing the assertion of  the 

acknowledgement back to the RSPCHB part that delaying Rreq solved. The advantage of  

this is that the Rreq can be generated earlier. The disadvantage is that this reduces are 

timing margin on input channels to joins to 5 to 7 gate delays, depending on buffering.  

The RSPCFB has 10 transitions per cycle, less than Caltech’s PCFB, which has 12 

transitions. The analytical cycle time, using the STG in Figure 3-11, can be expressed as: 

TRSPCFB = Max( 3. tEval + 2. tCD + 2. tc+  tprech , 

        2. tEval + tCD  + 3. tc+  tNAND) 
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Figure 3-11: a) Abstract and b) detailed RSPCFB 
 
 

The RSPCFB can be extended to handle non-linear pipeline structures in the same way 

as the RSPCHB without any additional timing assumptions.  

3.2.3 FSM Design 

One of  the most important aspects of  a complete system design is the implementation 

of  the controller. An FSM is actually a state holding circuit, which only changes its state 

when the expected inputs for that state are available. One way to build an asynchronous 

FSM is to feed the outputs of  the pipeline stage back to its inputs using buffers to hold the 

data (also proposed in [24]). This technique is similar to the synchronous case. In addition 

it requires no new circuits and can be easily applied to template-based design. Figure 3-12 

shows an abstract FSM.  
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Figure 3-12: An abstract asynchronous FSM 
 
 

Each channel either is an input, an output, or holds state. The next and current state 

channels can be implemented with either 1-of-N+1 channels, ideally suitable for one-hot 

state encoding of  the FSM. The next state and the output logic blocks are complex QDI 

pipeline stages, which can have multiple function blocks inside. These multi-input multi-

output conditional blocks are implemented the same way as the conditional read and write 

blocks shown previously.  

The simplicity of  this method for designing FSMs allows all known synchronous 

design techniques for generating Boolean next state and output expressions directly to be 

applied. Also the next state logic can be implemented as several stages of  pipelined logic, 

reducing the number of  necessary feedback buffers. Aside from using feedback buffers, 
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which for a high number of  states can yield a large circuit there are also other ways to 

design circuits that hold state.  

Another way to implement state holding is not to generate an acknowledgment signal. 

This avoids the reset of  the input data. Although this technique can be used for specific 

problems like loop control [24], it is very limited. A more general way is to use the memory 

block for state holding presented in the previous section. This memory can also be further 

modified by adding one more internal state to allow read and write operations at the same 

cycle making it more suitable to be used as a register in FSMs.    

 

3.2.4 Simulation Results 

Both Verilog and HSPICE simulations were performed to check the correctness of  

functionality and to measure performance of  all the proposed linear and non-linear 

pipelines.  

A structural Verilog netlist has been generated with both random and unit delays. The 

Verilog code is written such that in the case of  any hazard on any of  the signals the 

simulator asserts a warning or error. The Verilog simulations with unit delay were 

performed for cycle time analysis, and the simulations with random delay were performed 

to intuitively verify that the circuits are QDI. No asserts have been found for random 

delays and the unit delay simulations confirm the transition counts.  

HSPICE simulations were performed using a 0.25 TSMC process with a 2.5V power 

supply at 25oC.  The purpose of  these simulations was to confirm the results obtained by 

the Verilog simulations, and to compare the throughputs of  the proposed pipelines with 

the pipelines presented in the background section. Since the goal was comparison, no 
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attempt was made to fine-tune the transistor sizing to achieve optimum performance. In 

particular, all transistors were sized in order to roughly achieve a gate delay equal to a small 

inverter (Wnmos=0.8um, Wpmos=2um, and L=0.24um) driving a same-sized inverter.  

For the purposes of  this comparison, wire delay also has been ignored. 

For the half  buffers, the PCHB and the RSPCHB, a linear dual-rail pipeline of  buffers 

with 60 stages has been constructed to achieve a static slack of  30, which means that it can 

hold 30 distinct data tokens. For the full buffers, the PCFB and the RSPCFB, 30 stages 

have been used to achieve the same static slack. All pipelines can hold 30 distinct tokens. 

Figure 3-13(a) shows throughput versus tokens triangles for the half  buffers and Figure 

3-13(b) shows them for the full buffers. The triangles for the PCHB and PCFB are 

indicated with the dotted lines. Approximately 15 distinct points have been obtained per 

pipeline for the triangle graphs using HSPICE simulation. One key result obtained from 

this simulation is the dynamic slack of  each pipeline, which is the number of  tokens required 

to achieve maximum throughput [23], [24]. 

The PCHB achieves a maximum throughput of  772MHz with a dynamic slack of  7.3. 

The RSPCHB is faster with a maximum throughput of  920MHz and a dynamic slack of  

8.25. The throughput improvement is approximately 20%. For the full buffers, the PCFB 

achieves a maximum throughput of  707MHz and a dynamic slack of  3.7. The RSPCHB is 

faster with a maximum throughput of  1000MHz and a dynamic slack of  5.9. The speed 

improvement is approximately 40%, however due to the C-elements in the forward path of  

the RSPCFB, the forward latency is about 15% slower.  In both the half  and full buffer, we 

achieved higher dynamic slack. This means that our templates support more system-level 

concurrency and higher stage utilization. 
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Figure 3-13: Throughput versus tokens for a) the PCHB and RSPCHB and b) 
the PCFB and RSPCFB linear pipelines 

 

 

Notice that although the PCFB has 12 and the PCHB has 14 transitions per cycle, 

the PCFB was slower. This is partially due to the heavier load on the internal wiring in the 
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PCFB compared to the PCHB.  Clearly, careful transistor sizing and buffering can improve 

the performance of  all pipeline templates, however, we expect the relative performances to 

remain approximately the same.   

3.2.5 Conclusions 

This chapter has introduced new high-speed QDI asynchronous pipeline templates 

for non-linear dynamic pipelines, including forks, joins, and more complex configurations 

in which channels are conditionally read and/or written. Timing analysis and HSPICE 

simulation results demonstrate that our new RSPCHB achieves ~20% throughput over its 

PCHB counterpart and our new RSPCFB achieves ~40% throughput improvement over 

the PCFB counterpart. 
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C h a p t e r  4  

4. Timed Pipelines 

A number of  fast asynchronous fine-grain pipeline templates have been proposed for 

high-speed design, including IPCMOS [2] and GasP [55], [56]. These ultra-high speed 

designs have very aggressive timing assumptions that introduce stringent transistor sizing 

requirements and high demands on post-layout verification.  

Researchers from Columbia University have recently proposed several high-speed 

dynamic-logic pipeline templates that achieve comparable performance with much less 

stringent timing assumptions[57], [58].  These pipelines are based on Williams’ well known 

PS0 pipelines which is an optimized version of  Caltech’s PCHB, where the optimization 

takes place by removing the input completion detector and adding a timing assumption to 

assure correct operation. The Columbia pipelines, which also have PS0’s timing assumption, 

were introduced for linear datapaths (i.e. without forks and joins), although preliminary 

solutions for handling joins were proposed in [58].  In addition, an initial approach to 

handling slow or stalled environments for the limited case of  linear pipelines was also 

proposed in [57].  However, the synchronization problems that arise when using arbitrary 

forks and joins are much more complex and challenging, and the approaches of  [57],[58] 

do not address these issues.  This chapter attempts to fill this void. 

The contribution of  this chapter is a set of  five new non-linear pipeline templates that 

extend the Columbia pipelines to handle non-linear datapaths.  Both of  Columbia’s 

dynamic-logic pipeline styles are targeted: lookahead pipelines (LP) [57] and high-capacity 
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pipelines (HC) [58].  Several distinct lookahead pipeline styles were proposed in [57], both 

single-rail and dual-rail.  This chapter builds upon one representative each of  single-rail 

(LPSR2/2) and dual-rail (LP3/1) lookahead pipelines, and also upon the single-rail high 

capacity pipeline (HC).  The ideas presented here, however, can be easily adapted to the 

remaining styles. First we present Williams’ PS0 pipelines. Then we review Columbia’s three 

asynchronous pipelining styles:  (i) LPSR2/2, a single-rail lookahead pipeline, (ii) LP3/1, a 

dual-rail lookahead pipeline, and (iii) HC, the high-capacity pipeline.  Finally we present 

solutions to extend these pipelines for non-linear applications.  

4.1 Williams’ PS0 Pipeline 

Figure 4-1 shows one stage of  Williams’ PS0 pipeline [23]. The pipeline stage consists 

of  a dual rail function block and a completion detector. The output of  the completion 

detector is fed back to the previous stage as the acknowledgment signal. The completion 

detector checks the validity or absence of  data at the outputs. There is no input completion 

detector.  

 

 

Figure 4-1: Williams’ PS0 pipeline stage 
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The function block is implemented using dynamic logic. The precharge/evaluation 

control input Pc, of  each stage comes from the output of  the next stage’s completion 

detector. The precharge logic can hold its data outputs even when its  inputs are reset, 

therefore it also provides the functionality of  an implicit latch. Each completion detector 

verifies the completion of  every computation and precharge of  its associated function 

block.  

The operation of  the PS0 pipeline is quite simple. Stage N is precharged when stage 

N+1 finishes evaluation. Stage N evaluates when stage N+1 finishes reset. This protocol 

ensures that consecutive data tokens are always separated by reset tokens, holes.  

The complete cycle of  events for a pipeline stage is derived by observing how a single 

data token flows through an initially empty pipeline. The sequence of  events from one 

evaluation by stage 1, to the next is: (1) Stage 1 evaluates, then (2) stage 2 completes, then 

(3) stage 2’s completion detector detects completion of  evaluation, and then (4) stage 1 

precharges. At the same time, after completing step (2), (3)’ stage 3 evaluates, then (4) stage 

3’s completion detector detects completion of  evaluation and initiates the precharge of  

stage 2, then (5) stage 2 precharges, and finally, (6) stage 2’s completion detector detects the 

completion of  precharge, thereby releasing the precharge of  stage 1 and enabling 1 to 

evaluate once again. Thus there are six events in the complete cycle for a stage from one 

evaluation to the next.  

The protocol for a PS0 pipeline stage is captured by the STG for a four-stage pipeline 

illustrated in Figure 4-2. From the STG, it is possible to derive the pipeline’s analytical cycle 

time:  

TPS0 =3. tEval + 2. tCD+  tprech 
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Figure 4-2: The STG of the PS0 Pipeline 
 
 

Williams has simplified the pipeline stage at the expense of  sacrificing delay 

insensitivity. Williams’ PS0 pipeline has the following timing assumption: 

TPrech_1 + tCD_1<=tEval_3 + tCD_3+ tPrech_2 + tCD_2 

which must be verified during physical design.  

4.2 Lookahead Pipelines (Single Rail) 

 Figure 4-3(a) shows the structure of  one stage of  the LPSR2/21 lookahead single-rail 

pipeline [57]. Each stage has a dynamic function block and a control block. The function 

block alternatively evaluates and precharges. The control block generates the bundling 

signal, done, to indicate completion of  evaluation (or precharge). The bundling signal is 

passed through a suitable delay line, allowing time for the dynamic function block to 

complete its evaluation (or precharge). Note that there is one function block (F) for each 

individual output rail of  the stage, and different function blocks can sometimes share 

precharge and evaluate (foot) transistors. 
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This pipeline style has two important features.  First, the completion signal, done, is sent 

to the previous stage as an acknowledgment (Lack) by tapping off  from before the 

matched delay.  This early tap-off  is safe because a dynamic function block typically is 

immune to a reset of  its inputs as soon as the input data has been absorbed by the first 

level of  dynamic logic.  The second feature is that the control signal, Pc, is applied to both 

the control block and the function block in parallel.  Therefore, the function block can be 

precharge-released even before the arrival of  new input data.  This early precharge-release 

is safe because the dynamic logic will compute only upon the receipt of  actual data.  Both 

of  these features eliminate critical delays from the cycle time, resulting in very high 

throughput. 

The analytical cycle time can be expressed using the following components:  

tEval = delay of  function block evaluation 

tgc = delay of  control (generalized C-element) 

 

                                                                                                                                                                                            
1 The 2/2 label characterizes the operation of the stage of a pipeline: 2 componnents in the evaluation phase and 2 component delays 

in the precharge phase, forming a complete cycle.  
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Figure 4-3: a) LPSR2/2 b) LP3/1 and c) HC pipelines 
 

For correct operation, the matched delay tdelay must satisfy, tdelay ≥ tEval - tgc. For ideal 

operation, we will assume that tdelay is no larger than necessary, tdelay= tEval - tgc. Note that to 

simplify the analytical expressions we assume that the completion delay is longer than the 

evaluation delay, which is generally true for fine-grain pipelines. 

Using the above notation and assumption, the pipeline’s analytical cycle time is:  

TLPSR2/2 = 2. tEval + 2. tgc 

The per-stage latency of  the pipeline is: 

 LLPSR2/2 = tEval 
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4.3 Lookahead Pipelines (Dual Rail) 

Figure 4-3(b) shows the structure of  one stage of  the dual-rail LP3/12 pipeline [57].  In 

this pipeline, there are no matched delays.  Instead, each stage has an additional logic unit, 

called a completion detector, to detect the completion of  evaluation and precharge of  that stage. 

Unlike most existing approaches, such as Williams and Horowitz’s pipelines [23], 

[59]each stage of  the LP3/1 pipeline synchronizes with two subsequent stages, i.e., not only 

with the next stage, but also its successor.  Consequently, each stage has two control inputs.  

The first input, Pc, comes from the completion detector (CD) of  the next stage, and the 

second control input, Eval, comes from the completion detector two stages ahead.  

The benefit of  this extra control input is to allow a significantly shorter cycle time.  

This Eval input allows the current stage to evaluate as soon as the subsequent stage has 

started precharging, instead of  waiting until the subsequent stage has completed precharging.  

The analytical cycle time can be expressed as:  

TLP3/1 = 3. tEval +  tCD+  tNAND 

The per-stage latency of  the pipeline is: 

 LLP3/1 = tEval 

 

4.4 High Capacity Pipelines (Single Rail) 

Finally, the structure of  one stage of  the HC pipeline [58] is shown in Figure 4-3 (c). A 

key feature of  this pipeline style is that is uses decoupled control of  evaluation and 

precharge: separate Eval and Pc signals are generated by each stage's control. Precharge 

occurs when Pc is asserted and Eval is de-asserted. Evaluation occurs when Pc is de-asserted 
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and Eval is asserted. When both signals are de-asserted, the gate output is effectively 

isolated from the gate inputs; this is the isolate phase. To avoid short circuit, Pc and Eval are 

never simultaneously asserted.  

An asymmetric C-element, aC, is used as a completion detector. The aC element output 

is fed through a matched delay, which (combined with the completion detector) matches 

the worst-case path through the function block.  

Unlike most existing pipelines, the HC pipeline stage cycles through three phases. After 

it completes the evaluate phase, it enters the isolate phase (where both Eval and Pc are de-

asserted) and subsequently the precharge phase, after which it re-enters the evaluate phase, 

completing the cycle.  

Furthermore, unlike the other pipelines covered in this paper as well as the PS0 style in 

[59] the HC pipeline has only one explicit synchronization point between stages. Once the 

subsequent stage has completed its evaluate phase, it enables the current stage to perform 

its entire next cycle.  The analytical cycle time can be expressed as:  

THC = tEval +  tPrech+  taC+  tNAND3+  tINV 

The per-stage latency of  the pipeline is: 

 LHC = tEval 

4.5 Designing Non-linear Pipeline Structures  

The basic assumption in linear pipelines is that each pipeline stage has a single input 

and a single output channel. Non-linear pipelines stages, however, may have multiple input 

and output channels. This section presents an overview of  the challenges involved in 

designing non-linear pipelines using timed templates. In particular we address issues with (i) 

                                                                                                                                                                                            
2 As with the previous pipeline style, the 3/1 label characterizes the operation of a stage of the pipeline: 3 component delays in the 
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synchronization with multiple destinations (for forks), and (ii) synchronization with 

multiple sources (for joins). Subsequent sections provide our detailed solutions for each of  

the three pipeline styles reviewed above and then briefly describe how these solutions are 

extended to channels that are conditionally read or written. 

4.5.1 Slow and Stalled Right Environments in Forks 

Figure 2-5(b) shows an abstract two-way fork in which the forking stage S1 drives 

stages S2 and S3. For correct operation, S1 must receive (and recognize) acknowledgments 

from both S2 and S3.  A problem is that S2 and S3, and the subsequent stages of  each, may 

be operating largely independently of  each other.  One of  these stages may get arbitrarily 

stalled, thus potentially stalling its acknowledgment from either S2 or S3. 

If  the pipeline templates designed for linear pipelines were naively extended to a 

datapath with a fork, by expecting S1 to synchronize on all of  the acknowledges from the 

forked stages using a C-element to combine them, then the resulting pipeline may 

malfunction.  

In particular, the acknowledgments generated in most linear pipeline structures are non-

persistent.  That is, after a stage asserts its acknowledgment, it assumes that the precharge of  

the previous stage is fast. Therefore, it does not explicitly check for the completion of  that 

precharge before de-asserting the acknowledgment.  We call this restriction/assumption the 

fast precharge constraint. In the case of  a non-linear pipeline, however, if  exactly one of  S2 or 

S3 is slow or stalled, the acknowledgment signal of  the fast stage may be de-asserted before 

S1 has a chance to precharge, causing deadlock. In other words, in this situation, S1 violates 

the fast precharging constraint. We call this problem the slow or stalled right environment (SRE) 

                                                                                                                                                                                            
evaluation phase and 1 component delay in the precharge phase, forming a complete cycle. 
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problem. In particular, Williams’ classic PS0 pipelines [23] along with the recent lookahead 

and high-capacity pipelines all have this problem.  

We propose two general solutions. The first solution is to modify only the immediate 

stages after a fork, such that, even after precharging, they maintain the assertion of  their 

acknowledgment signal and are explicitly prevented from re-evaluating until after the 

forking stage is guaranteed to have precharged.  The key is to modify the stages after a fork 

to guarantee their acknowledgments are properly received while still guaranteeing that these 

stages satisfy the fast precharge constraint.  

The second solution is to modify every pipeline stage such that they maintain the 

assertion of  their acknowledgment signal until after its predecessor stages are guaranteed to 

have precharged.  In other words, this solution is to modify the entire pipeline to remove 

the fast precharge constraint, implicitly solving the SRE problem. This solution must be 

applied to all stages because an unmodified stage may otherwise assume its predecessors 

satisfy the fast precharge constraint, which may not be the case.  

4.5.2 Slow and Stalled Left Environments in Joins 

The second challenge is one of  synchronization with multiple input channels, as 

needed in a join.  Figure 2-5(a) shows a two-way join structure for an abstract pipeline 

where the data from each input stage, S1 and S2, must be consumed by the join stage S3.  

The data outputs of  S1 and S2 are gathered together and presented to S3 as its inputs.  

Subsequently, S3 sends an acknowledgment to both S1 and S2 once it has consumed the 

input data.  Thus, a two-way join represents a synchronization point between the outputs 

of  two senders. 

A problem can arise if  the logic implementation of  stage S3 is “eager”, i.e. S3 may 
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produce output after consuming one but not both of  its data inputs (see [59]). For example, 

if  S3 contains a dual-rail OR function that evaluates eagerly (i.e., as soon as one high input 

bit arrives), then, after evaluation it will send an acknowledgment to both S1 and S2, even 

though one of  them may not have produced data at all.  As a result, if  one of  the input 

stages is particularly slow or stalled, it may receive an acknowledgment from S3 too soon. 

This can cause the insertion of  a new unwanted data token at the output of  the slow stage 

and thus corrupt the synchronization between the stages. We call this the stalled left 

environment (SLE) problem. 

One solution is to allow join stages to have eager function blocks but still ensure that 

the generation of  the acknowledge signal occurs only after consuming data from all of  the 

input stages. This solution has been used extensively in quasi-delay insensitive templates 

[24]. 

4.6 Lookahead Pipelines (Single Rail) 

Handling joins in single-rail lookahead pipelines is straightforward, and was initially 

proposed in [58]. The join stage receives multiple request inputs (Lreq’s), all of  which are 

merged together in the asymmetric C-element (aC) that generates the completion signal.  In 

particular, each additional request is accommodated by adding an extra series transistor in 

the pull-down stack of  the aC element.  The aC will only acknowledge the input sources 

after all of  the Lreq’s are asserted and the stage evaluates. 

To handle forks, on the other hand, a C-element must be added to the forking stage to 

combine the acknowledgments from its immediate successors. In addition, the other stages 

of  the pipeline must also be modified to overcome the SRE problem of  Section 4.5.1. As 

indicated, the problem is that the acknowledge signal from an immediate successor of  a 
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fork stage can be regarded as a pulse, which may be de-asserted before its predecessor 

forking stage has precharged, causing deadlock.  This section gives two distinct solutions 

for handling such forks in LPSR2/2. 

4.6.1 Solution 1 for LPSR2/2 

The first solution is to modify the immediate successor stages of  forking stages to latch 

their Lack acknowledgment signals and delay their re-evaluation until after all predecessors 

have precharged. For LPSR2/2, this is solution achieved by modifying Lack logic and the 

control of  the foot transistor, as shown in Figure 4-4. 

Assume the forked stage has just evaluated and the acknowledgment signal Lack signal 

has just been asserted. At this time, the right environment will assert Rack causing the 

output of  the latch, X, to be asserted (X=0, i.e., active low), effectively latching the non-

persistent acknowledgment signal. The X output is held low even when Rack is de-asserted. 

In particular, X is de-asserted (X=1) only after Done goes low caused by Lreq going low, 

implying that the input forking input stage has precharged.  Effectively, the foot transistor 

now prevents re-evaluation until after X goes low, delaying re-evaluation until all inputs 

(including any slow input) are guaranteed to have precharged. 

These modifications ensure that even late acknowledgments from a stage S3 

immediately after a fork are guaranteed to be properly received while still ensuring that S3 

satisfies the fast precharge constraint, thereby solving the SRE problem.   
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Figure 4-4: a) Modified first stage after the fork. b) Detailed implementation of the gates in the 
dotted box 

 

The only new timing assumption that this template introduces compared to LPSR2/2 is 

that the Rack pulse width must be long enough to properly latch it. This pulse width 

assumption, however, is looser than the original timing assumption that remains: the pulse 

width must be longer than the stage’s precharge time. 

4.6.2 Solution 2 for LPSR2/2 

The second solution is to modify each stage so that it does not de-assert its 

acknowledgments until after all input stages are guaranteed to have precharged. This 

solution can be implemented using the modified LPSR2/2 template shown in Figure 4-5 in 

which the asymmetric C-element is converted to a symmetric C-element. As suggested 

earlier, this modification removes the fast precharge constraint, implicitly solving the SRE 

problem. 
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Figure 4-5: The LPSR2/2 pipeline stage with a symmetric c-element 

4.6.3 Pipeline Cycle Time 

For the first solution, the cycle time expressions do not change if  the additional 

acknowledgment signals simply increase stack height and do not add additional gates. For 

multi-way forks and joins, however, the cycle time will increase by the additional C-

elements needed to combine them. For the second solution, the cycle time becomes: 

TLPSR2/2 = max(2. tEval + 2. tgc ,  tEval + tprech +  2. tgc) 

 

4.7 Lookahead Pipelines (Dual Rail) 

This section extends a dual-rail lookahead pipeline, LP3/1, to handle forks and joins.  

Since both the stalled left environment (SLE) and the stalled right environment (SRE) 

problems of  Section 4.5 can arise in dual-rail pipelines, detailed solutions are presented for 

both forks and joins. 

4.7.1 Joins 

Unlike LPSR2/2, the LP3/1 pipeline has no explicit request line and thus may not 

function correctly unless it is modified to handle the SLE problem in joins. Our proposed 

solution still allows the use of  eager function blocks; however it ensures that no 
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acknowledgment is generated from a stage until after all it’s input stages have evaluated.  

In particular, our solution is to add request signals to the input channels of  the joins 

and feed them into the join stage’s completion detector, as illustrated in Figure 4-6.  The 

join’s completion detector now delays asserting its acknowledgment until not only the 

function block is done computing, but also until after all the input stages have completed 

evaluation, thereby solving the left environment problem. Note that the additional request 

signals are taken from the outputs of  the preceding stages’ completion detectors. While this 

modification does not affect the latency of  the pipeline, the analytical cycle time changes 

to:  

TLP3/1 = 2. tEval + 2. tCD+  tNAND 

4.7.2 Forks 

As in the single-rail lookahead pipeline, LPSR2/2, we propose two solutions for the 

slow or stalled right environments.  These solutions are similar in essence to the solutions 

for the single-rail case, but adapted to dual-rail. 

The implementation of  solution 1 is very similar to LPSR2/2 as shown in Figure 4-7. 

First, the completion detector (CD) has been modified such that the acknowledgment 

signal is de-asserted only after the forking stage has precharged. In addition, we delay the 

re-evaluation of  the function block until after the forking stage has precharged using a 

decoupled foot transistor controlled by the Y signal. 
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Figure 4-6: The LP3/1 pipeline with a modified CD to handle joins 
 

 

 

Figure 4-7: a) Modified first stage after the fork. b) Detailed implementation of the additional 
gates 

 
 
 
 

The second solution is to add a request line to all LP3/1 channels and delay de-

assertion of  the acknowledgment (Lack1 in this case) until after all immediate predecessors 
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have precharged, as shown in Figure 4-8. The request line is generated via a C-element that 

combines the incoming request line(s) and the output of  the completion detection. The 

output of  this C-element becomes the new Lack1. Because the C-element de-asserts its 

acknowledgment only after Lreq is de-asserted, the fast precharge constraint is removed, 

solving the SRE problem. 

For solution 1, compared to the original LP3/1 template, the cycle time is slightly 

increased to: 

TLP3/1 = 2. tEval +  3.tCD+  tPrech 

For solution 2, the cycle time increases to: 

TLP3/1 =  tEval +  3.tCD+  tNAND 

 

Figure 4-8: The LP3/1 stage with a C-element 
 

4.8 High Capacity Pipelines (Single Rail) 

Since the high capacity pipeline template uses single-rail encoding, it has a request line 

associated with the data and thus does not have the slow or stalled left environment 

problem in joins.  However, because the acknowledgment signals in the high capacity 

pipelines are also non-persistent (effectively, timed pulses), they do have problems with a 
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slow or stalled right environment in forks.  

The simple modification to the original stage controller of  the high capacity pipeline 

illustrated in Figure 4-9 delays de-asserting the acknowledgment until after the request line 

goes low, thus removing the fast precharge constraint and solving the SRE problem using 

solution 2. 

In particular, by replacing the NAND3 gate by the state holding generalized C-element, 

the acknowledgment signal Rack only triggers the assertion of  the precharge control signal, 

Pc. The de-assertion of  Pc is caused by the input request signal Rreq going low. Thus, Pc 

remains asserted until after precharge is completed, and is unaffected by the acknowledge 

signal from the next stage getting de-asserted. Furthermore, the inverter is replaced by a 

NOR2 gate with an additional input to delay the stage’s re-evaluation until after the stale 

input data is reset. 

In the new version of  the HC pipeline stage the state variable, ok2pc, belongs to the 

channel between stage N-1 and N.  The reasoning is as follows.  The function of  the state 

variable is to keep track of  whether stages N-1 and N are computing the same token, or 

distinct (consecutive) tokens; precharge of  N-1 is inhibited if  the tokens are different.  If  

there are two stages, N-1(A) and N-1(B), supplying data for stage N, we propose to have two 

separate state variables, one to keep track of  whether stages N-1(A) and N have the same 

token, and the second to keep track of  whether stages N-1(B) and N have the same token.  

Similarly, if  stage N had two successors, N+1(A) and N+1(B), we propose to have two distinct 

state variables, one each for the pair (N, N+1(A)) and the pair (N, N+1(B)). 
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Figure 4-9: a) Original and b) New HC stage 

 

The aC element, which implements the state variable ok2pc, is pulled out of  the stage 

controller and placed in-between stages N-1 and N (i.e., moved into the channel).  In 

addition, the gC element is also moved into the channel to avoid extra wiring. 

4.8.1 Handling Forks and Joins 

Figure 4-10 shows the implementation of  a template for stage, N, for the case where 

stage N is both a fork as well as join.  The multiple reqin’s, ok2eval’s and ack’s are handled by 

simple modifications to the linear pipeline of  Figure 4-9(b), as shown in Figure 4-10. 

Multiple reqin’s:  Each additional reqin is handled by adding a single series transistor to 

the aC element that makes up the completion generator, much like it was done for LPSR2/2 

in Section 4.6.  Hence, done is generated only after all the input data streams have been 

received. 

Multiple ok2eval’s:  Each additional ok2eval is handled by adding it as an extra input to 

the NOR gate that produces the eval signal.  Consequently, the stage is enabled to evaluate 

(eval asserted) only after all of  the ok2eval signals are asserted, i.e. after all of  the senders 
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have precharged.   

Multiple ack’s:  Multiple ack’s are handled by OR’ing them together.  Since the ack’s are 

all asserted low, the OR gate output goes low only when all the ack’s are asserted, thus 

ensuring that precharge occurs only after the stage’s data outputs have been absorbed by all 

of  the receivers.  The OR gate is actually implemented as a NAND with bubbles (inverters) 

on the ack inputs.  This NAND has an additional input --- the stage’s completion signal --- 

whose purpose is to ensure that, once precharge is complete, Pc is quickly cut off.  

Otherwise, Pc may get de-asserted slightly after Eval is asserted, causing momentary short-

circuit between supply and ground inside the dynamic gates. 

4.8.2 Pipeline Cycle Time 

If  only joins are present, the cycle time is only slightly increased.  Compared with the 

cycle time obtained in [58], the new cycle time equation has a NOR delay instead of  an 

inverter delay, and a gC delay instead of  a NAND3 delay: 

 

Figure 4-10: A 2-way join 2-way fork HC stage 
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THC = tEval +  tPrech+  taC+  tgC+  tNOR 

If  forks are also present, then the cycle time increases by the delay of  the OR gate 

which is needed to combine the multiple acknowledgments: 

THC = tEval +  tPrech+  taC+  tgC+  tNOR+  tOR 

4.9 Conditionals 

Other complex pipeline stages allow conditionally reading and writing data and can 

have internal state. This section briefly covers the implementation of  these cells for the 

LPSR2/2 template; however, a similar approach can also be applied to the other pipeline 

styles. 

Figure 4-11(a) shows a conditional read, where the stage reads only one of  the input 

channels depending on the value of  the select channel. Only the channels read are 

acknowledged.  Figure 4-11(b) shows a conditional write, where the stage reads the input 

channel and outputs the data (writes) to only one of  the output channels depending on the 

value of  the select channel. It receives an acknowledgment only from the output channel 

where the data is written. Note that the C-elements are only symmetric for the Rack input 

and asymmetric for all others. 

Figure 4-12 shows a one-bit memory implemented using a LPSR2/2 template. A and C 

represent the input and output channels. B is the internal storage. S is an input control 

channel that selects the write or read operation. When S0 is high, the memory stores the 

value at the input channel A to the internal storage B. Both the input A and the select 

channels are acknowledged. The implementation of  how data is stored is shown in the 

dotted box (similar to [24]). Assuming that there is already data stored, one of  the dual rail 

 79



bits of  B is high and the other is low. When an input A is applied and S0 is high, first both 

rails are lowered and then one of  them is asserted high, thereby storing the data. The C-

element, which generates the acknowledgment of  the input channel LackA through a 

matched delay line, is reset using its own output, since it doesn’t receive an 

acknowledgment from an output. The delay of  the delay line is matched to the delay of  

writing the internal node B.   

When S1 is high, on the other hand, the internal data stored in B is sent to the output 

channel C. When an acknowledgment is received from the output channel C, the outputs 

are reset however the data stored remains unchanged. 

 

Figure 4-11: Conditional read and b) write. 
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Figure 4-12:A one-bit LPSR2/2 memory 
 

4.10 Simulation Results 

HSPICE simulations were performed using a 0.25 TSMC process with a 2.5V power 

supply at 25oC.  The purpose of  these simulations was only to quantify the performance 

overhead of  using the fork-join structures of  this paper, compared with linear pipelines.  

Hence, no attempt was made to fine-tune the transistor sizing to achieve optimum 

performance.  In particular, all transistors were sized in order to roughly achieve a gate 

delay equal to a small inverter (Wnmos=0.8um, Wpmos=2um, and L=0.24um) driving a 

same-sized inverter.  For the purposes of  this comparison, wire delay also has been ignored. 

The simulation results for all linear and non-linear pipelines discussed in this paper are 

presented in Table 4.1.  The original linear pipelines appear under the Sol1 columns and the 

linear1 row because solution 1 involves only modifying the first stages after a fork and 

forks do not exist in linear pipelines. The linear2 row and Sol2 column has the cycle times 
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for linear pipelines, where each stage has been modified according to solution 2. Note that 

while the joins add only ~5% to the cycle time, the forks increase the cycle time by ~20% 

because of  the additional C-element needed. The waveforms in Figure 4-13(a) show the 

data signal of  a LPSR2/2 one-bit linear pipeline. Note also that the cost of  the more robust 

solution 2 compared to solution 1 is generally less than 5%. Figure 4-13(b) shows 

waveforms for a fork with a slow right environment channel called Data4 and Figure 

4-13(c) shows a join with a slow left environment channel called DataB. 

 

 LPSR2/2 LP3/1 HC 

 Sol1 Sol2 Sol1 Sol2 Sol2 

Linear1 0.99 N/A 1.20 N/A N/A 

Linear2 N/A 1.06 N/A 1.28 0.93 

Fo k r 1.23 1.29 1.41 1.45 1.20 

Jo n i 1.05 1.10 1.27 1.34 1.01 

Table 4.1:  Cycle time (ns) of original linear pipelines vs. proposed non-linear pipelines 
 

 

 82



 

 

Figure 4-13: HSPICE Waveforms. a) Linear pipeline, b) Two-way fork and c) Two-way join 
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4.11 Conclusions 

In this chapter we introduced new high-speed asynchronous circuit templates for non-

linear dynamic pipelines, including forks, joins, and more complex configurations in which 

channels are conditionally read and/or written. Two sets of  templates arise from adapting 

the LPSR2/2 and LP3/1 pipelines and one set of  templates arises from adapting the HC 

pipelines. Timing analysis and HSPICE simulation results demonstrate that forks and joins 

can be implemented with a ~5%−20% performance penalty over linear pipelines. All 

pipeline configurations have timing margins of  at least two gate delays, making them a 

good compromise between speed and ease of  design. 
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C h a p t e r  5  

5. A Design Example: The Fano Algorithm 

In this chapter we present The Fano algorithm, a convolutional code decoder, and 

its efficient semi-custom synchronous implementation. The algorithm is used in 

communication systems to decode the symbols received over a noisy communication 

channel. Our goal is to later develop an efficient asynchronous counterpart, which we try 

to explore the challenges in designing asynchronous chips. In this chapter first we will 

present the Fano Algorithm. Then we will present the synchronous implementation of the 

algorithm.  

5.1 The Fano Algorithm 

5.1.1 Background on the Algorithm 

The Fano algorithm [60] [61] [62], is a tree search algorithm that achieves good 

performance with a low average complexity at a sufficiently high signal-to-noise (SNR) 

ratio. A tree comprises nodes and branches, associated with each branch is a branch metric 

(or weight, or cost). A path is a sequence of nodes connected by branches with the path 

metric obtained as the sum of the corresponding branch metrics. An optimal tree-search 

algorithm determines the complete path (i.e., from the root to leaf) with minimum path 

metric, while a good (suboptimal) tree search algorithm finds a path with metric close to 

this minimum. 

The Fano algorithm searches through the tree sequentially, always moving from 

one node to a neighboring node until a leaf node is reached. The Fano algorithm is a depth 

first tree-search algorithm [60], meaning that it attempts to search as few paths as possible 
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to obtain a good path. Thus, the metric of a path being considered is compared against a 

threshold T. The relation between T and the metric is determined by the statistics of the 

branch metrics (i.e., underlying model) and the results of partial path exploration. The latter 

is reflected by dynamically adjusting the threshold to minimize the number of paths 

explored. 

The key steps of the algorithm involve deciding which way to move (i.e., forward, 

or deeper, into the tree or backward) and threshold adjustment. Intuitively, it moves 

forward only when the partial path to that node has a path weight that is greater than T. If 

no forward branches satisfy this threshold condition, the algorithm backtracks and searches 

for other partial paths that satisfy the threshold test. If all such partial paths are exhausted, 

it will loosen the threshold and continue. In addition if the current partial path metric is 

significantly above the threshold, it may tighten the threshold. Threshold tightening 

prevents always backtracking to the root node at the cost of potentially missing the optimal 

path. Moreover, a maximum traceback depth limit is often imposed to limit worst-case 

complexity. The details of the Fano algorithm are illustrated in the flow chart depicted in 

Figure 5-1 and a more detailed explanation can be found in [62] [61].  

The decoding of a convolutional code with known channel parameters can be 

viewed as a tree-search problem with the optimal solution provided by the Viterbi 

algorithm [61], a breadth-first, fixed complexity algorithm. The Fano algorithm is known to 

perform near-optimal decoding of convolutional codes with significantly lower average 

complexity than the Viterbi algorithm.  
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Figure 5-1: Flow-chart of Fano Algorithm 

 

5.2 The Synchronous Design 

This section describes the efficient normalization scheme used to optimize the 

algorithm, our architecture at the register transfer level, and statistics of  the chip.  

5.2.1 Normalization and its benefits 

The basic idea behind normalization is to change the point of  reference (e.g., from the 

origin of  the tree to a current node under consideration). Normalization is often necessary 

to prevent hardware overflow/underflow. Interestingly, in traditional communication 

algorithms, such as the Viterbi algorithm, normalization often yields significant 

performance and area overhead that hardware designers generally avoid by using slightly 

larger bit-widths and modulo arithmetic [63]. In contrast, we show that using normalization 

in the Fano algorithm can yield a smaller, faster and more energy efficient design. 

In particular, we normalize our variables in such a way as to make to current node’s 
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metric always equal to zero. This is equivalent to subtracting the current node’s metric from 

every variable in the algorithm, which does not change the overall behavior of  the 

algorithm. The advantages of  this type of  normalization in the Fano algorithm is as 

follows. 1) Additions involving the current metric (i.e., during the threshold check) are 

removed and comparisons with the current metric (i.e., during the first visit check and 

threshold tightening steps) reduce to a 1-bit sign check. 2) The normalization of  the next 

threshold (subtracting the current node’s metric from it) can be done by the ALU that 

compares the threshold with the next metric, and thus consumes negligible additional 

energy. 3) Lastly, the normalization enables us to work with numbers with smaller 

magnitudes that can be represented with fewer bits.  

5.2.2 Register-Transfer Level Design 

The register-transfer level architecture is illustrated in Figure 5-2. The Threshold Adjust 

Unit (TAU) is shown in more detail, but still with some of  the details omitted to simplify 

the schematic. At each clock cycle, the best and next best branch metrics are both 

calculated using data that is stored in memory. (See [62] for more details regarding the 

branch metric computation.)  The threshold check unit compares the error metric with the 

current threshold to determine if  a forward move can be performed and simultaneously 

speculatively calculates two normalized next thresholds, the first assuming a forward move 

will be taken and the second assuming the threshold must be loosened (by subtracting ∆ 

from T). 

Based on the above results, either the move will be made and the pre-computed 

threshold will be stored or the threshold T will be loosened, all in one clock cycle. 

Additional clock cycles are needed to compute tightening the threshold if  (i) a forward 
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move is made, (ii) the first visit check is passed, and (iii) the pre-computed tightened 

threshold is not in the range of  ∆. Fortunately, with reasonable choices of  ∆, computer 

simulations suggest that these additional cycles of  tightening are rarely needed. Similar 

speculative execution allows us to perform a look/move back in one clock cycle.  
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Figure 5-2: RTL architecture of the synchronous Fano Algorithm 
 

The register-transfer-level architecture shown in Figure 5-2, is controlled by the finite 

state machine (FSM) illustrated in Figure 5-3. Three states, state 2-4, make up the main 

algorithm. In each of  these states, the branch metric unit computes the needed selected 

branch metric using data that is stored in the sequence memory. Depending on control bits 

from the FSM (not shown) the selected branch metric that is associated with the best or 

worst branch. In either case, the corresponding input bit is sent to the decision memory 

where, in the case the branch is taken, it is used to update the selected path.  

In state 2, the machine looks forward, moves forward if  possible, and, if  necessary, 

performs one step of  threshold tightening. More specifically, after the selected branch 

metric is computed, the FSM performs a threshold check to see if  the machine can move 

forward. That is, ALU3 computes T minus the selected branch metric and the FSM 

examines the most significant bit. If  the sign bit is a 1, the branch metric is no smaller than 

T and the threshold check passes. Otherwise, the threshold check fails. Meanwhile, ALU1 

and ALU2 speculatively compute T+∆ and T+∆ minus selected branch metric respectively. 
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These values, along with θ, a state variable shown in Figure 5-1, allow the FSM to 

determine whether the first visit check passes. That is, the first visit check passes if  and 

only if  θ =0 or if  T+∆ is positive or T+∆ minus the selected branch metric is positive.  

Based on the above results, the FSM acts in one of  three ways. 1)The threshold check 

passes and a forward move is performed, but the first visit check fails so that the NextState 

is set state S2, in preparation of  another look forward. 2) Both the threshold check and the 

first visit check pass in which case the FSM moves to state S3. 3) The threshold check fails 

and the FSM moves to state S4 in preparation of  look/move backward. In the case of  1) 

the threshold register is updated with T minus the selected branch metric, computed by 

ALU3. In the case 2), on the other hand, the threshold is updated with the tighter 

threshold T+∆, computed by ALU1, whereas in the case of  3) the threshold register 

remains unchanged.  

In state S3, the FSM checks whether a subsequent tightening is needed (by computing 

and checking the sign of  ∆+T). Simultaneously, it speculatively performs a  
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Figure 5-3: Finite State Machine describing the RTL  
 

threshold check (by checking whether the Branch Metric is no smaller than T) which is 

needed in the event that the threshold need not be immediately tightened (i.e., in the event 

that tightening of  the threshold requires only the one addition of  ∆ performed in state S2). 

If  tightening is required, the NextState is set to state S3. For the case where no immediate 

tightening is needed, the FSM performs the same move/look forward/tightening/next-

state operations as in state S2.  

State S3 is entered when the threshold check fails in either state S2 ot state S3. In state 

S4, a look backward is performed and, if  possible, a backward move is made and the 

threshold is updated with the re-normalized threshold. Both the look backward and re-
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normalization are performed through ALU3 by adding T and the selected (backward) 

branch metric. Specifically, the look backward check is satisfied if  and only if  the negative 

selected branch metric is greater or equal to the threshold, i.e., the result of  the ALU3 

operation is negative and the re-normalized threshold is precisely the output of  ALU3. If  a 

backward move is performed and it is originated from a worst node, via an additional FSM 

flag, NextState is set to state S4, in preparation of  another look backward. Alternatively, 

NextState is set to state S2 in preparation of  a look forward to the next best node, 

controlled by a LookNextBest flag that is not shown to simplify exposition. If  the 

backward look fails, on the other hand, the threshold is updated with a loosened threshold, 

speculatively computed by ALU1, and NextState is set to state S2.  

The key feature of  the speculative control strategy is that each forward move typically 

takes only once clock cycle with negligible performance overhead associated with the first 

visit check or tightening. In particular, with reasonable choices of  ∆, computer simulations 

suggest that additional cycles of  tightening are rarely needed.  

5.2.3 Chip Implementation 

The chip supports a packet length of  N=128. The depth of  the search tree, which also 

including 7 tail bits, is thus 135. It supports a rate ½ convolutional code, (i.e., n=2) with 

generator polynomials 1+D+D2+D5+D7 and 1+D3+D4+D5+d6+D7. For this 

prototype, we assumed the chip would have fixed branch metrics B(0)=2, B(1)=-7, and 

B(2)=-16, requiring 5 bits to represent. These metrics are ideal for the SNR range of  

1<Eb/No(dB) <3. In practice, they would be dynamically adjusted when the estimated 

channel SNR is outside this region, which may require an extra bit. 

We used automatic placement and routing tools with a combination of  synthesized and 
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manually laid-out components in the 0.5u HP14B CMOS process. The layout has an area 

of  1.2mm by 1.8mm. Powermill was used to estimate the performance of  the design. At 

1.5V power supply the design successfully operated at 15MHz and at 3.3V it successfully 

operated at 100MHz.  
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C h a p t e r  6  

6. The Asynchronous Fano 

Deeper analysis of the Fano algorithm shows that the operation of the algorithm can 

be divided into two: The Error Free Region and the Error Region. In the Error Free Region, 

the algorithm moves forward while the received bits from the sender are error free and 

match the expected bits. In this region of operation the un-normalized threshold is 

incremented with a constant value, namely the value given for an error free branch of the 

tree. If the threshold value is known at the time the algorithm enters the Error Free Region 

then the next value of the threshold can be calculated. The normalized threshold, however, 

stays in the range of -∆ ≤ T ≤ 0 and rotates through a finite number of values in a pre-

determined order.  

Consequently, instead of calculating the threshold values explicitly, a pointer to a 

lookup table containing these pre-determined values is incremented. When an error is 

encountered, the design enters the error region where the current value of the threshold is 

accessed from the lookup table and the full algorithm is applied in order to determine 

whether to move forward, move backward, or loosen the threshold. The algorithm stays in 

the error region until a node in the search tree is reached for the first time and the move 

was a forward move, at which point the algorithm moves back into the error-free region. 

The algorithm continues until the end of the tree by alternating between the error free and 

the error regions.  
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For high SNR applications most of the received packets have little to no errors 

therefore most of the decoding process consists of reading the data from the memory, 

comparing to the predicted data, and the writing the decision to the memory and involves 

little to no multi-bit additions/subtractions/comparisons due to loosening or tightening 

the threshold. This fact motivates a two-block architecture that are specifically designed to 

handle the two different operating regions of the algorithm efficiently. 

6.1 The Asynchronous Fano Architecture 

The proposed asynchronous architecture, shown in Figure 6-1 localizes the Error-Free 

region in a small block that is highly optimized. In particular, the Branch Metric Unit 

(BMU) is partitioned into a Skip Ahead Unit optimised for the Error Free Region and a 

Threshold Adjust Unit and the Branch Metric Calculator that are active only in the Error 

Region and have implementations analogous to the synchronous version. 

The data received to the decoder via the Transmitted Input Data channel are stored in 

the Received Memory. The fast Skip Ahead Unit requests data from the Received Memory 

in 8 word chunks via the Previous/Next channel, where each data word is for the (7,1,2) 

code two bits wide. As the Skip Ahead Unit decodes the code and moves forward in the 

tree, it locally stores its decisions. Every 8 decision is sent to the Decision Memory via the 

Last 8 Decisions channel. When an error is encountered, the Skip Ahead Unit may need to 

go back in the tree to explore different branches by requesting previous decisions from the 

Decision Memory that arrive on the Previous 8 Decisions channel. The data flow between 

the Decision Memory and the Skip Ahead Unit is controlled via the Write/Read channel. 
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Figure 6-1: RTL architecture of the asynchronous implementation 

 

In the Error Free Region, the received bits are read from the Received Memory and 

decoded in the Skip Ahead Unit. The resulting decisions are then sent to the Decision 

Memory and the SAU unit increments the look-up table pointer via the IncPointer channel. 

In this region, the Main FSM, Branch Metric Calculator, and the TAU are inactive.  

When an error is encountered the SAU informs the Branch Metric Calculator via the 

Error channel and also sends it the received branch bits and the predicted branch bits 

calculated using the previous decisions and the convolutional code. Depending on the 

move commanded by the Threshold Adjust Unit via the LFB (look forward best), LB (look 

backward), LFNB (look forward next best), and LFBTE (look forward best until error) 

channels, the Branch Metric Calculator calculates and compares the branches, selects the 
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appropriate one, and sends it to the TAU with additional information notifying if the move 

originated from a worse branch and if the branch had any errors (via the additional 

BmuErr and BmuFwn channels). Every time the TAU is accessed for the first time when 

an error has occurred, the TAU reads the normalized threshold from the look-up table and 

updates the threshold value. The TAU is implemented analogously to the synchronous 

version and is responsible for deciding to move forward, move backward, or adjust the T 

threshold. Upon deciding a move, the relevant information is sent to the SAU and a new 

command is issued to the Branch Metric Calculator. Finally when a new error free node is 

reached for the first time, the TAU issues the LFBTE command, stores the normalized 

threshold, updates the pointer to the look-up table and resume operation in the fast SAU 

via the Back To Skip-Ahead channel. The operation switches back and forth between the 

SAU and the TAU until all the data is encoded. Upon reaching the end of the tree, the 

Decision Memory sends out the decoded data. 

The fact that the asynchronous circuit has no global clock allows the asynchronous 

architecture to be naturally divided into two blocks, each operating at its ideal speed that 

communicate only when and where needed via the inter-block asynchronous channels. 

6.2 The Skip-Ahead Unit 

A high level implementation of the SAU is shown in Figure 6-2. The core of the SAU 

is the Error Detector, which compares the predicted branch bits with the received branch 

bits and stores the decision. To operate at full rate, the memories must keep up with 

writing/reading one data word per decoding cycle. As the memory capacity increases, this 

becomes a difficult task and for this reason we have opted to use shift registers that act as 

caches for the bigger memories. In particular, the Fast Data Register stores 8 words from 
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the Received Memory and the Fast Decision Register acts as an 8-word read/write cache 

for the Decision Memory. When the Received Memory sends an 8-word packet to the Fast 

Data Register, the Received Memory speculates that the SAU will not encounter any errors 

and moves forward thus prepares to send a new set of data. This cache structure allows the 

larger memory to run at 1/8 the speed of the SAU. The same motivation applies to the use 

of the Fast Decision Register with the exception that it is a read/write register. Both of the 

registers have an associated controller to request and send data to their respective 

memories.  

 

Figure 6-2: Detailed implementation of the Skip-Ahead Unit 
 

The most recent decisions in the search tree, which always reside in the Fast Decision 

Register, are sent to the Code Generator, which predicts the values of the new branch bits. 

The predicted branch bits are compared to the received one in the Error Detector. If there 
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is a match, indicating that there is no error, the decision is stored in the Fast Decision 

Register, an internal counter and the pointer in the look-up table are incremented, and new 

data are requested from the shift registers via the Move Forward/Backward,  Up/Down, 

IncCount and IncPointer channels. If there is no match, then an error is encountered. The 

predicted and received branch bits are sent to the Branch Metric Calculator and the 

controls of the shift registers are transferred to the TAU.  

The critical loop in the Error Free Region consists of the Fast Shift Register, the Error 

Detector, the Fast Decision Register, and the Code Generator. For high SNR operation, 

most of the time the decoder operates in the Error Free Region, therefore our goal is to 

achieve high speed in this region by optimizing the circuit. However if and when the circuit 

encounters an error, it enters the Error Region and the critical path consists of the Fast 

Shift Register and the Convolutional Code Generator serving data to the Slow BMU. In the 

Error Region, the operation is the same as in the synchronous version consisting of a 

number of sequential operations. In this region the speed is expected to be comparable to 

the synchronous case.  

6.3 The Memory Design 

Since the chip supports a packet length of only 135 bits (128 data and 7 tail bits), we 

have opted to design the main data memory blocks of the Received and Decision 

memories using standard PCHB templates. However, we introduced unacknowledged tri-

state buffers on the data bus to efficiently allow multiple drivers of the bus. This is typical 

in synchronous design, but does introduce some minor timing assumptions not typical of 

PCHB-based designs. We also used standard place and route tools for the physical design 
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of the memories for faster design time at the expense of more area and power 

consumption. 

 

 

Figure 6-3 Implementation of the Received Memory 
 

In particular, as depicted in Figure 6-3 the received memory consists of n blocks where 

each block can hold 8 words. For the (7,1,2) convolutional code each word is 2 bits. The 

blocks are FIFO’s implemented with PCHB’s. At any time only one of the tri-state buffers 

is enabled allowing only one of the blocks to send their data. The Fano algorithm is a 

sequential tree search algorithm, therefore SAU accesses the memory sequentially via the 

Next/Previous channel. The Received Memory Controller responds to the request by 

enabling a preceding or proceeding tri-state buffer and sending new data. The buffer 

captures the new data and sends it to the requesting unit. The timing assumption for 

correct operation is that the delay from the Next/Previous channel through the Received 

Memory Controller and the selected tri-state buffer should be less than the delay from the 
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Next/Previous channel to the output buffer. Moreover, the output buffer should only latch 

its input when the enabled tri-state buffers outputs have changed and stabilized. 

The decision memory has a similar structure, however since it is a read/write memory each 

of the blocks can be accessed individually to read from or to write to. 

6.4 The Fast Data and Decision Registers  

The fast data register is implemented using two 8-word, 1-bit shift registers, as shown 

in Figure 6-4. The register consists of 8 conditional input, conditional output 1-bit memory 

pipeline stages. Depending on the command, cmd, it either shifts forward by receiving new 

data from InF and sending the old to OutF, shifts backward by receiving data from InB 

and sending the old to OutB, or loads 8-words in parallel from the main memory. The 

parallel load command overwrites the old data tokens inside each stage. The command 

channel Cmd should go to all of the stages, however to prevent the use of a big c-tree to 

generate the Cmd acknowledgement signal the Cmd signal is broadcasted with a tree of 

copy buffers. Altough this solution reduces the load on the Cmd channel if it were to be 

copied to all stages directly, this solution increases critical loop delay of the algorithm.  

The fast data register is implemented similarly. 
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Figure 6-4 Implementation of a 1-bit fast shift register 
 

6.5 Simulation Results and Comparison 

The core layout of the chip designed in TSMC 0.25µ CMOS technology is illustrated in 

Figure 6-5. Nanosim simulations, on the extracted layout, show that the circuit runs at 

450MHz and consumes 32mW at 25oC and has an area of 2600µm x 2600µm = 6.76mm2.  

The asynchronous chip runs about 2.15 faster than its synchronous counterpart. However 

it occupies 5X the area. This is partially due to the fact that both of the memories which 
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occupy half the chip area in the asynchronous chip are implemented with PCHB’s. Lastly 

the design consumes 1/3 the power of its synchronous counterpart. 

 

 

Figure 6-5: Layout of the asynchronous Fano 
Figure 6-6 (a) below shows the post-layout simulation results for the circuit operating 

under the Error Free Region. Since the Fast Data and Decision Registers can only hold 8 

words, once the data held by the Fast Data Register is consumed a new set of data is 

requested from the main Received Memory. This request and data transfer causes a slight 

delay, which can be observed in the waveforms as a slight gap every 8 pulses. Since there 

are no errors in the Error Free Region the nofail_f signal used to indicate the encounter of 
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an error is never asserted but instead the nofail_t signal, which indicates that there are no 

errors is asserted by the detection logic.   

On the other hand, as shown in Figure 6-6 (b) in the Error Region, as errors are 

encountered the decoder moves back and forth to find the correct path. This can be 

observed with the assertion of the shiftb (shiftback) and nofail_f signals.  

 

(a) 

 

(b) 
Figure 6-6: a) Error-Free and b) Error Region operation waveforms 
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C h a p t e r  7  

7. An Asynchronous Semi-Custom Physical Design 

Flow 

The general design flow that the USC Asynchronous Design Group has refined was 

already covered in the introduction of  this thesis. In this chapter we will specifically focus 

on the last parts of  the flow mainly the gate level and physical design.  

7.1 Physical Design Flow Using Standard CAD Tools 

One of the biggest obstacles today of designing asynchronous circuits is the lack of 

CAD tools specifically targeted for the design of such chips. However it is still possible to 

complete a fairly complex chip in a reasonable amount of time using standard CAD tools 

used for synchronous design. Figure 7-1 below illustrates the flow. 

There is no difference for the initial specification step of the design for synchronous or 

asynchronous design, since a spec typically describes the expected functionality (Boolean 

operations) of the designed block, as well as the delay times, the silicon area and other 

properties such as power dissipation. Usually, the design specifications allow considerable 

freedom to the circuit designer on issues concerning the choice of a specific circuit 

topology, individual placement of the devices, the locations of input and output pins, and 

the overall aspect ratio (width-to-height ratio) of the final design. The actual 

implementation of the asynchronous circuit starts at the schematic level. The top-level 

circuit or design is hierarchically decomposed until the design consists of a netlist of leaf 
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cells. If a leaf cell library exists then the automatic place and route tool can generate the 

layout using this library. Otherwise the leaf cells can be further decomposed into gates 

where the gate level netlist can be mapped to a gate library. 

 

   
Figure 7-1: Physical design flow using standard CAD tools 

 

Depending on the final design size either the whole design can automatically be placed 

and routed using the P&R tool or the design can be partitioned into smaller blocks and 

each block can be placed and routed separately. This allows for better control over the 

layout for performance. Once the whole design is laid-out and Design Rule Check (DRC) 

is completed a Layout-vs.-Schematic (LVS) must be performed to ensure that the layout is 

the same as the schematic. This step is followed by extraction of the layout for post-layout 

spice simulation. We have used the Dracula tool from Cadence for this step. The extracted 
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netlist accurately represents the laid-out transistor dimensions as well as the wiring 

resistance and capacitance. Depending on the post-layout simulation to achieve the desired 

performance and power requirements the top-level design might have to be changed and 

the whole step repeated.  

The architectural and leaf cell design steps of the physical design flow followed in this 

thesis are illustrated below in Figure 7-2. 

 

 
 

Figure 7-2: Asynchronous circuit design flow followed 
 

 

The high level schematic is developed in C and Verilog codes and used to describe the 

specification of  design. The high level schematic is hierarchically implemented by 

decomposing the design to the lowest level communicating blocks, namely the PCHB leaf  

cells. In the micro-architecture step the designer can choose to implement the architecture 
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with various methods ranging from fine grain pipelines template-based using delay 

insensitive cells to components relying on bounded delay based with no pipelining at all. 

The asynchronous Fano has been implemented with fine grain pipelining using PCHB 

templates. Slack optimization in consideration of  performance is also completed in this 

step. At the end of  the micro-architecture design there are two possible options.  

One option is to keep going in the decomposition and generate a leaf  cell design. The 

leaf  cell design will depend on the template used (PCHB, RSPCHB, LP3/1, HC…).  The 

next step is to generate a gate level netlist of  the whole circuit just like in synchronous 

design. The gate library consisting of  static and dynamic gates will be mapped to the netlist 

and the design can be laid out using standard place and route tools.  

The other option is to generate a leaf cell netlist rather than going any further and use a 

leaf cell library. The leaf cell library would be mapped to the netlist and the automatic place 

and route would be done at the leaf cell level rather than the lower gate level. This option 

would probably yield denser circuits with better performance since the leaf cells would be 

optimized and laid out using more of a full custom approach, although even automatic 

place and route can be applied to generate the leaf cells. Choosing the first option and 

applying place and route directly on a gate netlist can lead to a number of undesired effects. 

One of them is a less dense circuit since rather than sharing area and optimizing leaf cells, 

the leaf cells will be implemented with discrete gates. Another issue is that the handshaking 

circuits might not be as close to the dynamic functional evaluation circuit when the place 

and route is applied to the gate netlist rather than the leaf cell netlist, therefore effecting 

performance. 
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We have used the Virtuosa Schematic Editor from Cadence as a schematic entry tool to 

design the PCHB based leaf cell. All of the decomposition was also done using this tool. 

Initially only the functional and symbol views of the dynamic and static gates needed in the 

design are created and added to the asynchronous cell library. The functional description of 

a dynamic circuit used as a buffer is shown below in Figure 7-3.   

 

 

Figure 7-3: The functional description of a dynamic buffer 
 

Once the design is completed and the correctness has been verified at the behavioral 

level, the schematic (transistor) views of the cells are implemented for spice simulation. 

The transistor level view of the dynamic buffer is shown below in Figure 7-4. 
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Figure 7-4: The transistor view of a dynamic buffer 
 

 For spice simulation we have used Nanosim from Synopsys. The layout views were 

created once we were confident that the design worked as expected at the transistor level.  

The layout view for the dynamic buffer is shown below in Figure 7-5.  

 

Figure 7-5: The layout view of a dynamic buffer 
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One important aspect of designing cells for dynamic logic is charge sharing and 

transistor sizing. After a number of test simulations on individual cells we have decided to 

use 8X for the size of the output transistors, 2X for the pull-down transistors. The 

staticizer inverters were set to approximately 1/10 the strength of the pull-down transistors 

to balance reliability of operation against speed. The other aspect for reliable operation is 

charge sharing. Unlike the schematic in Figure 7-4, if the nBUF1 and nBUF0 signals were 

generated using the A, en and BUFe signals as a stack of three transistors in series, there 

would the possibility of the internal dynamic nodes nBUF1 and nBUF0 loosing their value 

due to the charge sharing. This scenario could occur if A and en were asserted high turning 

on their respective transistors and BUFe was still asserted low. To prevent this problem, we 

have opted to use a widely known solution of doubling the pull-down logic and cross-

coupling it as illustrated in Figure 7-4.  

To reduce to load on the automatic place and route tool and to meet the performance 

of the circuit we partitioned the top-level design into a number of blocks as shown in 

Figure 6-5. The place and route, which was performed using Silicon Ensemble from 

Cadence, was not timing based, to show that a QDI based asynchronous circuit will work 

no matter what the delays are as long as the isochronic fork assumption is met. The Figure 

7-6 below is a snapshot illustrating the cell placement of the counter block. The picture is 

zoomed in to the lower left corner of the design for clarity.   
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Figure 7-6: Cell placement in Silicon Ensemble 
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Figure 7-7: Routed Counter block with Silicon Ensemble 
 

Each block was streamed back into the Virtuosa Layout Editor for DRC and LVS 

check against its transistor level netlist. The LVS check also generates an extracted netlist 

of the design for spice simulation. A short sample of the extracted netlist is shown below. 

The flattened netlist consists of two parts, the transistor connections and the extracted 

capacitances.   
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Figure 7-8: Extracted netlist of a block 
 

The layout of the whole design is show in Figure 6-5. All of the blocks have been 

individually placed and routed. However the routing between the blocks have been done 

manually.  
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