

TEMPLATE BASED ASYNCHRONOUS DESIGN

By

Recep Ozgur Ozdag

A Dissertation Presented to the

FACULTY OF THE GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA

In Partial Fulfillment of the
Requirements for the Degree

DOCTOR OF PHILOSOPHY
(ELECTRICAL ENGINEERING)

November 2003

Copyright 2003 Recep Ozgur Ozdag

Contents

List of Tables v

List of Figures vi

Abstract ix

1. Introduction ... 1

1.1 Asynchronous Circuit Design Flow .. 6
1.2 Expected Contributions of the Thesis .. 9
1.3 Thesis Organization ...10

2. Background...11

2.1 Data Encoding Styles...11
2.2 Handshaking Styles ..12
2.3 Delay Models ..15
2.4 Synthesis Based Design ...16

2.4.1 Fundamental Mode Huffman Circuits .. 16
2.4.2 Burst-Mode Circuits... 18
2.4.3 Event-Based Design... 19

2.5 Template-Based Design ..20
2.5.1 Template-Based Compilation Systems.. 21

2.5.1.1 Caltech’s Design Methodology ...22
2.5.1.2 Tangram and Balsa ...23

2.5.2 Micropipelines... 24
2.5.3 Ad Hoc Design... 25

2.6 Linear and Non-Linear Asynchronous Pipelines25
2.6.1 Linear Pipelines... 26
2.6.2 Fine Grain Pipelining... 29
2.6.3 Performance Analysis of Linear Pipelines .. 30
2.6.4 Non-Linear Pipelines ... 33

3. New High Speed QDI Asynchronous Pipelines...... 36

3.1 Caltech’s QDI templates ...36
3.1.1 WCHB.. 36
3.1.2 PCHB and PCFB ... 38
3.1.3 Why Input Completion Sensing? ... 40

 ii

3.2 New QDI Templates ...41
3.2.1 RSPCHB.. 42
3.2.2 RSPCFB... 50
3.2.3 FSM Design... 53
3.2.4 Simulation Results .. 55
3.2.5 Conclusions ... 58

4. Timed Pipelines ... 59

4.1 Williams’ PS0 Pipeline ...60
4.2 Lookahead Pipelines (Single Rail) ..62
4.3 Lookahead Pipelines (Dual Rail)..65
4.4 High Capacity Pipelines (Single Rail) ..65
4.5 Designing Non-linear Pipeline Structures ..66

4.5.1 Slow and Stalled Right Environments in Forks... 67
4.5.2 Slow and Stalled Left Environments in Joins .. 68

4.6 Lookahead Pipelines (Single Rail) ..69
4.6.1 Solution 1 for LPSR2/2 .. 70
4.6.2 Solution 2 for LPSR2/2 .. 71
4.6.3 Pipeline Cycle Time ... 72

4.7 Lookahead Pipelines (Dual Rail)..72
4.7.1 Joins.. 72
4.7.2 Forks .. 73

4.8 High Capacity Pipelines (Single Rail) ..75
4.8.1 Handling Forks and Joins ... 77
4.8.2 Pipeline Cycle Time ... 78

4.9 Conditionals ..79
4.10 Simulation Results ..81
4.11 Conclusions ...84

5. A Design Example: The Fano Algorithm................... 85

5.1 The Fano Algorithm ..85
5.1.1 Background on the Algorithm.. 85

5.2 The Synchronous Design..87
5.2.1 Normalization and its benefits ... 87
5.2.2 Register-Transfer Level Design.. 88
5.2.3 Chip Implementation... 93

6. The Asynchronous Fano... 95

6.1 The Asynchronous Fano Architecture..96
6.2 The Skip-Ahead Unit ...98
6.3 The Memory Design ..100
6.4 The Fast Data and Decision Registers..102

 iii

6.5 Simulation Results and Comparison ...103

7. An Asynchronous Semi-Custom Physical Design
Flow..106

7.1 Physical Design Flow Using Standard CAD Tools106

8. References ... 116

 iv

List Of Tables

Table 4.1: Cycle time (ns) of original linear pipelines vs. proposed non-linear pipelines ... 82

 v

List Of Figures

Figure 1-1: Asynchronous circuit design flow under development.. 8

Figure 2-1: Handshaking protocols: Two-phase versus four-phase... 14

Figure 2-2: Pipeline channels .. 27

Figure 2-3: Synchronous vs. asynchronous pipelines... 28

Figure 2-4: Throughput vs. tokens graphs .. 32

Figure 2-5: a) a fork and b) a join ... 34

Figure 2-6: Fundamental non-linear pipeline structures ... 35

Figure 3-1: WCHB ... 37

Figure 3-2: a) PCHB and b) PCFB templates .. 38

Figure 3-3: a) PCHB and b) PCFB STG .. 38

Figure 3-4: An OR gate implementation using weak conditioned logic ... 41

Figure 3-5: Optimized PCHB for a 1-of-N+1 channel .. 42

Figure 3-6: a) Abstract and b) detailed QDI RSPCHB pipeline template .. 44

Figure 3-7: The STG of the RSPCHB ... 45

Figure 3-8: Conditional a) join and b) split using RSPCHB ... 47

Figure 3-9: A RSPCHB 1-bit memory ... 50

Figure 3-10: a) Abstract and b) detailed RSPCFB ... 52

Figure 3-11: a) Abstract and b) detailed RSPCFB ... 53

Figure 3-12: An abstract asynchronous FSM... 54

Figure 3-13: Throughput versus tokens for a) the PCHB and RSPCHB and b) the PCFB and RSPCFB

linear pipelines... 57

Figure 4-1: Williams’ PS0 pipeline stage ... 60

 vi

Figure 4-2: The STG of the PS0 Pipeline .. 62

Figure 4-3: a) LPSR2/2 b) LP3/1 and c) HC pipelines .. 64

Figure 4-4: a) Modified first stage after the fork. b) Detailed implementation of the gates in the

dotted box .. 71

Figure 4-5: The LPSR2/2 pipeline stage with a symmetric c-element ... 72

Figure 4-6: The LP3/1 pipeline with a modified CD to handle joins .. 74

Figure 4-7: a) Modified first stage after the fork. b) Detailed implementation of the additional

gates .. 74

Figure 4-8: The LP3/1 stage with a C-element .. 75

Figure 4-9: a) Original and b) New HC stage.. 77

Figure 4-10: A 2-way join 2-way fork HC stage ... 78

Figure 4-11: Conditional read and b) write. .. 80

Figure 4-12:A one-bit LPSR2/2 memory .. 81

Figure 4-13: HSPICE Waveforms. a) Linear pipeline, b) Two-way fork and c) Two-way join 83

Figure 5-1: Flow-chart of Fano Algorithm .. 87

Figure 5-2: RTL architecture of the synchronous Fano Algorithm .. 90

Figure 5-3: Finite State Machine describing the RTL .. 92

Figure 6-1: RTL architecture of the asynchronous implementation .. 97

Figure 6-2: Detailed implementation of the Skip-Ahead Unit .. 99

Figure 6-3 Implementation of the Received Memory... 101

Figure 6-4 Implementation of a 1-bit fast shift register .. 103

Figure 6-5: Layout of the asynchronous Fano ... 104

Figure 6-6: a) Error-Free and b) Error Region operation waveforms ... 105

Figure 7-1: Physical design flow using standard CAD tools.. 107

 vii

Figure 7-2: Asynchronous circuit design flow followed ... 108

Figure 7-3: The functional description of a dynamic buffer.. 110

Figure 7-4: The transistor view of a dynamic buffer ... 111

Figure 7-5: The layout view of a dynamic buffer ... 111

Figure 7-6: Cell placement in Silicon Ensemble.. 113

Figure 7-7: Routed Counter block with Silicon Ensemble .. 114

Figure 7-8: Extracted netlist of a block ... 115

 viii

Abstract

Asynchronous design is increasingly becoming an attractive alternative to synchronous

design because of its potential for high-speed, low-power, reduced electromagnetic

interference, and faster time to market. To support these design efforts, numerous design

styles and supporting CAD tools have been proposed. We adopt a template-based

methodology that facilitates hierarchical design using standard asynchronous channel

protocols, removes the need for complicated hazard-free logic synthesis, and naturally

provides fine-grain pipelines with high throughput. We propose seven different templates

that provide tradeoffs between throughput and robustness to timing. The most robust

templates are quasi-delay-insensitive in that they work correctly regardless of delays on

individual gates. The most aggressive templates use timing assumptions that can be

satisfied with additional care during transistor sizing, floorplanning, and layout.

We propose a complete design methodology for template-based designs using standard

hardware description languages and the Cadence design framework. We demonstrate the

advantages of the templates and methodology by designing an asynchronous sequential

channel decoder based on the Fano algorithm. Spice simulations, on the extracted layout,

show that the circuit runs at 450MHz and consumes 32mW at 25oC. The asynchronous

chip runs about 2.15 faster and consumes 1/3 the power of its synchronous counterpart.

 ix

C h a p t e r 1

1. Introduction

Digital VLSI circuit design styles can be mainly classified as either synchronous,

asynchronous or some mixture. Synchronous designs, consists of subsystems, which are

controlled by one or more clocks that control synchronization and communication

between blocks, have dominated the design space since the 1960’s. Combinational logic is

placed in between clocked registers that hold the data. The delay through the

combinational logic plus relevant setup time should be smaller than the clock cycle time.

In fact, the data at the inputs of the registers may exhibit glitches or hazards as long as

they are guaranteed to settle before the sample clock edge arrives. Asynchronous

methodologies, in contrast, use event-based handshaking to control synchronization and

communication between blocks. This chapter first reviews various synchronous design

methodologies and then describes some potential advantages of asynchronous design,

before providing a more detailed overview of the thesis.

Synchronous design methodologies can be classified in one of two main categories;

standard cell design and full custom design. Semi-custom standard-cell-based design

methodologies offer good performance with typically 12-month design times [1]. They are

supported by a large array of mature CAD tools that range from simulation, synthesis,

verification, and test. The synthesis task is divided into architecture definition, logic/gate-

level design, and physical design.

A large library of standard-cell components that have carefully been designed, verified,

 1

and characterized supports the synthesis task. This library is generally limited to static

CMOS based gates for a variety of reasons. Compared to more advanced dynamic logic

families, standard CMOS static logic has higher noise margin and thus requires far less

analog verification, significantly reducing design time.

Standard-cell designs also use standard clocking strategies to facilitate more automation

and reduced design times. The forms of gated clocking are limited, reducing power

efficiency. Standard flip-flop based designs are used to simplify timing analysis despite the

incurrence of significant data to clock output overheads.

Moreover, the time-to-market advantage of standard-cell based designs is being

attacked by the increasingly difficult task of estimating wire-delay. In submicron designs,

the process of architecture, logic, and technology mapping design could proceed somewhat

independently from placement and routing of the cells, power grid, and the clocks because

wire-delays were negligible compared to gate-delays. In deep-submicron design, however,

the relative delay of long-range wires are increasing and becoming harder to estimate. This

is causing the traditional separation of logic synthesis and physical design tasks to break

down because synthesis is not properly accounting for actual wire delays. This timing-

closure problem has forced numerous shipment schedules to slip. EDA vendors have now

developed a new suite of emerging CAD tools that address aspects of the physical design

must occur much earlier in the design process.

In the future, predictions suggest that long-range wires may have 5 to 20 clock cycles in

delay making estimation particularly critical [1]. In particular it is predicted that that high-

speed clock regions communicating at perhaps reduced frequencies may become prevalent,

but the semi-custom CAD support for multiple clock domains is just emerging. The

 2

simplest approach involves adding synchronizers between clock domains that incurs a

significant latency penalty.

Some manufacturers have extended the standard cell design technique to the design of

datapaths and other higher-level functions such as microprocessors and their peripherals.

On the other hand the design can also be implemented by optimizing every transistor of

the layout. This technique is called full custom design, and is generally preferred when one

or many aspects of the chip need to be optimized beyond what is readily available in a

semi-custom approach. Since the designer controls the transistor size, placement of the

smallest functional blocks and the main routing method, the end result in general is much

better than standard cell design. In the full custom method, design time is traded in for

higher performance, reduced area or power consumption, since all possible circuit

techniques can be applied, where as in standard cell design, the CAD tool only has a limited

number of pre-laid out cells that need to be broad enough to suit every customers need.

Full-custom design houses have found that these challenges with standard cell design

can be overcome with longer design cycles of an average of 36 months. In particular, the

use of advanced logic dynamic logic styles has been an area of growing interest in full-

custom designs [2] [3] [4] [5]. Domino logic is estimated to be 30% faster than static logic

because of the improving logical effort derived by the removal of PMOS logic. Traditional

domino logic however still suffers from overhead associated with clock skew and latch

delays. More advanced flip-flops and latches have been developed that somewhat improve

the clock skew overhead and reduce the latch delays. At the extreme, the latch delays can be

removed using multiple overlapping clocks in a widely used technique, recently named

skew-tolerant domino logic [5].

 3

In addition to the problems of clock distribution and skew is the problem of heat and

power consumption. Many of the gates switch because they are connected to the clock, not

because they have new input data to evaluate. The biggest gate of all is the clock driver,

and it must switch all the time to provide the correct timing, even if only a small part of

the chip has anything useful to do. Although gating the clock is an option to send the clock

signal to only those who need it, stopping and starting a high-speed clock is not easy.

To reduce power consumption, particularly in memories and long-distance on-ship and

off-chip communication, low-voltage signalling has been commonly used. These also suffer

from reduced noise margins, requiring more manual design practices and extensive analog

simulation.

The basic cost that achieving this higher performance and low-power presents is the

reduced noise margin and the increased need for more careful, manual design practices and

extensive analog verification, pre and post layout.

The increasing limitations and growing complexity of both standard-cell and full-

custom synchronous design have led to a change of focus on digital circuit design. In

particular, circuits that lack a global controlling clock, namely asynchronous circuits have

demonstrated potential benefits in many aspects of system design (e.g. [6], [7], [8], [9], [10],

[11], [12], [13],[14]). Asynchronous circuits have several advantages over their synchronous

counterparts, including:

 1) Elimination of clock skew: Clock skew is defined as the arrival time difference of

the clock signal to different parts of the circuit. In general in standard cell design, to avoid

this problem, the clock pulse is increased to assure correct operation, which yields slower

running circuits. However in full custom design buffer insertion, or careful clock tree

 4

design and analysis to improve clock routing and clock power are some of the methods

synchronous designers are using to handle this problem. Although full custom design

approach leads to reduction or even elimination of clock skew, for synchronous design this

is still a problem that needs to be worked on. On the other hand, since asynchronous

circuits have no global clock that controls the data flow, there is no clock skew problem.

 2) Lower power consumption: In general, the constant activity of the clock signal causes

synchronous systems to consume power even though some parts of the circuit may not be

processing any data. Even though some improvements in full custom design, such as clock

gating avoid sending the clock signal to the un-active parts the clock driver has to

constantly provide a powerful clock to able to reach all the parts of the circuit. Although

asynchronous circuits in general have more transitions due to the hardware overhead, they

generally have transitions only in areas that are active in the current computation.

 3) Average case performance: Synchronous circuit designers have to consider the worst-

case scenario when setting the clock speed to ensure that all the data has stabilized to

before being latched. However asynchronous circuits detect and react when the

computation is completed, yielding average case performance rather than worst case [14].

 4) Easing of global timing issues: since in synchronous circuits the slowest path dictates

the clock speed, designers try to optimize all the paths to achieve the highest possible clock

rate. In particular there maybe long wires, which require large buffers and consume

significant power even though they may be non-critical or maybe infrequently driven. In

contrast in asynchronous circuits optimizing the frequently used paths is easier [9].

 5) Better technology migration potential: Since the technology which the circuit is

implemented improves rapidly, for synchronous circuits better performance often can only

 5

be achieved by migrating all the system components to the new technology where as for

asynchronous design the communication between blocks only occur when the completion

of the processing is detected, therefore different delays introduced with different

technologies can be easily substituted into a system without altering other structures.

 6) Automatic adaptation to physical properties: The delay on a path may change to the

variations in the fabrication process, temperature, and power supply voltage. Synchronous

system designers must consider the worst case and set the clock period accordingly.

However asynchronous circuits naturally adapt to changing conditions since the slowdown

on any path does not affect the functionality of the system [15].

 7) Improved EMI: In a synchronous design, all activity is locked into a very precise

frequency. The result is nearly all the energy is concentrated in very narrow spectral bands

at the clock frequency and its harmonics. Therefore, there is substantial electrical noise at

these frequencies. Activity in an asynchronous circuit is uncorrelated, resulting in a more

distributed noise spectrum and a lower peak noise value [16].

1.1 Asynchronous Circuit Design Flow

The USC Asynchronous CAD and VLSI group, jointly with the Columbia

Asynchronous group, is currently developing a complete asynchronous circuit design

methodology that will support automated design exploration of both high-performance

and low-power asynchronous circuits. The basic steps of the methodology are illustrated in

Figure 1.1. First a language based, model such as CSP [17] and Verilog [18], is used as the

input description. This input description describes the desired top-level functionality of the

chip and maybe annotated with overall constraints on power, energy consumption,

throughput, latency, chip area, etc. Note that details regarding internal structure or the

 6

specific asynchronous protocols used are specifically not included in the description. After

generating this input description and verifying its correctness, the next step in the

methodology is to explore and finalize a basic architecture for the design. This basic

architecture should identify the number and relative characteristics of the basic blocks in

the design (register files, ALUs, multipliers, etc.) To automate this step we expect to adapt

variations in classical high-level synthesis, i.e., scheduling, resource sharing, and binding. After

architectural design is complete, the next step in the methodology is micro-architecture

design. In this step the designer can choose to implement the architecture with various

methods ranging from fine grain pipelines template-based using delay insensitive cells to

components relying on bounded delay based with no pipelining at all. Depending on the

style chosen, various optimizations can be applied, namely selection of the handshaking

protocol, defining the level of pipelining, and slack optimization for pipelined designs.

Once this initial mirco-architecture is created, next step is to identify critical components

and perform handshaking optimization to achieve higher performance and lower power. Based

on the final micro-architecture, a gate or transistor level design is generated. This can be

done either automatically using new template-based synthesis techniques that our group is

creating or manually.

 7

Language based

Input Description

(CSP, Verilog, C)
P
E
R
F
O
R S
M I
A M
N U
C & L
E A
 T
A I
N O
A N
L
Y
S
I
S

V
E
R
I
F
I
C
A
T
I
O
N

Placement and Routing

Gate Level Design

Optimization

Micro Architectural Design

Architectural Design

Figure 1-1: Asynchronous circuit design flow under development

Finally, placement and routing will be applied very a similarly to that required synchronous

circuit design. In every step all the design process, verification and performance analysis

tools are used to verify correct functionality and overall performance. The focus this

proposal is the generation of new templates for template-based design, as well as to help

develop the above CAD frame for the automated design of asynchronous systems.

 8

1.2 Expected Contributions of the Thesis

Our research group’s goal is to produce a complete design method for asynchronous

systems, including specification, synthesis, verification, simulation, and testing and to

develop a suite of CAD tools supporting the design method. And by using these CAD

tools to design high-performance and energy-efficient asynchronous microprocessors, and

systems-on-a-chip. As part of an ongoing research to accomplish these goals the we:

• Develop two new quasi delay insensitive, high-speed templates targeted at non-

linear pipelines, which are faster and smaller than other quasi delay insensitive

templates. Quasi delay insensitive templates are the most robust asynchronous

building blocks for designs based on templates. By using templates we can mimic

ease of design of the standard cell design methodology in synchronous design. We

also show the implementation of some of the non-linear structures.

• To achieve higher speeds, we then develop five new bounded delay pipeline

templates by modifying and further improving the templates developed by

Columbia University, which are based on timing assumptions to shorten

handshaking time and achieve higher speeds. In particular, the templates developed

by Columbia University were targeted for linear pipelines such as FIFOs. Real life

designs however, require more complex structures that require the template to also

function correctly with non-linear pipelines. To extend the existing pipelines we

modify each template to handle non-linear pipelines with little impact on

performance.

• We then implement a communication algorithm as a design example in both

synchronous and asynchronous methods to show the advantages of asynchronous

 9

design over synchronous design as well as to help the development of a CAD

environment, which is mainly targeted for template, based design. The

asynchronous implementation of the algorithm will also be used to study the trade

offs among different asynchronous templates from timed to delay insensitive.

1.3 Thesis Organization

The organization of the reminder of this proposal is as follows. Chapter 2 presents

background on asynchronous circuit design styles, and linear and non-linear pipeline

applications, Chapter 3 presents the new high speed QDI pipelines, Chapter 4 presents the

extension to the pipelines introduced by Columbia University and the introduction of five

new timed templates, Chapter 5 presents the design example in synchronous, and Chapter

6 presents in asynchronous. Finally, Chapter 7 presents our semi-custom asynchronous

design flow.

 10

C h a p t e r 2

2. Background

This section presents the basics of asynchronous circuit design and classifies many of

the existing asynchronous circuit design styles according to data encoding method,

handshaking style, granularity of pipelines and circuit style. Then we describe the

differences between logic synthesis-based methodologies and those that rely more on a

template-based methodology. We then focus on existing templates that support the design

of complex fine-grain pipelines and analyze their performance.

2.1 Data Encoding Styles

Single rail [19] communication between functional blocks consists of one request wire

and one wire per data bit from the sender to the receiver and one acknowledgment wire

from the receiver to the sender. Dual rail communication often consists of two wires per

data bit from the sender to the receiver and one acknowledgment wire from the receiver to

the sender. In addition, dual-rail designs can have an additional request line [20]. 1-of-N

communication is a generalization of dual rail communication in which [log2N] bits are sent

using N wires.

An acknowledgment signal from the receiver to the sender is used to tell the sender

that the data is no longer needed. The logic that drives this acknowledgment signal often

involves completion sensing circuitry that helps determine when the receiver is done using the

current data bits. In single rail communication, completion sensing circuits are

implemented with bundled data lines [19] or more sophisticated speculative completion

sensing circuitry [21], [22], that includes delay lines that match the critical paths of the

 11

functional unit. On the other hand, completion sensing of dual rail designs can be done

using specialized logic that actively identifies when the computation is done. This latter

logic relies on the dual-rail nature of the data and can be implemented without relying on

timing assumptions and thus, is more robust to variations in delay than its delay-line

counterparts. Completion sensing, however, requires more circuitry than delay lines and, if

not done wisely, can incur a significant performance, power and area penalty.

The functional units can be implemented using static or dynamic logic. Often

functional units that communicate using dual rail or 1-of-N styles are implemented using

dual rail dynamic logic [23] [24], but since static logic is also possible [23]. Functional units

that communicate using single rail are more commonly implemented using static logic that

is often smaller and consumes less power than dynamic counterparts. Designs implemented

with dynamic logic, however, can generally achieve higher throughput than their static logic

counterparts. Consequently, they can run at lower voltages to achieve a given throughput

requirement and, thus may yield a lower power design than their single rail counterparts.

2.2 Handshaking Styles

Asynchronous circuits consist of functional units that communicate control and data

information using various handshaking styles. The most dominant forms of handshaking

styles two-phase [25] and four-phase handshaking [26] are shown in Figure 2.1. In two-phase

handshake protocol, a request and an acknowledge wire is used to implement handshaking

between the sender and the receiver. In two-phase handshake protocol, all transitions are

functional and consequently every pair of consecutive request/acknowledge transitions

forms a complete handshake. Two-phase single rail communication is usually seen with

static logic functional units that use bundled-data for completion sensing. Due to some

 12

difficulties in designing complex two-phase control circuits, a novel single-track

handshaking protocol has been suggested by van Berkel and Bink [27]. This handshaking

protocol is achieved by combining the request and acknowledge lines into one wire and is

illustrated in Figure 2.1 (b). Where two-phase handshaking involves two events per cycle,

four-phase handshaking requires four events, as shown in Figure 2.1 (c). Since four events

are used to designate a complete handshaking cycle, half of these are essential for

functional computation and the other half are not actively used to communicate data.

Nevertheless, this reset phase is very useful for precharging dynamic units. Figure 2.1 (d)

shows a four-phase handshaking protocol for dual-rail dynamic units [23] [24]. Other

protocols extend the data valid region through the reset phase [19] [28], to more efficiently

use four-phase handshaking with static functional units.

 13

q

Re
k
Ac
a
Dat
l

 n
a

k

q

q

 q

l

a
n t a

k

a
a t n

l

Figure 2-1: Handshaking protocols: Two-phase vers
Ack
Data
Ack
Re
 Re
l
Re
Ac
Dat

Evaluatio
 Reset

Evaluatio
 Rese
Valid dat
Ac
Evaluatio
 Rese
Valid dat
(d) Four-phase handshaking protoco
(c) Four-phase handshaking protoco
(b) Single track handshaking protoco
(a) Two-phase handshaking protoco
Dat
Dat
us four-phase.

14

2.3 Delay Models

Most design techniques require some timing assumptions or constraints on the wires

and/or components to ensure correct operation. For example, in synchronous circuit

design, the data input to every register must satisfy all setup and hold times. The delay

assumptions in asynchronous circuits widely vary based on design styles as outlined below.

• Delay insensitive (DI): Delay insensitive designs [29] [30], require no timing

assumptions on wither wires or gates. That is, DI circuits work correctly for any

arbitrary, time-varying gate and wire delay. This is the most conservative and robust

design style, but it has been shown that very few gate-level delay insensitive designs

can exist [31]. That said, delay insensitivity can more easily and practically be

achieved at a block level where blocks communicate only through delay insensitive

channels.

• Quasi delay insensitive (QDI): Quasi delay insensitive design [32] [24] is a practical

approximation to delay insensitive design. QDI circuits work correctly regardless of

delays in gates and all wires except in cases of wire forks designated isochronic. The

difference in time at which the signal arrives at the ends of an isochronic fork must

be less than the minimum gate delay. If these isochronic forks are guaranteed to be

local to a small component, these circuits can be practically as robust as DI circuits.

The QDI assumption has also been extended to include assumptions of isochronic

propagation through a number of logic gates [33].

• Speed independent (SI): SI design [23] [34], assumes that gate delay can be arbitrary but

 15

that all wire delay is negligible. From a delay perspective SI design basically assumes

that all forks are isochronic. For the design of small control circuits, thus timing

assumption is generally satisfied.

• Scalable delay insensitive (SDI): SDI approaches [36] [21], are motivated by the

observation that SI design should not be used for any circuit that spans significant

chip area. Consequently, in SDI design the chip area is divided into many regions,

SI circuit design is used within each region, and communication between regions is

done delay insensitively.

• Bounded delay: In bounded delay models each gate is given a minimum and

maximum delay and the circuit must work if the delay of all gates are within these

bounds. These timed circuits can often be faster, smaller and lower power than

their QDI or SI counterparts, but require more careful timing verification during

physical design [37].

• Relative timing: In relative timing based circuits, a list of relative orderings of events

identifies sets of path pairs, where for each pair of paths, one path must be

longer/shorter than each other to ensure correctness. These circuits can have the

same benefits of times circuits and may be easier to validate [38] [39] [40].

2.4 Synthesis Based Design

2.4.1 Fundamental Mode Huffman Circuits

In this model, the circuit design flow is similar to that of the design of synchronous

circuits[15]. The circuit is usually expressed as a flow table [41]. The flow table has a row for

each internal state, and a column for each combination of inputs. The entries indicate the

 16

next state entered and output generated when the column’s input combination is seen while

in the row’s state. States where the next state is identical to the current state are called stable

states. It is assumed that each unstable state leads directly to a stable state, with at most one

transition occurring on each output variable. Similar to finite state machine synthesis in

synchronous systems, state reduction and state encoding is performed on the flow table,

and Karnaugh maps generated for each of the resulting signals.

There are several points that need to be considered for this design method. The system

responds to input changes rather than clock ticks therefore the circuit may enter some

intermediate states if multiple inputs change at the same time. Therefore it must be

guaranteed that these intermediate states should still lead to the intended stable state,

irrespective of the order of how inputs change.

Another concern is hazard removal. Since hazards, static or dynamic, can cause the

circuit to enter an unstable state, they must be eliminated by adding a sum-of-products

circuit that has functionally redundant products.

Due to the restriction of only one input changing to the combinational logic at a time,

several requirement need to be forced on the implementation of sequential circuits. First,

the combinational logic must settle in response to a new input before the present state

entries change. The state encoding must assure a single bit transition for state transitions.

The last requirement is that the next external input transition cannot occur until the entire

system settles to a stable state.

While the fundamental mode assumption makes logic design easy, it also increases cycle

time. There are proposed solutions, which carefully analyze an implementation to relax the

fundamental mode assumption, however because of the limitations on the multiple input

 17

changes, this design methodology has never achieved wide acceptance for complex system

design. Burst-mode circuits, covered in the next section, overcome the limitations on

multiple input changes.

2.4.2 Burst-Mode Circuits

The burst-mode design style developed by [42], [43], [44] is based on the earlier work at

HP laboratories by [45], attempts to move even closer to synchronous design than the

Huffman method [15]. In this method, circuits are specified via a standard state-machine,

where each arc is labeled by a non-empty set of inputs (an input burst) and a set of outputs

(an output burst). The assumption is that, in a given state, only the specified inputs on one of

the input bursts leaving that state can occur. The inputs are allowed to occur in any order.

The state reacts to the inputs only when all of the expected inputs have occurred. The state

machine then fires the specified output bursts and enters the specified next state. New

inputs are only allowed to occur after the system has completely reacted to the previous

input burst. Therefore, the burst-mode method still requires the fundamental-mode

assumption, but only between transitions in different input bursts. Another restriction is

that no input burst can be a subset in another input burst leaving the same state.

Burst-mode circuits can be implemented in various ways, including similar techniques

to those of Huffman circuits.

The problems with both the fundamental-mode and burst-mode circuits that restrict

these circuits are the fact that circuits often are not simple single gate small state machines,

but instead complex systems with multiple control state machines and datapath elements.

These methods do not discuss system decomposition for complex circuits. Also, these

methodologies cannot design datapath elements. This is because datapath elements tend to

 18

have multiple input signals changing in parallel, and the fundamental-mode assumption

would be easily violated. Although one solution for datapath implementation is to use

synchronous components with careful add-hoc optimization, another issue is the increased

delay by the additional delay elements to satisfy the fundamental-mode assumption. Not

only is the delay increased but it must also be able to work under worst-case scenario.

2.4.3 Event-Based Design

Petri nets and other graphical notations are a widely used alternative to specify and

synthesize asynchronous circuits. In this model, an asynchronous system is viewed not as

state-based, but rather as a partially ordered sequence of events. A Petri net [46] is a

directed bipartite graph, which can describe both concurrency and choice. The net consists

of two kinds of vertices: places and transitions. Tokens are assigned to the various places in

the net. An assignment of tokens is called a marking, which captures the state of the

concurrent system. When all the conditions preceding a transition are true the action may

fire which removes the tokens from the preceding places and marks the successor places.

Hence, starting from an initial marking, tokens flow through the net, transforming the

system from one marking to another. As tokens flow, they fire transitions in their path

according to certain firing rules.

Patil proposed the synthesis of Petri nets into asynchronous logic arrays. In this approach,

the structure of the Petri net is mapped directly into hardware. Many modern synthesis

methods use a Petri net as a behavioral specification only, not as a structural specification.

Using reachability analysis, the Petri net is typically transformed into a state graph, which

describes the explicit sequencing behavior of the net. An asynchronous circuit is then

derived from the state graph.

 19

More general glasses of Petri nets include Molnar et al.’s I-Nets [47], and Chu’s Signal

Transition Graphs or STGs [48]. These nets allow both concurrency and a limited form of

choice. Chu developed a synthesis method, which transforms an STG into a speed-

independent circuit, and applied the method to a number of examples.

Petrify is a tool for manipulating concurrent specifications and synthesis and

optimization of asynchronous control circuits[49]. Given a Petri net, or a STG it generates

another Petri net or STG, which is simpler than the original description and produces an

optimized net-list of an asynchronous controller in the target gate library while preserving

the specified input-output behavior. An ability of back annotating to the specification level

helps the designer to control the design process.

For transforming a specification petrify performs a token flow analysis of the initial

Petri net and produces a transition system. In the initial transition system, all transitions

with the same label are considered as one event. The transition system is then transformed

and transitions relabeled to fulfill the conditions required to obtain a safe irredundant Petri

net. For synthesis of an asynchronous circuit petrify performs state assignment by solving

the Complete State Coding problem. State assignment is coupled with logic minimization and

speed-independent technology mapping to a target library. The final netlist is guaranteed to

be speed-independent, i.e., hazard-free under any distribution of gate delays and multiple

input changes satisfying the initial specification. The tool has been used for synthesis of

Petri nets and Petri nets composition, synthesis and re-synthesis of asynchronous

controllers and can be also applied

2.5 Template-Based Design

A different approach is for asynchronous design is to view the system as

 20

communication blocks or processes, called templates that encapsulate all the design

constraints inside the modules. These templates will have requirements of their

environment that must be met, and which will restrict how these templates are used.

However, such restrictions or internal timing constraints are much simpler than those of

most other methodologies, and the proper template will usually be obvious from the

functionality required.

Template-based design is somewhat similar to standard cell design in synchronous logic.

Templates can be either pre-designed to implement simple logic functions, with

handshaking, or can synthesized to create more complex ones.

The advantage of template-based design is the ease of manual design. In general a

datapath is created, and the control unit is designed around the datapath. Once a general

architecture is created the rest of the task is to implement the blocks of the architecture

using templates. Also template-based design has the potential advantage, which is currently

being investigated, of being able to be used as a backend to a synchronous CAD tool. The

highly optimized synchronous design can be converted to an asynchronous one by

replacing every gate with its asynchronous handshaking counterpart template. However

additional optimization might be required to improve the performance of the system.

2.5.1 Template-Based Compilation Systems

Although template-based system can ease manual design, their main power is seen

when they are coupled with a high-level language and automatic translation software. The

following section presents some well-known methodologies, which have their own

language for easy compilation of asynchronous systems.

 21

2.5.1.1 Caltech’s Design Methodology

Caltech’s communicating processes compilation technique [50], translates programs

written in a language similar Communicating Sequential Processes into asynchronous

circuits, which communicate on channels. The source language describes circuits by

specifying the required sequences of communications in the circuit.

Caltech’s translation process is accomplished in several steps: (1) in process decomposition,

a process is refined into an equivalent collection of interacting simpler processes; (2) in

handshaking expansion, each “communication channel” between processes is replaced by a

pair of wires, and each atomic “communication action” is replaced by a handshaking

protocol on the wires; (3) in production-rule expansion, each handshaking expansion is replaced

by a set of “production rules (PRs)”, where each rule has a “guard” that insures it is

activated (i.e., “fires”) under the same semantics as specified by the earlier handshaking

expansion; and finally, (4) in operator reduction, PRs are grouped into clusters, and each

cluster is than mapped to a basic hardware component. It is important to realize that many

of these steps require subtle choices that may have significant impact on circuit area and

delay. Although heuristics are provided for many of the choices, much of the effort is

directed towards aiding a skilled designer instead of creating autonomous tools. This has

the benefit in that the designer can usually make better decisions, provided that the

designer is skilled enough.

Caltech has later moved to using more standardized, pre-designed, less complex

building blocks, which simplify the design method, explained above. Caltech’s template-

based design methodology has moved from the synthesis of complex templates to chip

implementation using smaller, and simpler templates, which have very standard design

 22

guidelines. These templates are in general targeted for implementing fine grain pipelined

chips.

2.5.1.2 Tangram and Balsa

Another compiler-based approach developed by van Berkel, Rem and others [51], at

Philips Research Laboratories and Eindhoven University of Technology uses the Tangram

language. Tangram, which is based on CSP, is a specification language for concurrent

systems. A system is specified by Tangram program, which is then compiled by syntax-

directed translation into an intermediate representation called a handshake circuit. A

handshake circuit consists of a network of handshake processes, or components, which

communicate asynchronously using handshaking protocols. The circuit is then improved

using peephole optimization and, finally components are mapped to VLSI implementations.

Although Tangram is also syntax derived like Caltech’s design methodology, it also

targets non-pipelined designs, which can support non-linear sequential processing as well as

pipeline processing.

The Tangram compiler has been successfully used at Philips for several experimental

DSP designs and electronics; including counter, decoders, image generators, and an error

corrector for a digital compact cassette player.

Balsa [52], developed at University of Manchester, adopts syntax-directed compilation

into handshaking components and closely follows Tangram. A circuit described in Balsa is

compiled into a communicating network composed from a small (~35) set of handshake

components. Balsa can be thought as of an public extension to Tangram. In particular the

support for separate compilation and the use of a flexible communication enclosed input

choice mechanism are claimed as useful additions to the expressiveness of Tangram. New

 23

handshake components (which are the constituent parts of handshake circuits) are

proposed which are used to implement this choice mechanism as well as more generalized

forms of the existing Tangram system components.

2.5.2 Micropipelines

Micropipelines, introduced by Ivan Sutherland, use standard synchronous datapath

logic to build asynchronous pipelines [25]. A micropipeline has altering computation stages

separated by storage elements and control circuitry. This approach uses transition signaling

for control along with bundled data. Sutherland describes several designs for the storage

elements, called “event-controlled registers”, which respond symmetrically to rising and

falling transitions on inputs.

Computation on data in a micropipeline is accomplished by adding logic computation

blocks between register stages. Since these blocks will slow down the data moving through

them, the accompanying transition is delayed as well by the explicit delay elements, which

must have at least as much delay in them as the worst-case logic block delay. The major

benefit of the micropipeline design style is that the registers or latches at the boundaries of

pipeline stages filter out logic hazards within the combinational logic. Thus, standard

synchronous combinational logic design styles and supporting CAD tools can be used.

Although micropipelines is a powerful design style, which elegantly implements elastic

pipelines, there are some problems with them as well. It delivers worst-case performance by

adding delay elements to the control path to match worst-case computation times. Also

there are delay assumptions that must be carefully verified. Finally, there is little guidance

currently on how to use micropipelines for more complex (add speculative completion

pros and cons) systems.

 24

2.5.3 Ad Hoc Design

Our final design methodology is ad hoc design. Although it may not seem like a design

methodology, the ad hoc design approach implemented buy a skilful designer can lead to

very competitive results. A design can be completely implemented in an ad hoc fashion, or

can be initially developed using one of the methods above and then be optimized in an ad

hoc sense.

An asynchronous design can be implemented the same way a synchronous design

would, using synchronous components for the datapath. A matched delay can be used to

indicate the completion of the computation. The control circuit can be implemented by

modifying a synchronous FSM to work with input transitions rather than a global clock.

Another approach is the use self-resetting logic. Although self-resetting logic has a

number of difficult to satisfy timing assumptions careful ad hoc design can achieve high

throughput with self-resetting asynchronous circuits. The synchronous parts of the circuit

can be replaced with self-resetting logic. Important aspects of self-resetting design such as

data insertion and pulse generation would require an ad hoc approach. Or alternatively, an

asynchronous circuit can be implemented using any of the approaches presented above

and can be later optimized for speed, area or power using verifiable ad hoc optimizations.

2.6 Linear and Non-Linear Asynchronous Pipelines

This section presents the basics of linear and non-linear fine-grain asynchronous

pipelines where each pipeline stage is derived through one of several basic templates.

 25

2.6.1 Linear Pipelines

A pipeline is a linear sequence of functional stages where the output of one stage is

connected to the input of the next stage. Data signals, which flow from the inputs to the

outputs of the pipeline, are also called as data tokens. A linear pipeline has no forking or

joining stages. The tokens in the pipelines remain in a first in first out order (FIFO). In

synchronous design the sequential functional stages are registers. These registers hold the

data tokens and are controlled by a global clock signal. Depending on the implementation,

on rising or falling edge of the clock, all the registers sample new data values which wait at

their inputs. Since all the registers “see” the clock signal at the same time, the movement of

one data token to the next register is synchronized to all other data tokens, and they all

move at the same time. However there is no central global clock in asynchronous design

therefore a data token in one stage only moves to the next stage if it is empty. The

handshaking protocol between the two stages (the sender and the receiver) determines how

the two stages inform each other when there is an empty space, when the data has been

sent, if the data has been received by the next stage (receiver) and when the previous data

holding stage (sender) can reset its data. The handshaking protocol is accomplished

through a communication channel between the sender and the receiver. Although in this section

we explain a communication channel under the context of pipelines, a communication

channel can exist between any two asynchronous units. An asynchronous communication

channel shown in Figure 3.1 is a bundle of wires and a protocol to communicate data

between a sender and a receiver. For single rail encoding one wire per bit is used to

transmit the data and an associated request line is sent to identify when data is valid. The

associated channel is called a bundled-data channel. Alternatively for dual rail encoding the

 26

data is sent using two wires for each bit of information. Extensions to 1-of-N encoding

also exist.

Both single-rail and dual-rail encoding schemes are commonly used, and there are

tradeoffs between each. Dual-rail and 1-of-N encoding allow for data validity to be

indicated by the data itself and are often used in QDI designs. Single-rail, in contrast,

requires the associated request line, driven by a matched delay line, to always be longer than

the computation, as we described in section 2.1.

Figure 2-2: Pipeline channels

 27

(a) A synchronous pipeline

Ack

Req

Ack

Req

Ack

Req

Ack

Req

(b) An asynchronous pipeline

Figure 2-3: Synchronous vs. asynchronous pipelines

Figure 2-3 illustrates the difference between typical synchronous and asynchronous linear

pipelines

Abstractly the operation of a general asynchronous pipeline with four-phase

handshaking can be described as follows. Initially the pipeline is empty, and all the data

lines as well as the handshaking signals req (the request signal) and ack (the acknowledgment

signal) are de-asserted. The request signal req can be used if the data lines are single rail, to

inform the next stage the arrival of data. On the other hand if the data lines are

implemented with dual rail, conventionally, there is no need for the req signal. When the

 28

first stage evaluates and generates an output the req signal is also assert. When the second

stage evaluates it asserts its req signal as well as the ack signal to acknowledge the first stage

that it has consumed the data. The first stage responds to this acknowledge signal by

resetting its outputs. The first stage can only generate new data when the acknowledge

signal is de-asserted, indicating that the second stage is ready to consume the second data

token. When the third stage evaluates it will generate an ack signal to the second stage,

which will cause it to reset its outputs as well as lower its ack and req signal. Since the

second stage has lowered its ack signal it can now consume a second data token.

2.6.2 Fine Grain Pipelining

The design methodology in this thesis is targets fine grain pipelining and small cells,

where the forward latency is two gate delays. Fine grain pipelining is achieved by dividing

the processing blocks to even smaller cells where each cell has its own input and output

completion detector. For example a 32 bit multiplier can be implemented by using a 32 bit

input completion detector at the inputs and a 32 bit output completion detector at the

outputs. When the multiplier completes it processing and generates a 32 bit output, the

output completion detector detects it and combined with the input completion detector

generates and acknowledge. However the multiplier can only accept a new input only when

the whole multiplier has finished processing. Therefore the throughput is limited to how

fast the multiplier can multiply two numbers, generate and acknowledge and then reset. As

in the synchronous case the throughput of the multiplier can be increased by further

pipelining the multiplier. In asynchronous design, this can be done by constructing the

multiplier using small number of cells such as adders and other logic gates which have their

own input and output completion detectors. Not only now can the multiplier accept new

 29

input as soon as the first row of logic in the multiplier has evaluated and reset but also

simplifies the 32 bit completion detectors into 1 bit input and output completion detectors.

For a 2 dimensional structure such as a multiplier this is called 2D Fine Grain Pipelining.

Also since fine grain pipelining uses pre-designed templates it has an added benefit of cell

reuse and faster design time.

2.6.3 Performance Analysis of Linear Pipelines

Determining the performance of an asynchronous pipeline can be more complex

than determining the performance of a synchronous pipeline. In an asynchronous pipeline,

control signals govern token flow with local handshaking. Each four phase token is

composed of a data element and a reset spacer. At any instant, the pipeline stages not

occupied by data elements or reset spacers can be described as containing a hole or bubble.

Control logic only allows an element to flow forward when the stage it will occupy is empty.

When an element does flow forward, it leaves behind an empty slot. Thus, bubbles flow

backward as they displace forward-flowing data elements and reset spacers. The

performance can be limited by the supply of tokens, the supply of bubbles or the local

control handshaking between two pipeline stages. In a pipeline, the left or input

environment supplies data tokens and the right or output environment supplies bubbles.

 In an asynchronous pipeline the time it takes for a data token to flow from the

inputs to the outputs of one pipeline stage is defined as forward latency. The reverse or

backward latency specifies the delay from the acknowledgment of a stage’s output to the

acknowledgment of the predecessor’s output. The time difference two tokens passing

through the same pipeline stage is called cycle time. The cycle time is the total of the forward

and backward latency.

 30

 In an asynchronous pipeline, the per-stage forward or backward latency depends on

the implementation of the circuit and the handshaking protocol. Pipeline stages, which can

hold one data token using only one stage, are called full buffers (also known as high capacity or

slack). Pipeline stages, which need two stages two hold one data token are called half buffers.

Assuming that the right environment is not operating, or has stalled handshaking with the

last stage of an asynchronous pipeline, and the left environment keeps inserting as much

data tokens as it can, the maximum possible tokens that the pipeline can hold is defined as

the static slack of the pipeline. Assuming that the left environment is asserting and the right

environment is consuming data tokens as fast as the pipeline can operate, the number of

tokens needed for the pipeline to operate at the highest throughput is called the dynamic

slack of the pipeline.

 For a pipeline where the forward latency is less than the backward latency, the cycle

time is dominated by the backward latency. For the opposite case the cycle time will be

dominated by the forward latency. The following figure illustrates the throughput vs.

number of tokens for a linear asynchronous pipeline. The left side of the triangle shows

the characteristic of an asynchronous pipeline operating in a data-limited region. In this

region, as the data tokens are inserted more frequently the pipeline operates at a higher

throughput. The speed of the pipeline is limited by how fast data can be inserted into the

pipeline. The right side of the triangle shows the characteristic of an asynchronous

pipeline operating in a bubble-limited region. In this region the right environment cannot

consume the data provided by the asynchronous pipeline and therefore the data tokens

start to accumulate in the pipeline. Another way to view this region is to say that the

handshaking between pipeline stages is limiting the throughput at which tokens can be

 31

processed and therefore the overall pipeline performance starts to degrade. The figure has

two throughput vs. tokens triangles. The left one is for a forward-latency limited pipeline

and the right one is for a backward-latency limited pipeline.

Bubble
Limited
Region

Data
Limited
Region

Static slack

Dynamic
slack

Tokens Tokens

Th
ro

ug
hp

ut

Th
ro

ug
hp

ut

Figure 2-4: Throughput vs. tokens graphs

 In order to determine the latencies and cycle time of a pipeline built out of a

particular configuration of components in each stage, it is necessary to analyze the

dependencies of the required sequences of transitions. These dependencies can be drawn

in a marked graph [53], in which the nodes of the graph correspond to specific rising and

falling transitions of circuit components, and the edges depict the dependencies of each

transition on the output of other components. Unfolded dependency graphs are

functionally equivalent to Signal Transition Graphs. STG’s can be used to determine both

the forward latency and the cycle time. The local cycle time is determined by cyclic paths in

the STG. These cycles occur because a pipeline processes successive data tokens and the

components in each stage go through a series of transitions. The transitions eventually

 32

return a stage to the same state, where the state is defined by the output values of each

component. Each transition in a STG can fire only when all of its predecessors have

executed their specified transitions, and cannot fire again until all of its predecessors have

fired again.

2.6.4 Non-Linear Pipelines

Recently many new asynchronous pipelines have been introduced. However most of

them have been targeted for linear pipeline applications such as FIFOs. Real designs,

however, require more complicated non-linear pipeline structures. In particular, linear

pipeline stages have only a single input and a single output channel, where as non-linear

pipelines stages can have multiple input and output channels. This section presents an

overview of the challenges involved in designing non-linear pipelines. In particular we

address issues with (i) synchronization with multiple destinations (for forks), and (ii)

synchronization with multiple sources (for joins).

To introduce these issues we focus on forks and joins. A join is a pipeline stage with

multiple input channels whose data is merged into a single output channel. A fork is a

pipeline stage with one input channel and multiple output channels. Complex forks and

joins can involve conditionally reading from or writing to channels based on the value of a

control channel that is unconditionally read, as in a merge or split channel. Abstract

illustrations of these channels are shown in Figure 3.4.

 33

Figure 2-5: a) a fork and b) a join

Since a fork has multiple output channels, it must receive an acknowledgment signal

from all of them before it precharges. A join, on the other hand, receives inputs from

multiple channels and must broadcast its acknowledgment signal to all its input stages.

A join acts as a synchronization point for data tokens. The acknowledgment from the

join should only be generated when all the input data has arrived. Otherwise a stage feeding

a join, referred to as A, that is particularly slow in generating its data token may receive an

acknowledgment signal when it should not, violating the 4-phase protocol. If the

acknowledgment signal is de-asserted before the slow stage A generates its token, the token

is not consumed by the join, as it should be. In fact, this token may cause the join to

generate an extra token at its output, thereby corrupting the intended synchronization.

A conditional split is a combined fork and join where a control channel is used to

determine which output is generated. The control may indicate to send the input data to

any of the output channels, any combination of the output channels, or none of them.

The third option is also known as a skip.

A conditional join is a join where the control signal, select, comes from another

pipeline stage. The select signal controls which incoming channel should be read.

 34

Figure 2-6: Fundamental non-linear pipeline structures

 35

C h a p t e r 3

3. New High Speed QDI Asynchronous Pipelines

In this chapter we introduce two new QDI templates that provide significant

performance improvements over those proposed by Caltech without sacrificing quasi delay

insensitivity. The key idea is to reduce the complexity of internal circuitry by intelligently

reducing concurrency and using an additional wire for communication between pipeline

stages. We present two templates: one that is a half-buffer which requires two pipeline

stages to hold one data token and one full-buffer template that can itself hold one data

token.

We first give background on Caltech’s commonly used QDI templates, the Weak-

Conditioned Half Buffer (WCHB), the Precharged Half Buffer (PCHB), and the

Precharged Full Buffer (PCFB) templates [24].

3.1 Caltech’s QDI templates

3.1.1 WCHB

Figure 3-1 shows a WCHB template for a linear pipeline with a left (L) and right (R)

channel and an optimized WCHB dual-rail buffer. L0 and L1, R0 and R1 identify the false

and true dual rail inputs and outputs, respectively. Lack and Rack are active-low

acknowledgment signals. Note that we do not show staticizers that are required to hold

state at the output of all C-elements.

 36

The operation of the buffer is as follows. After the buffer has been reset, all data lines

are low and acknowledgment lines, Lack and Rack, are high. When data arrives by one of

the input rails going high, the corresponding C-element output will go low, lowering the

left-side acknowledgment Lack. After the data is propagated to the outputs through one of

the inverters, the right environment will assert Rack low, acknowledging that the data has

been received. Once the input data resets, the template raises Lack and resets the output.

Since the L and R channels cannot simultaneously hold two distinct data tokens, this

circuit is said to be a half buffer or has slack ½ [24]. This WCHB buffer has a cycle time of

10 transitions, which is significantly faster than buffers based on other QDI pipeline

templates.

Another feature of the WCHB template is that the validity and neutrality of the output

data R implies the validity and neutrality of the corresponding input data L. This is called

weak-conditioned logic [20] and we will discuss its advantages and disadvantages after we

discuss non-linear pipeline templates.

Figure 3-1: WCHB

 37

3.1.2 PCHB and PCFB

Figure 3-2 shows the template for a pre-charged half-buffer (PCHB). Unlike the

WCHB, the test for validity and neutrality is checked using an input completion detector.

The input completion detector is denoted as LCD and the output completion detector as

RCD.

Figure 3-2: a) PCHB and b) PCFB templates

Figure 3-3: a) PCHB and b) PCFB STG

 38

The function block need not be weak-conditioned logic and thus can evaluate before all

the inputs have arrived (if the logic allows). However, the template only generates an

acknowledgment signal Lack after all the inputs have arrived and the output has evaluated.

In particular, the LCD and the RCD are combined using a C-element to generate the

acknowledgment signal.

A few minor aspects of this template should also be pointed out. First, because the C-

element is inverting the acknowledgment signal is an active-low signal. Second, the Lack

signal is often buffered using two inverters before being sent out. Another two inverters are

also often added to buffer the internal signal en that controls the function block. For

simplicity, these buffering inverters will not be shown in the figures in this paper.

The protocol for a PCHB pipeline stage is captured by the STG for a three-stage

pipeline illustrated in Figure 3-3. From the STG, it is possible to derive the pipeline’s

analytical cycle time:

TPCHB =3. tEval + 2. tCD + 2. tc+ tprech

Due to the extra buffering and bubble shuffling, the cycle time generally amounts to 14

gate delays or transitions.

The PCFB template and its STG are shown in Figure 3-2(b) and Figure 3-3(b). The

PCFB is more concurrent than the PCHB because its L and R handshakes reset in parallel

at the cost of requiring an additional state variable. The PCFB analytical cycle time is:

 TPCFB =2. tEval + 2. tCD + 2. tc+ tprech

which generally amounts to 12 transitions. Here tCD takes two transitions, one of the C-

elements takes one transition, and the other takes two transitions.

 39

3.1.3 Why Input Completion Sensing?

A join is a pipeline stage with multiple input channels whose data is merged into a

single output channel. A fork is a pipeline stage with one input channel and multiple

output channels. Complex forks and joins can involve conditionally reading from or writing

to channels based on the value of a control channel that is unconditionally read, as in a

merge or split channel.

Since a fork has multiple output channels, it must receive an acknowledgment signal

from all of them before it precharges. A join, on the other hand, receives inputs from

multiple channels and must broadcast its acknowledgment signal to all its input stages.

A join acts as a synchronization point for data tokens. The acknowledgment from the

join should only be generated when all the input data has arrived. Otherwise a stage feeding

a join, referred to as A, that is particularly slow in generating its data token may receive an

acknowledgment signal when it should not, violating the 4-phase protocol. If the

acknowledgment signal is deasserted before the slow stage A generates its token, the token

is not consumed by the join, as it should be. In fact, this token may cause the join to

generate an extra token at its output, thereby corrupting the intended synchronization.

Validity of data should be checked on all input channels before the acknowledgment

signal is asserted to prevent the incorrect insertion of a token caused by a slow/late input

channel. Neutrality should be checked to guarantee that the previous stages have been

precharged, so that the acknowledgment signal is not deasserted too early, thereby violating

the four-phase protocol on any stage slow to precharge.

 40

The templates presented in this section check validity and neutrality in different ways.

Because the function block in WCHB template is weak-conditioned, the output completion

detector implicitly checks validity and neutrality of the input data token. In the WCHB

buffer the weak conditioned function block is a simple C-element. However, for more

complex non-linear pipelines, weak-conditioned function blocks unfortunately require

complex nmos and pmos networks. This results in slower forward latency and bigger

transistor sizes. As an example, a weak-conditioned dual-rail OR is shown in Figure 3-4.

Figure 3-4: An OR gate implementation using weak conditioned logic

3.2 New QDI Templates

One optimization that can be applied to the PCHB and PCFB templates is to merge

the LCD of one stage with the RCD of the other by adding an additional request line to

the channel. This is shown in Figure 3-5 for a PCHB template.

 41

Figure 3-5: Optimized PCHB for a 1-of-N+1 channel

The request line indicates the assertion/de-assertion of the input data, as in the

bundled-data channel. However in contrast to a bundled-data channel, the data is sent

using 1-of-N encoding, yielding what we call a 1-of-N+1 channel. The request line, at least

from the channel point of view, may appear redundant. However, the request line enables

the removal of the input completion detector thereby saving area and reducing capacitance

on the data lines. Moreover, the request line does not significantly impact performance, the

template is still QDI, and the communication between stages remains delay-insensitive.

In this section we propose two new 1-of-N+1 QDI templates that intelligently reduce

concurrency to reduce the stack size of the function blocks and thereby improve

performance.

3.2.1 RSPCHB

The key goal of the RSPCHB compared to the PCHB is to eliminate the need of the

enable signal en from the control of the function block. We now explain that the need for

this enable signal is only to support concurrency in the system that effectively does not

improve performance.

 42

More specifically, in the PCHB template the output of the LCD and RCD are

combined using a C-element to generate the acknowledgment signal Lack. This supports

the integration of the handshaking protocol with the validity and neutrality of both input

and output data, which removes the need for the function block to be weak-conditioned,

but also requires the use of the en signal. It is this replacement however that introduces

more concurrency than is necessary.

In particular, in the case of a join, the non-weak-conditioned function block may

generate an output as soon as one the input channels provide data. In response, the RCD

of the join will assert its output. Meanwhile, any subsequent stage can receive this data,

evaluate, assert both its LCD and RCD outputs, and assert its acknowledgment signal.

Although the join can receive this acknowledgment, it will not precharge until after en is

asserted. The en signal delays the precharge of the circuit until after the acknowledgement

to the input stages has been asserted. This delay is critical to prevent the precharge from

triggering the RCD to deassert which would prevent the C-element from ever generating

the acknowledgment.

If only the generation of the acknowledgment signal from any stage subsequent to the

join was delayed until all input data to the join has arrived and been acknowledged, then the

en signal could be safely removed. In fact, such a delay of the acknowledgement would not

generally impact performance because the join is the performance bottleneck for the

subsequent stages. Therefore, this added concurrency is essentially unnecessary.

We propose a different pipeline template, which reduces this unnecessary concurrency

to eliminate the internal en signal, thereby reducing the transistor stack sizes in the function

block. We refer to this new QDI pipeline template, illustrated in Figure 3.6(a), as a Reduced

 43

Stack Precharged Half Buffer (RSPCHB). A specific form of this template for dual-rail data is

shown in Figure 3-6(b). Notice that we optimized the RCD block by tapping its inputs

before the output inverter and using a NAND gate instead of an OR gate.

The unique feature of the RSPCHB is that it derives the request line from the output

of the C-element instead of the RCD. (In particular, since the output of the C-element is

active low and the request line is active high, the output of the C-element is sent through

an inverter before driving Rreq.) The impact of this change is that the assertion/de-

assertion of Rreq is delayed until after all Lreq’s are asserted/de-asserted.

Figure 3-6: a) Abstract and b) detailed QDI RSPCHB pipeline template

 44

Figure 3-7: The STG of the RSPCHB

As a consequence, the acknowledgment from a subsequent stage of the join may be

delayed until well after its data inputs and outputs are valid. More specifically, the stage will

delay the assertion of its acknowledgment signal until all Lreq’s are asserted which can

occur arbitrarily later than the associated data lines becoming valid. This extra delay,

however, has no impact on steady-state system performance because the join stage is the

bottleneck, waiting for all its inputs to arrive before generating its acknowledgement. In

fact, this change yields a template with no less concurrency than WCHB.

The advantage of this generation of the request line is that the function block does not

need to be guarded by the enable signal. In particular, it is now sufficient to guard the

function block solely by the Pc signal because the Pc signal now properly identifies when

inputs and outputs are valid. Namely, the function block is allowed to evaluate when Pc is

deasserted which occurs only after all inputs and outputs data lines are reset. Similarly, it is

 45

allowed to precharge when Pc is asserted which occurs only after all input and output data

lines are valid.

The RSPCHB is still QDI, however, the communications along the input channels to

joins become QDI instead of delay-insensitive (other channels remain delay-insensitive). In

particular, the assumption that must be satisfied is that the data should reset before the join

stage enters a subsequent evaluation cycle. If we assert that the fork between the function

block, the RCD, and the next stage is isochronic [33], this assumption is satisfied. In

particular, the data line at the receiver side is then guaranteed to reset before the request

line Rreq resets because only after the data lines reset can the RCD trigger the C-element,

subsequently triggering Rreq. The analytical expression for the timing margin associated

with this isochronic fork assumption can be derived from the abstract STG of the

RSPCHB shown in Figure 3-7. In particular, the delay difference between the resetting of

the data and the associated request line should be less than:

TMargin =2. tInv + 1. tCD + 3. tc

This margin is between 6 and 8 gate delays depending on buffering and is easily

satisfied with modern routers.

Notice that this timing assumption only applies to input channels of join stages

because non-join stages must receive both valid data and a valid Lreq before generating

valid output data or valid Rreq.

The analytical cycle time of the RSPCHB can be derived from the STG shown in

Figure 3.7 as:

TRSPCHB = Max(3. tEval + 2. tCD + 2. tc+ tprech , tEval + 2. tCD + 4. tc+ tprech)

With bubble shuffling, RSPCHB and PCHB have equal numbers of transitions per

 46

cycle. The advantage of RSPCHB is that the lack of an LCD and reduced stack size of the

function block, which reduces capacitive load, and yields significantly faster overall

performance. The cost of this increase in performance is that it requires one extra

communicating wire between stages.

A fork can be implemented easily by either using a C-element to combine the

acknowledgment signals from the forking stages or by combining them by increasing the

stack size of the function block. Similarly a join can be implemented, by combing the

request lines in the C-element and forking back the acknowledgment signal.

Figure 3-8: Conditional a) join and b) split using RSPCHB

Consider the slightly more complicated template for a conditional join in which a

control channel S is used to select which input channel to read and write the read data

 47

token to the single output channel illustrated in Figure 3-8(a). The template has one C-

element per input channel, each responsible for generating the associated

acknowledgement signal. Each C-element is triggered by not only the RCD output, but also

the corresponding control channel bit. The collection of C-elements are simply ORed to

generate the Lreqs because the C-elements are mutually exclusive. This template can be

easily extended to handle more complex conditionals in which multiple inputs can be read

for some values of the control.

The template for the conditional fork is shown in Figure 3-8(b). Here, the functional

block, the RCD and the C-element are repeated for each output channel. The select data

lines ensure only one function block evaluates. All C-elements are combined using an AND

gate to generate the acknowledgement for the select channel. (This is because both the C-

element outputs and the acknowledgement signal are active low.) This template can easily

be extended to handle the generation of multiple outputs in response to some values of

the control.

A common example of a conditional fork is a skip in which depending on the control

value the input is consumed but no output is generated. The implementation has a skip

output acting as an internal N+1 output rail that is not externally routed and is triggered

upon the skip control value. A skip in which all control values generate no output is called

a bit bucket [54].

Figure 3-9 shows a one-bit memory implemented using a RSPCHB template. A and C

represent the input and output channels. B is the internal storage. S is an input control

channel that selects the write or read operation. When S0 is high, the memory stores the

value at the input channel A to the internal storage B. When S1 is high, on the other hand,

 48

the memory is read, that is, the stored memory value is written to the output channel C.

For a write, both input data and control channels are acknowledged, while for a read, only

the control channel is acknowledged.

The write and read operations are as follows. After reset, the memory, stored in the

dual-rail Memory Unit, MU (similar to [24]) is initialized to some value and one of the rails

of the internal signal B is high. When an input A is applied and S0 is high, one of rails of

B is asserted high, thereby storing the data. The Memory Completion Detector, MCD, detects

that the value in the memory is updated, and asserts its output. The output of the MCD as

well as the request lines from the data and control channel drive a C-element, which

generates the acknowledgment signal LackA. When S1 is high, on the other hand, the

internal data stored in B is sent to the output channel C. When an acknowledgment is

received from the output channel C, the outputs are reset but the data stored remains

unchanged. The control channel S is acknowledged for both write and read operations

using an AND gate driven by the two C-element outputs.

Notice that the memory is actually implemented by merging two RSPCHB units. The

first one is used to store data (write), and the second one to send it to the outputs (read).

The MCD detects the completion of the write operation and resets when all inputs are

lowered.

The MCD can be simplified by replacing the pmos transistors driven by A0 and A1

with a pmos transistor driven by LackA. However this requires that the delay difference

between the data lines of channel A and its associated request line is not long enough to

cause short circuit current. This restriction can be removed by also controlling the nmos

stack by also adding one more nmos transistor driven by the LackA signal. The overall

 49

benefit however is not clear.

Figure 3-9: A RSPCHB 1-bit memory

3.2.2 RSPCFB

Our second new 1-of-N+1 QDI pipeline template is a full buffer constructed by

merging our RSPCHB with a modified WCHB. An abstract illustration of this reduced stack

pre-charged full buffer (RSPCFB) is shown in Figure 3-10(a) and a more detailed

implementation for dual-rail data is shown in Figure 3-10(b).

The RSPCFB has two new features. First, the inverters from both of the half buffers

have been removed to keep the forward latency of the new template at two gate delays. We

assert that the inverters between the two half buffers can safely be removed because the

RSPCHB has little gate load and wire load can be minimized by placing/routing this

template as a single unit. The output inverters are only necessary if this unit is driving a

significant load and can be added as necessary. (However a staticizer, not shown, is still

 50

necessary.) Second, the WCHB has to be modified to accept an input request signal and

generate an output request signal. This input request signal drives a C-element whose other

input is the RCD output. This C-element then triggers the internal acknowledgement to

the RSPCHB part instead of the RCD alone. In addition, the output request signal is

implemented by simply tapping of a signal from the RCD output. One other difference is

that the request signal is now active low because the inverters have changed locations (i.e.,

bubble shuffling [50]).

The circuit operates as follows. The RCD of the RSPCHB part detects the evaluation

of the function block and asserts its output. The output of the RCD drives the C-element,

which generates the acknowledgment signal Lack to the previous stage after all the request

lines associated with the data also arrive. If the next stage is ready to accept new data, the

acknowledgment signal Rack should already be de-asserted, allowing the C-elements in the

forward path to pass the data to the next stage. Subsequently, the WCHB’s RCD will assert

its output asserting the request signal to the next stage. The output of the RCD also drives

the C-element Cb, which asserts the internal acknowledgement back to the RSPCHB part,

allowing the function block to precharge. When the acknowledgment signal Rack is de-

asserted, the C-element in the forward path will de-assert its outputs. This will trigger the

WCHB’s RCD to de-assert Rreq, the C-element Cb to de-assert the internal

acknowledgement back to the RSPCHB, and thereby enable the function block to re-

evaluate.

 51

Figure 3-10: a) Abstract and b) detailed RSPCFB

Notice that the Rreq of the RSPCFB is taken from the output of the RCD instead of

the C-element, unlike the RSPCHB. This is because the WCHB part has weak-conditioned

logic, which will not reset until all inputs, including inputs from the RSPCHB part, have

reset. This implicitly avoids the problem of preventing the assertion of the

acknowledgement back to the RSPCHB part that delaying Rreq solved. The advantage of

this is that the Rreq can be generated earlier. The disadvantage is that this reduces are

timing margin on input channels to joins to 5 to 7 gate delays, depending on buffering.

The RSPCFB has 10 transitions per cycle, less than Caltech’s PCFB, which has 12

transitions. The analytical cycle time, using the STG in Figure 3-11, can be expressed as:

TRSPCFB = Max(3. tEval + 2. tCD + 2. tc+ tprech ,

 2. tEval + tCD + 3. tc+ tNAND)

 52

Figure 3-11: a) Abstract and b) detailed RSPCFB

The RSPCFB can be extended to handle non-linear pipeline structures in the same way

as the RSPCHB without any additional timing assumptions.

3.2.3 FSM Design

One of the most important aspects of a complete system design is the implementation

of the controller. An FSM is actually a state holding circuit, which only changes its state

when the expected inputs for that state are available. One way to build an asynchronous

FSM is to feed the outputs of the pipeline stage back to its inputs using buffers to hold the

data (also proposed in [24]). This technique is similar to the synchronous case. In addition

it requires no new circuits and can be easily applied to template-based design. Figure 3-12

shows an abstract FSM.

 53

Figure 3-12: An abstract asynchronous FSM

Each channel either is an input, an output, or holds state. The next and current state

channels can be implemented with either 1-of-N+1 channels, ideally suitable for one-hot

state encoding of the FSM. The next state and the output logic blocks are complex QDI

pipeline stages, which can have multiple function blocks inside. These multi-input multi-

output conditional blocks are implemented the same way as the conditional read and write

blocks shown previously.

The simplicity of this method for designing FSMs allows all known synchronous

design techniques for generating Boolean next state and output expressions directly to be

applied. Also the next state logic can be implemented as several stages of pipelined logic,

reducing the number of necessary feedback buffers. Aside from using feedback buffers,

 54

which for a high number of states can yield a large circuit there are also other ways to

design circuits that hold state.

Another way to implement state holding is not to generate an acknowledgment signal.

This avoids the reset of the input data. Although this technique can be used for specific

problems like loop control [24], it is very limited. A more general way is to use the memory

block for state holding presented in the previous section. This memory can also be further

modified by adding one more internal state to allow read and write operations at the same

cycle making it more suitable to be used as a register in FSMs.

3.2.4 Simulation Results

Both Verilog and HSPICE simulations were performed to check the correctness of

functionality and to measure performance of all the proposed linear and non-linear

pipelines.

A structural Verilog netlist has been generated with both random and unit delays. The

Verilog code is written such that in the case of any hazard on any of the signals the

simulator asserts a warning or error. The Verilog simulations with unit delay were

performed for cycle time analysis, and the simulations with random delay were performed

to intuitively verify that the circuits are QDI. No asserts have been found for random

delays and the unit delay simulations confirm the transition counts.

HSPICE simulations were performed using a 0.25 TSMC process with a 2.5V power

supply at 25oC. The purpose of these simulations was to confirm the results obtained by

the Verilog simulations, and to compare the throughputs of the proposed pipelines with

the pipelines presented in the background section. Since the goal was comparison, no

 55

attempt was made to fine-tune the transistor sizing to achieve optimum performance. In

particular, all transistors were sized in order to roughly achieve a gate delay equal to a small

inverter (Wnmos=0.8um, Wpmos=2um, and L=0.24um) driving a same-sized inverter.

For the purposes of this comparison, wire delay also has been ignored.

For the half buffers, the PCHB and the RSPCHB, a linear dual-rail pipeline of buffers

with 60 stages has been constructed to achieve a static slack of 30, which means that it can

hold 30 distinct data tokens. For the full buffers, the PCFB and the RSPCFB, 30 stages

have been used to achieve the same static slack. All pipelines can hold 30 distinct tokens.

Figure 3-13(a) shows throughput versus tokens triangles for the half buffers and Figure

3-13(b) shows them for the full buffers. The triangles for the PCHB and PCFB are

indicated with the dotted lines. Approximately 15 distinct points have been obtained per

pipeline for the triangle graphs using HSPICE simulation. One key result obtained from

this simulation is the dynamic slack of each pipeline, which is the number of tokens required

to achieve maximum throughput [23], [24].

The PCHB achieves a maximum throughput of 772MHz with a dynamic slack of 7.3.

The RSPCHB is faster with a maximum throughput of 920MHz and a dynamic slack of

8.25. The throughput improvement is approximately 20%. For the full buffers, the PCFB

achieves a maximum throughput of 707MHz and a dynamic slack of 3.7. The RSPCHB is

faster with a maximum throughput of 1000MHz and a dynamic slack of 5.9. The speed

improvement is approximately 40%, however due to the C-elements in the forward path of

the RSPCFB, the forward latency is about 15% slower. In both the half and full buffer, we

achieved higher dynamic slack. This means that our templates support more system-level

concurrency and higher stage utilization.

 56

Figure 3-13: Throughput versus tokens for a) the PCHB and RSPCHB and b)
the PCFB and RSPCFB linear pipelines

Notice that although the PCFB has 12 and the PCHB has 14 transitions per cycle,

the PCFB was slower. This is partially due to the heavier load on the internal wiring in the

 57

PCFB compared to the PCHB. Clearly, careful transistor sizing and buffering can improve

the performance of all pipeline templates, however, we expect the relative performances to

remain approximately the same.

3.2.5 Conclusions

This chapter has introduced new high-speed QDI asynchronous pipeline templates

for non-linear dynamic pipelines, including forks, joins, and more complex configurations

in which channels are conditionally read and/or written. Timing analysis and HSPICE

simulation results demonstrate that our new RSPCHB achieves ~20% throughput over its

PCHB counterpart and our new RSPCFB achieves ~40% throughput improvement over

the PCFB counterpart.

 58

C h a p t e r 4

4. Timed Pipelines

A number of fast asynchronous fine-grain pipeline templates have been proposed for

high-speed design, including IPCMOS [2] and GasP [55], [56]. These ultra-high speed

designs have very aggressive timing assumptions that introduce stringent transistor sizing

requirements and high demands on post-layout verification.

Researchers from Columbia University have recently proposed several high-speed

dynamic-logic pipeline templates that achieve comparable performance with much less

stringent timing assumptions[57], [58]. These pipelines are based on Williams’ well known

PS0 pipelines which is an optimized version of Caltech’s PCHB, where the optimization

takes place by removing the input completion detector and adding a timing assumption to

assure correct operation. The Columbia pipelines, which also have PS0’s timing assumption,

were introduced for linear datapaths (i.e. without forks and joins), although preliminary

solutions for handling joins were proposed in [58]. In addition, an initial approach to

handling slow or stalled environments for the limited case of linear pipelines was also

proposed in [57]. However, the synchronization problems that arise when using arbitrary

forks and joins are much more complex and challenging, and the approaches of [57],[58]

do not address these issues. This chapter attempts to fill this void.

The contribution of this chapter is a set of five new non-linear pipeline templates that

extend the Columbia pipelines to handle non-linear datapaths. Both of Columbia’s

dynamic-logic pipeline styles are targeted: lookahead pipelines (LP) [57] and high-capacity

 59

pipelines (HC) [58]. Several distinct lookahead pipeline styles were proposed in [57], both

single-rail and dual-rail. This chapter builds upon one representative each of single-rail

(LPSR2/2) and dual-rail (LP3/1) lookahead pipelines, and also upon the single-rail high

capacity pipeline (HC). The ideas presented here, however, can be easily adapted to the

remaining styles. First we present Williams’ PS0 pipelines. Then we review Columbia’s three

asynchronous pipelining styles: (i) LPSR2/2, a single-rail lookahead pipeline, (ii) LP3/1, a

dual-rail lookahead pipeline, and (iii) HC, the high-capacity pipeline. Finally we present

solutions to extend these pipelines for non-linear applications.

4.1 Williams’ PS0 Pipeline

Figure 4-1 shows one stage of Williams’ PS0 pipeline [23]. The pipeline stage consists

of a dual rail function block and a completion detector. The output of the completion

detector is fed back to the previous stage as the acknowledgment signal. The completion

detector checks the validity or absence of data at the outputs. There is no input completion

detector.

Figure 4-1: Williams’ PS0 pipeline stage

 60

The function block is implemented using dynamic logic. The precharge/evaluation

control input Pc, of each stage comes from the output of the next stage’s completion

detector. The precharge logic can hold its data outputs even when its inputs are reset,

therefore it also provides the functionality of an implicit latch. Each completion detector

verifies the completion of every computation and precharge of its associated function

block.

The operation of the PS0 pipeline is quite simple. Stage N is precharged when stage

N+1 finishes evaluation. Stage N evaluates when stage N+1 finishes reset. This protocol

ensures that consecutive data tokens are always separated by reset tokens, holes.

The complete cycle of events for a pipeline stage is derived by observing how a single

data token flows through an initially empty pipeline. The sequence of events from one

evaluation by stage 1, to the next is: (1) Stage 1 evaluates, then (2) stage 2 completes, then

(3) stage 2’s completion detector detects completion of evaluation, and then (4) stage 1

precharges. At the same time, after completing step (2), (3)’ stage 3 evaluates, then (4) stage

3’s completion detector detects completion of evaluation and initiates the precharge of

stage 2, then (5) stage 2 precharges, and finally, (6) stage 2’s completion detector detects the

completion of precharge, thereby releasing the precharge of stage 1 and enabling 1 to

evaluate once again. Thus there are six events in the complete cycle for a stage from one

evaluation to the next.

The protocol for a PS0 pipeline stage is captured by the STG for a four-stage pipeline

illustrated in Figure 4-2. From the STG, it is possible to derive the pipeline’s analytical cycle

time:

TPS0 =3. tEval + 2. tCD+ tprech

 61

Figure 4-2: The STG of the PS0 Pipeline

Williams has simplified the pipeline stage at the expense of sacrificing delay

insensitivity. Williams’ PS0 pipeline has the following timing assumption:

TPrech_1 + tCD_1<=tEval_3 + tCD_3+ tPrech_2 + tCD_2

which must be verified during physical design.

4.2 Lookahead Pipelines (Single Rail)

 Figure 4-3(a) shows the structure of one stage of the LPSR2/21 lookahead single-rail

pipeline [57]. Each stage has a dynamic function block and a control block. The function

block alternatively evaluates and precharges. The control block generates the bundling

signal, done, to indicate completion of evaluation (or precharge). The bundling signal is

passed through a suitable delay line, allowing time for the dynamic function block to

complete its evaluation (or precharge). Note that there is one function block (F) for each

individual output rail of the stage, and different function blocks can sometimes share

precharge and evaluate (foot) transistors.

 62

This pipeline style has two important features. First, the completion signal, done, is sent

to the previous stage as an acknowledgment (Lack) by tapping off from before the

matched delay. This early tap-off is safe because a dynamic function block typically is

immune to a reset of its inputs as soon as the input data has been absorbed by the first

level of dynamic logic. The second feature is that the control signal, Pc, is applied to both

the control block and the function block in parallel. Therefore, the function block can be

precharge-released even before the arrival of new input data. This early precharge-release

is safe because the dynamic logic will compute only upon the receipt of actual data. Both

of these features eliminate critical delays from the cycle time, resulting in very high

throughput.

The analytical cycle time can be expressed using the following components:

tEval = delay of function block evaluation

tgc = delay of control (generalized C-element)

1 The 2/2 label characterizes the operation of the stage of a pipeline: 2 componnents in the evaluation phase and 2 component delays

in the precharge phase, forming a complete cycle.

 63

Figure 4-3: a) LPSR2/2 b) LP3/1 and c) HC pipelines

For correct operation, the matched delay tdelay must satisfy, tdelay ≥ tEval - tgc. For ideal

operation, we will assume that tdelay is no larger than necessary, tdelay= tEval - tgc. Note that to

simplify the analytical expressions we assume that the completion delay is longer than the

evaluation delay, which is generally true for fine-grain pipelines.

Using the above notation and assumption, the pipeline’s analytical cycle time is:

TLPSR2/2 = 2. tEval + 2. tgc

The per-stage latency of the pipeline is:

 LLPSR2/2 = tEval

 64

4.3 Lookahead Pipelines (Dual Rail)

Figure 4-3(b) shows the structure of one stage of the dual-rail LP3/12 pipeline [57]. In

this pipeline, there are no matched delays. Instead, each stage has an additional logic unit,

called a completion detector, to detect the completion of evaluation and precharge of that stage.

Unlike most existing approaches, such as Williams and Horowitz’s pipelines [23],

[59]each stage of the LP3/1 pipeline synchronizes with two subsequent stages, i.e., not only

with the next stage, but also its successor. Consequently, each stage has two control inputs.

The first input, Pc, comes from the completion detector (CD) of the next stage, and the

second control input, Eval, comes from the completion detector two stages ahead.

The benefit of this extra control input is to allow a significantly shorter cycle time.

This Eval input allows the current stage to evaluate as soon as the subsequent stage has

started precharging, instead of waiting until the subsequent stage has completed precharging.

The analytical cycle time can be expressed as:

TLP3/1 = 3. tEval + tCD+ tNAND

The per-stage latency of the pipeline is:

 LLP3/1 = tEval

4.4 High Capacity Pipelines (Single Rail)

Finally, the structure of one stage of the HC pipeline [58] is shown in Figure 4-3 (c). A

key feature of this pipeline style is that is uses decoupled control of evaluation and

precharge: separate Eval and Pc signals are generated by each stage's control. Precharge

occurs when Pc is asserted and Eval is de-asserted. Evaluation occurs when Pc is de-asserted

 65

and Eval is asserted. When both signals are de-asserted, the gate output is effectively

isolated from the gate inputs; this is the isolate phase. To avoid short circuit, Pc and Eval are

never simultaneously asserted.

An asymmetric C-element, aC, is used as a completion detector. The aC element output

is fed through a matched delay, which (combined with the completion detector) matches

the worst-case path through the function block.

Unlike most existing pipelines, the HC pipeline stage cycles through three phases. After

it completes the evaluate phase, it enters the isolate phase (where both Eval and Pc are de-

asserted) and subsequently the precharge phase, after which it re-enters the evaluate phase,

completing the cycle.

Furthermore, unlike the other pipelines covered in this paper as well as the PS0 style in

[59] the HC pipeline has only one explicit synchronization point between stages. Once the

subsequent stage has completed its evaluate phase, it enables the current stage to perform

its entire next cycle. The analytical cycle time can be expressed as:

THC = tEval + tPrech+ taC+ tNAND3+ tINV

The per-stage latency of the pipeline is:

 LHC = tEval

4.5 Designing Non-linear Pipeline Structures

The basic assumption in linear pipelines is that each pipeline stage has a single input

and a single output channel. Non-linear pipelines stages, however, may have multiple input

and output channels. This section presents an overview of the challenges involved in

designing non-linear pipelines using timed templates. In particular we address issues with (i)

2 As with the previous pipeline style, the 3/1 label characterizes the operation of a stage of the pipeline: 3 component delays in the

 66

synchronization with multiple destinations (for forks), and (ii) synchronization with

multiple sources (for joins). Subsequent sections provide our detailed solutions for each of

the three pipeline styles reviewed above and then briefly describe how these solutions are

extended to channels that are conditionally read or written.

4.5.1 Slow and Stalled Right Environments in Forks

Figure 2-5(b) shows an abstract two-way fork in which the forking stage S1 drives

stages S2 and S3. For correct operation, S1 must receive (and recognize) acknowledgments

from both S2 and S3. A problem is that S2 and S3, and the subsequent stages of each, may

be operating largely independently of each other. One of these stages may get arbitrarily

stalled, thus potentially stalling its acknowledgment from either S2 or S3.

If the pipeline templates designed for linear pipelines were naively extended to a

datapath with a fork, by expecting S1 to synchronize on all of the acknowledges from the

forked stages using a C-element to combine them, then the resulting pipeline may

malfunction.

In particular, the acknowledgments generated in most linear pipeline structures are non-

persistent. That is, after a stage asserts its acknowledgment, it assumes that the precharge of

the previous stage is fast. Therefore, it does not explicitly check for the completion of that

precharge before de-asserting the acknowledgment. We call this restriction/assumption the

fast precharge constraint. In the case of a non-linear pipeline, however, if exactly one of S2 or

S3 is slow or stalled, the acknowledgment signal of the fast stage may be de-asserted before

S1 has a chance to precharge, causing deadlock. In other words, in this situation, S1 violates

the fast precharging constraint. We call this problem the slow or stalled right environment (SRE)

evaluation phase and 1 component delay in the precharge phase, forming a complete cycle.

 67

problem. In particular, Williams’ classic PS0 pipelines [23] along with the recent lookahead

and high-capacity pipelines all have this problem.

We propose two general solutions. The first solution is to modify only the immediate

stages after a fork, such that, even after precharging, they maintain the assertion of their

acknowledgment signal and are explicitly prevented from re-evaluating until after the

forking stage is guaranteed to have precharged. The key is to modify the stages after a fork

to guarantee their acknowledgments are properly received while still guaranteeing that these

stages satisfy the fast precharge constraint.

The second solution is to modify every pipeline stage such that they maintain the

assertion of their acknowledgment signal until after its predecessor stages are guaranteed to

have precharged. In other words, this solution is to modify the entire pipeline to remove

the fast precharge constraint, implicitly solving the SRE problem. This solution must be

applied to all stages because an unmodified stage may otherwise assume its predecessors

satisfy the fast precharge constraint, which may not be the case.

4.5.2 Slow and Stalled Left Environments in Joins

The second challenge is one of synchronization with multiple input channels, as

needed in a join. Figure 2-5(a) shows a two-way join structure for an abstract pipeline

where the data from each input stage, S1 and S2, must be consumed by the join stage S3.

The data outputs of S1 and S2 are gathered together and presented to S3 as its inputs.

Subsequently, S3 sends an acknowledgment to both S1 and S2 once it has consumed the

input data. Thus, a two-way join represents a synchronization point between the outputs

of two senders.

A problem can arise if the logic implementation of stage S3 is “eager”, i.e. S3 may

 68

produce output after consuming one but not both of its data inputs (see [59]). For example,

if S3 contains a dual-rail OR function that evaluates eagerly (i.e., as soon as one high input

bit arrives), then, after evaluation it will send an acknowledgment to both S1 and S2, even

though one of them may not have produced data at all. As a result, if one of the input

stages is particularly slow or stalled, it may receive an acknowledgment from S3 too soon.

This can cause the insertion of a new unwanted data token at the output of the slow stage

and thus corrupt the synchronization between the stages. We call this the stalled left

environment (SLE) problem.

One solution is to allow join stages to have eager function blocks but still ensure that

the generation of the acknowledge signal occurs only after consuming data from all of the

input stages. This solution has been used extensively in quasi-delay insensitive templates

[24].

4.6 Lookahead Pipelines (Single Rail)

Handling joins in single-rail lookahead pipelines is straightforward, and was initially

proposed in [58]. The join stage receives multiple request inputs (Lreq’s), all of which are

merged together in the asymmetric C-element (aC) that generates the completion signal. In

particular, each additional request is accommodated by adding an extra series transistor in

the pull-down stack of the aC element. The aC will only acknowledge the input sources

after all of the Lreq’s are asserted and the stage evaluates.

To handle forks, on the other hand, a C-element must be added to the forking stage to

combine the acknowledgments from its immediate successors. In addition, the other stages

of the pipeline must also be modified to overcome the SRE problem of Section 4.5.1. As

indicated, the problem is that the acknowledge signal from an immediate successor of a

 69

fork stage can be regarded as a pulse, which may be de-asserted before its predecessor

forking stage has precharged, causing deadlock. This section gives two distinct solutions

for handling such forks in LPSR2/2.

4.6.1 Solution 1 for LPSR2/2

The first solution is to modify the immediate successor stages of forking stages to latch

their Lack acknowledgment signals and delay their re-evaluation until after all predecessors

have precharged. For LPSR2/2, this is solution achieved by modifying Lack logic and the

control of the foot transistor, as shown in Figure 4-4.

Assume the forked stage has just evaluated and the acknowledgment signal Lack signal

has just been asserted. At this time, the right environment will assert Rack causing the

output of the latch, X, to be asserted (X=0, i.e., active low), effectively latching the non-

persistent acknowledgment signal. The X output is held low even when Rack is de-asserted.

In particular, X is de-asserted (X=1) only after Done goes low caused by Lreq going low,

implying that the input forking input stage has precharged. Effectively, the foot transistor

now prevents re-evaluation until after X goes low, delaying re-evaluation until all inputs

(including any slow input) are guaranteed to have precharged.

These modifications ensure that even late acknowledgments from a stage S3

immediately after a fork are guaranteed to be properly received while still ensuring that S3

satisfies the fast precharge constraint, thereby solving the SRE problem.

 70

Figure 4-4: a) Modified first stage after the fork. b) Detailed implementation of the gates in the
dotted box

The only new timing assumption that this template introduces compared to LPSR2/2 is

that the Rack pulse width must be long enough to properly latch it. This pulse width

assumption, however, is looser than the original timing assumption that remains: the pulse

width must be longer than the stage’s precharge time.

4.6.2 Solution 2 for LPSR2/2

The second solution is to modify each stage so that it does not de-assert its

acknowledgments until after all input stages are guaranteed to have precharged. This

solution can be implemented using the modified LPSR2/2 template shown in Figure 4-5 in

which the asymmetric C-element is converted to a symmetric C-element. As suggested

earlier, this modification removes the fast precharge constraint, implicitly solving the SRE

problem.

 71

Figure 4-5: The LPSR2/2 pipeline stage with a symmetric c-element

4.6.3 Pipeline Cycle Time

For the first solution, the cycle time expressions do not change if the additional

acknowledgment signals simply increase stack height and do not add additional gates. For

multi-way forks and joins, however, the cycle time will increase by the additional C-

elements needed to combine them. For the second solution, the cycle time becomes:

TLPSR2/2 = max(2. tEval + 2. tgc , tEval + tprech + 2. tgc)

4.7 Lookahead Pipelines (Dual Rail)

This section extends a dual-rail lookahead pipeline, LP3/1, to handle forks and joins.

Since both the stalled left environment (SLE) and the stalled right environment (SRE)

problems of Section 4.5 can arise in dual-rail pipelines, detailed solutions are presented for

both forks and joins.

4.7.1 Joins

Unlike LPSR2/2, the LP3/1 pipeline has no explicit request line and thus may not

function correctly unless it is modified to handle the SLE problem in joins. Our proposed

solution still allows the use of eager function blocks; however it ensures that no

 72

acknowledgment is generated from a stage until after all it’s input stages have evaluated.

In particular, our solution is to add request signals to the input channels of the joins

and feed them into the join stage’s completion detector, as illustrated in Figure 4-6. The

join’s completion detector now delays asserting its acknowledgment until not only the

function block is done computing, but also until after all the input stages have completed

evaluation, thereby solving the left environment problem. Note that the additional request

signals are taken from the outputs of the preceding stages’ completion detectors. While this

modification does not affect the latency of the pipeline, the analytical cycle time changes

to:

TLP3/1 = 2. tEval + 2. tCD+ tNAND

4.7.2 Forks

As in the single-rail lookahead pipeline, LPSR2/2, we propose two solutions for the

slow or stalled right environments. These solutions are similar in essence to the solutions

for the single-rail case, but adapted to dual-rail.

The implementation of solution 1 is very similar to LPSR2/2 as shown in Figure 4-7.

First, the completion detector (CD) has been modified such that the acknowledgment

signal is de-asserted only after the forking stage has precharged. In addition, we delay the

re-evaluation of the function block until after the forking stage has precharged using a

decoupled foot transistor controlled by the Y signal.

 73

Figure 4-6: The LP3/1 pipeline with a modified CD to handle joins

Figure 4-7: a) Modified first stage after the fork. b) Detailed implementation of the additional
gates

The second solution is to add a request line to all LP3/1 channels and delay de-

assertion of the acknowledgment (Lack1 in this case) until after all immediate predecessors

 74

have precharged, as shown in Figure 4-8. The request line is generated via a C-element that

combines the incoming request line(s) and the output of the completion detection. The

output of this C-element becomes the new Lack1. Because the C-element de-asserts its

acknowledgment only after Lreq is de-asserted, the fast precharge constraint is removed,

solving the SRE problem.

For solution 1, compared to the original LP3/1 template, the cycle time is slightly

increased to:

TLP3/1 = 2. tEval + 3.tCD+ tPrech

For solution 2, the cycle time increases to:

TLP3/1 = tEval + 3.tCD+ tNAND

Figure 4-8: The LP3/1 stage with a C-element

4.8 High Capacity Pipelines (Single Rail)

Since the high capacity pipeline template uses single-rail encoding, it has a request line

associated with the data and thus does not have the slow or stalled left environment

problem in joins. However, because the acknowledgment signals in the high capacity

pipelines are also non-persistent (effectively, timed pulses), they do have problems with a

 75

slow or stalled right environment in forks.

The simple modification to the original stage controller of the high capacity pipeline

illustrated in Figure 4-9 delays de-asserting the acknowledgment until after the request line

goes low, thus removing the fast precharge constraint and solving the SRE problem using

solution 2.

In particular, by replacing the NAND3 gate by the state holding generalized C-element,

the acknowledgment signal Rack only triggers the assertion of the precharge control signal,

Pc. The de-assertion of Pc is caused by the input request signal Rreq going low. Thus, Pc

remains asserted until after precharge is completed, and is unaffected by the acknowledge

signal from the next stage getting de-asserted. Furthermore, the inverter is replaced by a

NOR2 gate with an additional input to delay the stage’s re-evaluation until after the stale

input data is reset.

In the new version of the HC pipeline stage the state variable, ok2pc, belongs to the

channel between stage N-1 and N. The reasoning is as follows. The function of the state

variable is to keep track of whether stages N-1 and N are computing the same token, or

distinct (consecutive) tokens; precharge of N-1 is inhibited if the tokens are different. If

there are two stages, N-1(A) and N-1(B), supplying data for stage N, we propose to have two

separate state variables, one to keep track of whether stages N-1(A) and N have the same

token, and the second to keep track of whether stages N-1(B) and N have the same token.

Similarly, if stage N had two successors, N+1(A) and N+1(B), we propose to have two distinct

state variables, one each for the pair (N, N+1(A)) and the pair (N, N+1(B)).

 76

Figure 4-9: a) Original and b) New HC stage

The aC element, which implements the state variable ok2pc, is pulled out of the stage

controller and placed in-between stages N-1 and N (i.e., moved into the channel). In

addition, the gC element is also moved into the channel to avoid extra wiring.

4.8.1 Handling Forks and Joins

Figure 4-10 shows the implementation of a template for stage, N, for the case where

stage N is both a fork as well as join. The multiple reqin’s, ok2eval’s and ack’s are handled by

simple modifications to the linear pipeline of Figure 4-9(b), as shown in Figure 4-10.

Multiple reqin’s: Each additional reqin is handled by adding a single series transistor to

the aC element that makes up the completion generator, much like it was done for LPSR2/2

in Section 4.6. Hence, done is generated only after all the input data streams have been

received.

Multiple ok2eval’s: Each additional ok2eval is handled by adding it as an extra input to

the NOR gate that produces the eval signal. Consequently, the stage is enabled to evaluate

(eval asserted) only after all of the ok2eval signals are asserted, i.e. after all of the senders

 77

have precharged.

Multiple ack’s: Multiple ack’s are handled by OR’ing them together. Since the ack’s are

all asserted low, the OR gate output goes low only when all the ack’s are asserted, thus

ensuring that precharge occurs only after the stage’s data outputs have been absorbed by all

of the receivers. The OR gate is actually implemented as a NAND with bubbles (inverters)

on the ack inputs. This NAND has an additional input --- the stage’s completion signal ---

whose purpose is to ensure that, once precharge is complete, Pc is quickly cut off.

Otherwise, Pc may get de-asserted slightly after Eval is asserted, causing momentary short-

circuit between supply and ground inside the dynamic gates.

4.8.2 Pipeline Cycle Time

If only joins are present, the cycle time is only slightly increased. Compared with the

cycle time obtained in [58], the new cycle time equation has a NOR delay instead of an

inverter delay, and a gC delay instead of a NAND3 delay:

Figure 4-10: A 2-way join 2-way fork HC stage

 78

THC = tEval + tPrech+ taC+ tgC+ tNOR

If forks are also present, then the cycle time increases by the delay of the OR gate

which is needed to combine the multiple acknowledgments:

THC = tEval + tPrech+ taC+ tgC+ tNOR+ tOR

4.9 Conditionals

Other complex pipeline stages allow conditionally reading and writing data and can

have internal state. This section briefly covers the implementation of these cells for the

LPSR2/2 template; however, a similar approach can also be applied to the other pipeline

styles.

Figure 4-11(a) shows a conditional read, where the stage reads only one of the input

channels depending on the value of the select channel. Only the channels read are

acknowledged. Figure 4-11(b) shows a conditional write, where the stage reads the input

channel and outputs the data (writes) to only one of the output channels depending on the

value of the select channel. It receives an acknowledgment only from the output channel

where the data is written. Note that the C-elements are only symmetric for the Rack input

and asymmetric for all others.

Figure 4-12 shows a one-bit memory implemented using a LPSR2/2 template. A and C

represent the input and output channels. B is the internal storage. S is an input control

channel that selects the write or read operation. When S0 is high, the memory stores the

value at the input channel A to the internal storage B. Both the input A and the select

channels are acknowledged. The implementation of how data is stored is shown in the

dotted box (similar to [24]). Assuming that there is already data stored, one of the dual rail

 79

bits of B is high and the other is low. When an input A is applied and S0 is high, first both

rails are lowered and then one of them is asserted high, thereby storing the data. The C-

element, which generates the acknowledgment of the input channel LackA through a

matched delay line, is reset using its own output, since it doesn’t receive an

acknowledgment from an output. The delay of the delay line is matched to the delay of

writing the internal node B.

When S1 is high, on the other hand, the internal data stored in B is sent to the output

channel C. When an acknowledgment is received from the output channel C, the outputs

are reset however the data stored remains unchanged.

Figure 4-11: Conditional read and b) write.

 80

Figure 4-12:A one-bit LPSR2/2 memory

4.10 Simulation Results

HSPICE simulations were performed using a 0.25 TSMC process with a 2.5V power

supply at 25oC. The purpose of these simulations was only to quantify the performance

overhead of using the fork-join structures of this paper, compared with linear pipelines.

Hence, no attempt was made to fine-tune the transistor sizing to achieve optimum

performance. In particular, all transistors were sized in order to roughly achieve a gate

delay equal to a small inverter (Wnmos=0.8um, Wpmos=2um, and L=0.24um) driving a

same-sized inverter. For the purposes of this comparison, wire delay also has been ignored.

The simulation results for all linear and non-linear pipelines discussed in this paper are

presented in Table 4.1. The original linear pipelines appear under the Sol1 columns and the

linear1 row because solution 1 involves only modifying the first stages after a fork and

forks do not exist in linear pipelines. The linear2 row and Sol2 column has the cycle times

 81

for linear pipelines, where each stage has been modified according to solution 2. Note that

while the joins add only ~5% to the cycle time, the forks increase the cycle time by ~20%

because of the additional C-element needed. The waveforms in Figure 4-13(a) show the

data signal of a LPSR2/2 one-bit linear pipeline. Note also that the cost of the more robust

solution 2 compared to solution 1 is generally less than 5%. Figure 4-13(b) shows

waveforms for a fork with a slow right environment channel called Data4 and Figure

4-13(c) shows a join with a slow left environment channel called DataB.

 LPSR2/2 LP3/1 HC

 Sol1 Sol2 Sol1 Sol2 Sol2

Linear1 0.99 N/A 1.20 N/A N/A

Linear2 N/A 1.06 N/A 1.28 0.93

Fo k r 1.23 1.29 1.41 1.45 1.20

Jo n i 1.05 1.10 1.27 1.34 1.01

Table 4.1: Cycle time (ns) of original linear pipelines vs. proposed non-linear pipelines

 82

Figure 4-13: HSPICE Waveforms. a) Linear pipeline, b) Two-way fork and c) Two-way join

 83

4.11 Conclusions

In this chapter we introduced new high-speed asynchronous circuit templates for non-

linear dynamic pipelines, including forks, joins, and more complex configurations in which

channels are conditionally read and/or written. Two sets of templates arise from adapting

the LPSR2/2 and LP3/1 pipelines and one set of templates arises from adapting the HC

pipelines. Timing analysis and HSPICE simulation results demonstrate that forks and joins

can be implemented with a ~5%−20% performance penalty over linear pipelines. All

pipeline configurations have timing margins of at least two gate delays, making them a

good compromise between speed and ease of design.

 84

C h a p t e r 5

5. A Design Example: The Fano Algorithm

In this chapter we present The Fano algorithm, a convolutional code decoder, and

its efficient semi-custom synchronous implementation. The algorithm is used in

communication systems to decode the symbols received over a noisy communication

channel. Our goal is to later develop an efficient asynchronous counterpart, which we try

to explore the challenges in designing asynchronous chips. In this chapter first we will

present the Fano Algorithm. Then we will present the synchronous implementation of the

algorithm.

5.1 The Fano Algorithm

5.1.1 Background on the Algorithm

The Fano algorithm [60] [61] [62], is a tree search algorithm that achieves good

performance with a low average complexity at a sufficiently high signal-to-noise (SNR)

ratio. A tree comprises nodes and branches, associated with each branch is a branch metric

(or weight, or cost). A path is a sequence of nodes connected by branches with the path

metric obtained as the sum of the corresponding branch metrics. An optimal tree-search

algorithm determines the complete path (i.e., from the root to leaf) with minimum path

metric, while a good (suboptimal) tree search algorithm finds a path with metric close to

this minimum.

The Fano algorithm searches through the tree sequentially, always moving from

one node to a neighboring node until a leaf node is reached. The Fano algorithm is a depth

first tree-search algorithm [60], meaning that it attempts to search as few paths as possible

 85

to obtain a good path. Thus, the metric of a path being considered is compared against a

threshold T. The relation between T and the metric is determined by the statistics of the

branch metrics (i.e., underlying model) and the results of partial path exploration. The latter

is reflected by dynamically adjusting the threshold to minimize the number of paths

explored.

The key steps of the algorithm involve deciding which way to move (i.e., forward,

or deeper, into the tree or backward) and threshold adjustment. Intuitively, it moves

forward only when the partial path to that node has a path weight that is greater than T. If

no forward branches satisfy this threshold condition, the algorithm backtracks and searches

for other partial paths that satisfy the threshold test. If all such partial paths are exhausted,

it will loosen the threshold and continue. In addition if the current partial path metric is

significantly above the threshold, it may tighten the threshold. Threshold tightening

prevents always backtracking to the root node at the cost of potentially missing the optimal

path. Moreover, a maximum traceback depth limit is often imposed to limit worst-case

complexity. The details of the Fano algorithm are illustrated in the flow chart depicted in

Figure 5-1 and a more detailed explanation can be found in [62] [61].

The decoding of a convolutional code with known channel parameters can be

viewed as a tree-search problem with the optimal solution provided by the Viterbi

algorithm [61], a breadth-first, fixed complexity algorithm. The Fano algorithm is known to

perform near-optimal decoding of convolutional codes with significantly lower average

complexity than the Viterbi algorithm.

 86

Figure 5-1: Flow-chart of Fano Algorithm

5.2 The Synchronous Design

This section describes the efficient normalization scheme used to optimize the

algorithm, our architecture at the register transfer level, and statistics of the chip.

5.2.1 Normalization and its benefits

The basic idea behind normalization is to change the point of reference (e.g., from the

origin of the tree to a current node under consideration). Normalization is often necessary

to prevent hardware overflow/underflow. Interestingly, in traditional communication

algorithms, such as the Viterbi algorithm, normalization often yields significant

performance and area overhead that hardware designers generally avoid by using slightly

larger bit-widths and modulo arithmetic [63]. In contrast, we show that using normalization

in the Fano algorithm can yield a smaller, faster and more energy efficient design.

In particular, we normalize our variables in such a way as to make to current node’s

 87

metric always equal to zero. This is equivalent to subtracting the current node’s metric from

every variable in the algorithm, which does not change the overall behavior of the

algorithm. The advantages of this type of normalization in the Fano algorithm is as

follows. 1) Additions involving the current metric (i.e., during the threshold check) are

removed and comparisons with the current metric (i.e., during the first visit check and

threshold tightening steps) reduce to a 1-bit sign check. 2) The normalization of the next

threshold (subtracting the current node’s metric from it) can be done by the ALU that

compares the threshold with the next metric, and thus consumes negligible additional

energy. 3) Lastly, the normalization enables us to work with numbers with smaller

magnitudes that can be represented with fewer bits.

5.2.2 Register-Transfer Level Design

The register-transfer level architecture is illustrated in Figure 5-2. The Threshold Adjust

Unit (TAU) is shown in more detail, but still with some of the details omitted to simplify

the schematic. At each clock cycle, the best and next best branch metrics are both

calculated using data that is stored in memory. (See [62] for more details regarding the

branch metric computation.) The threshold check unit compares the error metric with the

current threshold to determine if a forward move can be performed and simultaneously

speculatively calculates two normalized next thresholds, the first assuming a forward move

will be taken and the second assuming the threshold must be loosened (by subtracting ∆

from T).

Based on the above results, either the move will be made and the pre-computed

threshold will be stored or the threshold T will be loosened, all in one clock cycle.

Additional clock cycles are needed to compute tightening the threshold if (i) a forward

 88

move is made, (ii) the first visit check is passed, and (iii) the pre-computed tightened

threshold is not in the range of ∆. Fortunately, with reasonable choices of ∆, computer

simulations suggest that these additional cycles of tightening are rarely needed. Similar

speculative execution allows us to perform a look/move back in one clock cycle.

 89

Figure 5-2: RTL architecture of the synchronous Fano Algorithm

The register-transfer-level architecture shown in Figure 5-2, is controlled by the finite

state machine (FSM) illustrated in Figure 5-3. Three states, state 2-4, make up the main

algorithm. In each of these states, the branch metric unit computes the needed selected

branch metric using data that is stored in the sequence memory. Depending on control bits

from the FSM (not shown) the selected branch metric that is associated with the best or

worst branch. In either case, the corresponding input bit is sent to the decision memory

where, in the case the branch is taken, it is used to update the selected path.

In state 2, the machine looks forward, moves forward if possible, and, if necessary,

performs one step of threshold tightening. More specifically, after the selected branch

metric is computed, the FSM performs a threshold check to see if the machine can move

forward. That is, ALU3 computes T minus the selected branch metric and the FSM

examines the most significant bit. If the sign bit is a 1, the branch metric is no smaller than

T and the threshold check passes. Otherwise, the threshold check fails. Meanwhile, ALU1

and ALU2 speculatively compute T+∆ and T+∆ minus selected branch metric respectively.

 90

These values, along with θ, a state variable shown in Figure 5-1, allow the FSM to

determine whether the first visit check passes. That is, the first visit check passes if and

only if θ =0 or if T+∆ is positive or T+∆ minus the selected branch metric is positive.

Based on the above results, the FSM acts in one of three ways. 1)The threshold check

passes and a forward move is performed, but the first visit check fails so that the NextState

is set state S2, in preparation of another look forward. 2) Both the threshold check and the

first visit check pass in which case the FSM moves to state S3. 3) The threshold check fails

and the FSM moves to state S4 in preparation of look/move backward. In the case of 1)

the threshold register is updated with T minus the selected branch metric, computed by

ALU3. In the case 2), on the other hand, the threshold is updated with the tighter

threshold T+∆, computed by ALU1, whereas in the case of 3) the threshold register

remains unchanged.

In state S3, the FSM checks whether a subsequent tightening is needed (by computing

and checking the sign of ∆+T). Simultaneously, it speculatively performs a

 91

Figure 5-3: Finite State Machine describing the RTL

threshold check (by checking whether the Branch Metric is no smaller than T) which is

needed in the event that the threshold need not be immediately tightened (i.e., in the event

that tightening of the threshold requires only the one addition of ∆ performed in state S2).

If tightening is required, the NextState is set to state S3. For the case where no immediate

tightening is needed, the FSM performs the same move/look forward/tightening/next-

state operations as in state S2.

State S3 is entered when the threshold check fails in either state S2 ot state S3. In state

S4, a look backward is performed and, if possible, a backward move is made and the

threshold is updated with the re-normalized threshold. Both the look backward and re-

 92

normalization are performed through ALU3 by adding T and the selected (backward)

branch metric. Specifically, the look backward check is satisfied if and only if the negative

selected branch metric is greater or equal to the threshold, i.e., the result of the ALU3

operation is negative and the re-normalized threshold is precisely the output of ALU3. If a

backward move is performed and it is originated from a worst node, via an additional FSM

flag, NextState is set to state S4, in preparation of another look backward. Alternatively,

NextState is set to state S2 in preparation of a look forward to the next best node,

controlled by a LookNextBest flag that is not shown to simplify exposition. If the

backward look fails, on the other hand, the threshold is updated with a loosened threshold,

speculatively computed by ALU1, and NextState is set to state S2.

The key feature of the speculative control strategy is that each forward move typically

takes only once clock cycle with negligible performance overhead associated with the first

visit check or tightening. In particular, with reasonable choices of ∆, computer simulations

suggest that additional cycles of tightening are rarely needed.

5.2.3 Chip Implementation

The chip supports a packet length of N=128. The depth of the search tree, which also

including 7 tail bits, is thus 135. It supports a rate ½ convolutional code, (i.e., n=2) with

generator polynomials 1+D+D2+D5+D7 and 1+D3+D4+D5+d6+D7. For this

prototype, we assumed the chip would have fixed branch metrics B(0)=2, B(1)=-7, and

B(2)=-16, requiring 5 bits to represent. These metrics are ideal for the SNR range of

1<Eb/No(dB) <3. In practice, they would be dynamically adjusted when the estimated

channel SNR is outside this region, which may require an extra bit.

We used automatic placement and routing tools with a combination of synthesized and

 93

manually laid-out components in the 0.5u HP14B CMOS process. The layout has an area

of 1.2mm by 1.8mm. Powermill was used to estimate the performance of the design. At

1.5V power supply the design successfully operated at 15MHz and at 3.3V it successfully

operated at 100MHz.

 94

C h a p t e r 6

6. The Asynchronous Fano

Deeper analysis of the Fano algorithm shows that the operation of the algorithm can

be divided into two: The Error Free Region and the Error Region. In the Error Free Region,

the algorithm moves forward while the received bits from the sender are error free and

match the expected bits. In this region of operation the un-normalized threshold is

incremented with a constant value, namely the value given for an error free branch of the

tree. If the threshold value is known at the time the algorithm enters the Error Free Region

then the next value of the threshold can be calculated. The normalized threshold, however,

stays in the range of -∆ ≤ T ≤ 0 and rotates through a finite number of values in a pre-

determined order.

Consequently, instead of calculating the threshold values explicitly, a pointer to a

lookup table containing these pre-determined values is incremented. When an error is

encountered, the design enters the error region where the current value of the threshold is

accessed from the lookup table and the full algorithm is applied in order to determine

whether to move forward, move backward, or loosen the threshold. The algorithm stays in

the error region until a node in the search tree is reached for the first time and the move

was a forward move, at which point the algorithm moves back into the error-free region.

The algorithm continues until the end of the tree by alternating between the error free and

the error regions.

 95

For high SNR applications most of the received packets have little to no errors

therefore most of the decoding process consists of reading the data from the memory,

comparing to the predicted data, and the writing the decision to the memory and involves

little to no multi-bit additions/subtractions/comparisons due to loosening or tightening

the threshold. This fact motivates a two-block architecture that are specifically designed to

handle the two different operating regions of the algorithm efficiently.

6.1 The Asynchronous Fano Architecture

The proposed asynchronous architecture, shown in Figure 6-1 localizes the Error-Free

region in a small block that is highly optimized. In particular, the Branch Metric Unit

(BMU) is partitioned into a Skip Ahead Unit optimised for the Error Free Region and a

Threshold Adjust Unit and the Branch Metric Calculator that are active only in the Error

Region and have implementations analogous to the synchronous version.

The data received to the decoder via the Transmitted Input Data channel are stored in

the Received Memory. The fast Skip Ahead Unit requests data from the Received Memory

in 8 word chunks via the Previous/Next channel, where each data word is for the (7,1,2)

code two bits wide. As the Skip Ahead Unit decodes the code and moves forward in the

tree, it locally stores its decisions. Every 8 decision is sent to the Decision Memory via the

Last 8 Decisions channel. When an error is encountered, the Skip Ahead Unit may need to

go back in the tree to explore different branches by requesting previous decisions from the

Decision Memory that arrive on the Previous 8 Decisions channel. The data flow between

the Decision Memory and the Skip Ahead Unit is controlled via the Write/Read channel.

 96

Figure 6-1: RTL architecture of the asynchronous implementation

In the Error Free Region, the received bits are read from the Received Memory and

decoded in the Skip Ahead Unit. The resulting decisions are then sent to the Decision

Memory and the SAU unit increments the look-up table pointer via the IncPointer channel.

In this region, the Main FSM, Branch Metric Calculator, and the TAU are inactive.

When an error is encountered the SAU informs the Branch Metric Calculator via the

Error channel and also sends it the received branch bits and the predicted branch bits

calculated using the previous decisions and the convolutional code. Depending on the

move commanded by the Threshold Adjust Unit via the LFB (look forward best), LB (look

backward), LFNB (look forward next best), and LFBTE (look forward best until error)

channels, the Branch Metric Calculator calculates and compares the branches, selects the

 97

appropriate one, and sends it to the TAU with additional information notifying if the move

originated from a worse branch and if the branch had any errors (via the additional

BmuErr and BmuFwn channels). Every time the TAU is accessed for the first time when

an error has occurred, the TAU reads the normalized threshold from the look-up table and

updates the threshold value. The TAU is implemented analogously to the synchronous

version and is responsible for deciding to move forward, move backward, or adjust the T

threshold. Upon deciding a move, the relevant information is sent to the SAU and a new

command is issued to the Branch Metric Calculator. Finally when a new error free node is

reached for the first time, the TAU issues the LFBTE command, stores the normalized

threshold, updates the pointer to the look-up table and resume operation in the fast SAU

via the Back To Skip-Ahead channel. The operation switches back and forth between the

SAU and the TAU until all the data is encoded. Upon reaching the end of the tree, the

Decision Memory sends out the decoded data.

The fact that the asynchronous circuit has no global clock allows the asynchronous

architecture to be naturally divided into two blocks, each operating at its ideal speed that

communicate only when and where needed via the inter-block asynchronous channels.

6.2 The Skip-Ahead Unit

A high level implementation of the SAU is shown in Figure 6-2. The core of the SAU

is the Error Detector, which compares the predicted branch bits with the received branch

bits and stores the decision. To operate at full rate, the memories must keep up with

writing/reading one data word per decoding cycle. As the memory capacity increases, this

becomes a difficult task and for this reason we have opted to use shift registers that act as

caches for the bigger memories. In particular, the Fast Data Register stores 8 words from

 98

the Received Memory and the Fast Decision Register acts as an 8-word read/write cache

for the Decision Memory. When the Received Memory sends an 8-word packet to the Fast

Data Register, the Received Memory speculates that the SAU will not encounter any errors

and moves forward thus prepares to send a new set of data. This cache structure allows the

larger memory to run at 1/8 the speed of the SAU. The same motivation applies to the use

of the Fast Decision Register with the exception that it is a read/write register. Both of the

registers have an associated controller to request and send data to their respective

memories.

Figure 6-2: Detailed implementation of the Skip-Ahead Unit

The most recent decisions in the search tree, which always reside in the Fast Decision

Register, are sent to the Code Generator, which predicts the values of the new branch bits.

The predicted branch bits are compared to the received one in the Error Detector. If there

 99

is a match, indicating that there is no error, the decision is stored in the Fast Decision

Register, an internal counter and the pointer in the look-up table are incremented, and new

data are requested from the shift registers via the Move Forward/Backward, Up/Down,

IncCount and IncPointer channels. If there is no match, then an error is encountered. The

predicted and received branch bits are sent to the Branch Metric Calculator and the

controls of the shift registers are transferred to the TAU.

The critical loop in the Error Free Region consists of the Fast Shift Register, the Error

Detector, the Fast Decision Register, and the Code Generator. For high SNR operation,

most of the time the decoder operates in the Error Free Region, therefore our goal is to

achieve high speed in this region by optimizing the circuit. However if and when the circuit

encounters an error, it enters the Error Region and the critical path consists of the Fast

Shift Register and the Convolutional Code Generator serving data to the Slow BMU. In the

Error Region, the operation is the same as in the synchronous version consisting of a

number of sequential operations. In this region the speed is expected to be comparable to

the synchronous case.

6.3 The Memory Design

Since the chip supports a packet length of only 135 bits (128 data and 7 tail bits), we

have opted to design the main data memory blocks of the Received and Decision

memories using standard PCHB templates. However, we introduced unacknowledged tri-

state buffers on the data bus to efficiently allow multiple drivers of the bus. This is typical

in synchronous design, but does introduce some minor timing assumptions not typical of

PCHB-based designs. We also used standard place and route tools for the physical design

 100

of the memories for faster design time at the expense of more area and power

consumption.

Figure 6-3 Implementation of the Received Memory

In particular, as depicted in Figure 6-3 the received memory consists of n blocks where

each block can hold 8 words. For the (7,1,2) convolutional code each word is 2 bits. The

blocks are FIFO’s implemented with PCHB’s. At any time only one of the tri-state buffers

is enabled allowing only one of the blocks to send their data. The Fano algorithm is a

sequential tree search algorithm, therefore SAU accesses the memory sequentially via the

Next/Previous channel. The Received Memory Controller responds to the request by

enabling a preceding or proceeding tri-state buffer and sending new data. The buffer

captures the new data and sends it to the requesting unit. The timing assumption for

correct operation is that the delay from the Next/Previous channel through the Received

Memory Controller and the selected tri-state buffer should be less than the delay from the

 101

Next/Previous channel to the output buffer. Moreover, the output buffer should only latch

its input when the enabled tri-state buffers outputs have changed and stabilized.

The decision memory has a similar structure, however since it is a read/write memory each

of the blocks can be accessed individually to read from or to write to.

6.4 The Fast Data and Decision Registers

The fast data register is implemented using two 8-word, 1-bit shift registers, as shown

in Figure 6-4. The register consists of 8 conditional input, conditional output 1-bit memory

pipeline stages. Depending on the command, cmd, it either shifts forward by receiving new

data from InF and sending the old to OutF, shifts backward by receiving data from InB

and sending the old to OutB, or loads 8-words in parallel from the main memory. The

parallel load command overwrites the old data tokens inside each stage. The command

channel Cmd should go to all of the stages, however to prevent the use of a big c-tree to

generate the Cmd acknowledgement signal the Cmd signal is broadcasted with a tree of

copy buffers. Altough this solution reduces the load on the Cmd channel if it were to be

copied to all stages directly, this solution increases critical loop delay of the algorithm.

The fast data register is implemented similarly.

 102

Figure 6-4 Implementation of a 1-bit fast shift register

6.5 Simulation Results and Comparison

The core layout of the chip designed in TSMC 0.25µ CMOS technology is illustrated in

Figure 6-5. Nanosim simulations, on the extracted layout, show that the circuit runs at

450MHz and consumes 32mW at 25oC and has an area of 2600µm x 2600µm = 6.76mm2.

The asynchronous chip runs about 2.15 faster than its synchronous counterpart. However

it occupies 5X the area. This is partially due to the fact that both of the memories which

 103

occupy half the chip area in the asynchronous chip are implemented with PCHB’s. Lastly

the design consumes 1/3 the power of its synchronous counterpart.

Figure 6-5: Layout of the asynchronous Fano
Figure 6-6 (a) below shows the post-layout simulation results for the circuit operating

under the Error Free Region. Since the Fast Data and Decision Registers can only hold 8

words, once the data held by the Fast Data Register is consumed a new set of data is

requested from the main Received Memory. This request and data transfer causes a slight

delay, which can be observed in the waveforms as a slight gap every 8 pulses. Since there

are no errors in the Error Free Region the nofail_f signal used to indicate the encounter of

 104

an error is never asserted but instead the nofail_t signal, which indicates that there are no

errors is asserted by the detection logic.

On the other hand, as shown in Figure 6-6 (b) in the Error Region, as errors are

encountered the decoder moves back and forth to find the correct path. This can be

observed with the assertion of the shiftb (shiftback) and nofail_f signals.

(a)

(b)
Figure 6-6: a) Error-Free and b) Error Region operation waveforms

 105

C h a p t e r 7

7. An Asynchronous Semi-Custom Physical Design

Flow

The general design flow that the USC Asynchronous Design Group has refined was

already covered in the introduction of this thesis. In this chapter we will specifically focus

on the last parts of the flow mainly the gate level and physical design.

7.1 Physical Design Flow Using Standard CAD Tools

One of the biggest obstacles today of designing asynchronous circuits is the lack of

CAD tools specifically targeted for the design of such chips. However it is still possible to

complete a fairly complex chip in a reasonable amount of time using standard CAD tools

used for synchronous design. Figure 7-1 below illustrates the flow.

There is no difference for the initial specification step of the design for synchronous or

asynchronous design, since a spec typically describes the expected functionality (Boolean

operations) of the designed block, as well as the delay times, the silicon area and other

properties such as power dissipation. Usually, the design specifications allow considerable

freedom to the circuit designer on issues concerning the choice of a specific circuit

topology, individual placement of the devices, the locations of input and output pins, and

the overall aspect ratio (width-to-height ratio) of the final design. The actual

implementation of the asynchronous circuit starts at the schematic level. The top-level

circuit or design is hierarchically decomposed until the design consists of a netlist of leaf

 106

cells. If a leaf cell library exists then the automatic place and route tool can generate the

layout using this library. Otherwise the leaf cells can be further decomposed into gates

where the gate level netlist can be mapped to a gate library.

Figure 7-1: Physical design flow using standard CAD tools

Depending on the final design size either the whole design can automatically be placed

and routed using the P&R tool or the design can be partitioned into smaller blocks and

each block can be placed and routed separately. This allows for better control over the

layout for performance. Once the whole design is laid-out and Design Rule Check (DRC)

is completed a Layout-vs.-Schematic (LVS) must be performed to ensure that the layout is

the same as the schematic. This step is followed by extraction of the layout for post-layout

spice simulation. We have used the Dracula tool from Cadence for this step. The extracted

 107

netlist accurately represents the laid-out transistor dimensions as well as the wiring

resistance and capacitance. Depending on the post-layout simulation to achieve the desired

performance and power requirements the top-level design might have to be changed and

the whole step repeated.

The architectural and leaf cell design steps of the physical design flow followed in this

thesis are illustrated below in Figure 7-2.

Figure 7-2: Asynchronous circuit design flow followed

The high level schematic is developed in C and Verilog codes and used to describe the

specification of design. The high level schematic is hierarchically implemented by

decomposing the design to the lowest level communicating blocks, namely the PCHB leaf

cells. In the micro-architecture step the designer can choose to implement the architecture

 108

with various methods ranging from fine grain pipelines template-based using delay

insensitive cells to components relying on bounded delay based with no pipelining at all.

The asynchronous Fano has been implemented with fine grain pipelining using PCHB

templates. Slack optimization in consideration of performance is also completed in this

step. At the end of the micro-architecture design there are two possible options.

One option is to keep going in the decomposition and generate a leaf cell design. The

leaf cell design will depend on the template used (PCHB, RSPCHB, LP3/1, HC…). The

next step is to generate a gate level netlist of the whole circuit just like in synchronous

design. The gate library consisting of static and dynamic gates will be mapped to the netlist

and the design can be laid out using standard place and route tools.

The other option is to generate a leaf cell netlist rather than going any further and use a

leaf cell library. The leaf cell library would be mapped to the netlist and the automatic place

and route would be done at the leaf cell level rather than the lower gate level. This option

would probably yield denser circuits with better performance since the leaf cells would be

optimized and laid out using more of a full custom approach, although even automatic

place and route can be applied to generate the leaf cells. Choosing the first option and

applying place and route directly on a gate netlist can lead to a number of undesired effects.

One of them is a less dense circuit since rather than sharing area and optimizing leaf cells,

the leaf cells will be implemented with discrete gates. Another issue is that the handshaking

circuits might not be as close to the dynamic functional evaluation circuit when the place

and route is applied to the gate netlist rather than the leaf cell netlist, therefore effecting

performance.

 109

We have used the Virtuosa Schematic Editor from Cadence as a schematic entry tool to

design the PCHB based leaf cell. All of the decomposition was also done using this tool.

Initially only the functional and symbol views of the dynamic and static gates needed in the

design are created and added to the asynchronous cell library. The functional description of

a dynamic circuit used as a buffer is shown below in Figure 7-3.

Figure 7-3: The functional description of a dynamic buffer

Once the design is completed and the correctness has been verified at the behavioral

level, the schematic (transistor) views of the cells are implemented for spice simulation.

The transistor level view of the dynamic buffer is shown below in Figure 7-4.

 110

Figure 7-4: The transistor view of a dynamic buffer

 For spice simulation we have used Nanosim from Synopsys. The layout views were

created once we were confident that the design worked as expected at the transistor level.

The layout view for the dynamic buffer is shown below in Figure 7-5.

Figure 7-5: The layout view of a dynamic buffer

 111

One important aspect of designing cells for dynamic logic is charge sharing and

transistor sizing. After a number of test simulations on individual cells we have decided to

use 8X for the size of the output transistors, 2X for the pull-down transistors. The

staticizer inverters were set to approximately 1/10 the strength of the pull-down transistors

to balance reliability of operation against speed. The other aspect for reliable operation is

charge sharing. Unlike the schematic in Figure 7-4, if the nBUF1 and nBUF0 signals were

generated using the A, en and BUFe signals as a stack of three transistors in series, there

would the possibility of the internal dynamic nodes nBUF1 and nBUF0 loosing their value

due to the charge sharing. This scenario could occur if A and en were asserted high turning

on their respective transistors and BUFe was still asserted low. To prevent this problem, we

have opted to use a widely known solution of doubling the pull-down logic and cross-

coupling it as illustrated in Figure 7-4.

To reduce to load on the automatic place and route tool and to meet the performance

of the circuit we partitioned the top-level design into a number of blocks as shown in

Figure 6-5. The place and route, which was performed using Silicon Ensemble from

Cadence, was not timing based, to show that a QDI based asynchronous circuit will work

no matter what the delays are as long as the isochronic fork assumption is met. The Figure

7-6 below is a snapshot illustrating the cell placement of the counter block. The picture is

zoomed in to the lower left corner of the design for clarity.

 112

Figure 7-6: Cell placement in Silicon Ensemble

 113

Figure 7-7: Routed Counter block with Silicon Ensemble

Each block was streamed back into the Virtuosa Layout Editor for DRC and LVS

check against its transistor level netlist. The LVS check also generates an extracted netlist

of the design for spice simulation. A short sample of the extracted netlist is shown below.

The flattened netlist consists of two parts, the transistor connections and the extracted

capacitances.

 114

Figure 7-8: Extracted netlist of a block

The layout of the whole design is show in Figure 6-5. All of the blocks have been

individually placed and routed. However the routing between the blocks have been done

manually.

 115

8. References

[1] International Technology Roadmap for Semiconductors – 1999 Edition.
http://public.itrs.net/files/1999_SIA_Roadmap/Home.htm

[2] S. Schuster, W. Reohr, P. Cook, D. Heidel, M. Immediato, and K. Jenkins.
Asynchronous interlocked pipelined CMOS circuits operating at 3.3-4.5 GHz. In IEEE
ISSCC Digest of Technical Papers, pp. 292–293.

[3] W Belluomini, C.J. Myers, H.P. Hofstee. Verification of delayed-reset domino circuits
using ATACS. In Proc. of Advanced Research in Asynchronous Circuits and Systems, 1999 pp. 3
–12.

[4] H.P Hofstee, Sang H. Dhong; D. Meltzer, K.J Nowka, J.A. Silberman, J.I. Burns, S.D
Posluszny, O. Takahashi. Designing for a gigahertz [guTS integer processor]. In IEEE
Micro, vol. 18, no.3, pp. 66 –74, May-June 1998.

[5] D. Harris, M.A. Horowitz. Skew-tolerant domino circuits. In IEEE Journal of Solid-State
Circuits, vol. 32, no.11, pp. 1702 –1711, Nov. 1997.

[6] Joep Kessels and Paul Marston. Designing asynchronous standby circuits for a low-
power pager. In Proceedings of the IEEE, vol. 87, no. 2, pp. 257–267, February 1999.

[7] J.D. Garside S.B. Furber, and S.H. Chung. AMULET3 revealed. In Proc. International
Symposium on Advanced Research in Asynchronous Circuits and Systems, pp. 51–59, April 1999.

[8] M. Benes, S. M. Nowick, and A. Wolfe. A fast asynchronous Huffman decoder for
compressed-code embedded processors. In Proc. International Symposium on Advanced
Research in Asynchronous Circuits and Systems, pp. 43–56, 1998.

[9] Shai Rotem, Ken Stevens, Ran Ginosar, Peter Beerel, Chris Myers, Kenneth
Yun,Rakefet Kol, Charles Dike, Marly Roncken, and Boris Agapiev. RAPPID: An
asynchronous instruction length decoder. In Proc. International Symposium on Advanced
Research in Asynchronous Circuits and Systems, pp. 60–70, April 1999.

[10] Alain J. Martin, Andrew Lines, Rajit Manohar, Mika Nystroem, Paul Penzes, Robert
Southworth, and Uri Cummings. The design of an asynchronous MIPS R3000 mi-
croprocessor. In Advanced Research in VLSI, pp. 164–181, September 1997.

 116

[11] Hiroaki Terada, Souichi Miyata, and Makoto Iwata. DDMP’s: Self-timed super-
pipelined data-driven multimedia processors. Proceedings of the IEEE, Vol. 87, No. 2, pp.
282–296, February 1999.

[12] M. Benes, S. M. Nowick, and A. Wolfe. A fast asynchronous Huffman decoder for
compressed-code embedded processors. In Proc. International Symposium on Advanced
Research in Asynchronous Circuits and Systems, pp. 43–56, 1998.

[13] S. B. Furber, D. A. Edwards, and J. D. Garside. AMULET3: a 100 MIPS asynchronous
embedded processor. In Proc. International Conf. Computer Design (ICCD), September
2000.

[14] Kenneth Y. Yun, Peter A. Beerel, Vida Vakilotojar, Ayoob E. Dooply, and Julio Arceo.
The design and verification of a high-performance low-control-overhead asynchronous
differential equation solver. IEEE Transactions on VLSI Systems, vol. 6, no.4, pp. 643–
655, December 1998.

[15] S. Hauck. Asynchronous Design Methodologies, An Overview. Proceedings of the IEEE,
vol. 83, no.1, pp. 69-93, January 1995.

[16] C. J. Myers, Asynchronous Circuit Design, John Wiley and Sons, July 2001.

[17] Alain J. Martin. Synthesis of asynchronous VLSI circuits. In J. Straunstrup, editor,
Formal Methods for VLSI Design, chapter 6, pp. 237–283. North-Holland, 1990.

[18] Samir Palnitkar. Verilog HDL: A Guide to Digital Design and Synthesis. Prentice Hall, 1995.

[19] Ad M. G. Peeters. Single-Rail Handshake Circuits. PhD thesis, Eindhoven University of
Technology, June 1996.

[20] Charles L. Seitz, System timing, In Carver A. Mead and Lynn A. Conway, editors,
Introduction to VLSI Systems, chapter 7. Addison-Wesley, 1980.

[21] Steven M. Nowick, Kenneth Y. Yun, and Peter A. Beerel. Speculative completion for
the design of high-performance asynchronous dynamic adders. In Proc. Inter-national
Symposium on Advanced Research in Asynchronous Circuits and Systems, pp. 210–223. IEEE
Computer Society Press, April 1997.

 117

[22] Peter A. Beerel, Sangyun Kim, Pei-Chuan Yeh, and Kyeounsoo Kim. Statistically
optimized asynchronous barrel shifters for variable length codecs. In International
Symposium on Low Power Electronics and Design, pp. 261–263, August 1999.

[23] Ted E. Williams. Self-Timed Rings and their Application to Division. PhD thesis, Stanford
University, June 1991.

[24] Andrew M. Lines. Pipelined asynchronous circuits. Master’s thesis, California Institute
of Technology, 1996.

[25] Ivan E. Sutherland. Micropipelines. Communications of the ACM, vol.32, no.6, pp. 720–
738, June 1989.

[26] S. B. Furber and J. Liu. Dynamic logic in four-phase Micropipelines. In Proc. Inter-
national Symposium on Advanced Research in Asynchronous Circuits and Systems. IEEE
Computer Society Press, March 1996.

[27] Kees van Berkel and Arjan Bink. Single-track handshaking signaling with applica-tion
to micropipelines and handshake circuits. In Proc. International Symposium on Advanced
Research in Asynchronous Circuits and Systems, pp. 122–133. IEEE Computer Society Press,
March 1996.

[28] Erik Brunvand. Parts-R-Us: A Chip Aparts. Technical Report CMU-CS-87-119,
Carnegie Mellon University, May 1987.

[29] Jo C. Ebergen. Translating Programs into Delay-Insensitive Circuits. PhD thesis, Dept. of
Math. and C.S., Eindhoven Univ. of Technology, 1987.

[30] Jan Tijmen Udding. A formal model for defining and classifying delay-insensitive
circuits. Distributed Computing, vol.1, no.4, pp. 197–204, 1986.

[31] Alain J. Martin. The limitations to delay-insensitivity in asynchronous circuits. In
William J. Dally, editor, Advanced Research in VLSI, pp. 263–278. MIT Press, 1990.

[32] Alain J. Martin. Compiling communicating processes into delay-insensitive VLSI
circuits. Distributed Computing, vol.1, no.4, pp. 226–234, 1986.

 118

[33] Kees van Berkel, Ferry Huberts, and Ad Peeters. Stretching quasi delay insensitivity by
means of extended isochronic forks. In Asynchronous Design Methodologies, pp. 99–106.
IEEE Computer Society Press, May 1995.

[34] Peter A. Beerel. CAD Tools for the Synthesis, Verification, and Testability of Robust
Asynchronous Circuits. PhD thesis, Stanford University, 1994.

[35] T. Nanya, A. Takamura, M. Kuwako, M. Imai, T. Fujii, M. Ozawa, I. Fukasaku, Y.
Ueno, F. Okamoto, H. Fujimoto, O. Fujita, M. Yamashina, and M. Fukuma. TITAC-2:
A 32-bit scalable-delay-insensitive microprocessor. In Symposium Record of HOT Chips
IX, pp. 19–32, August 1997

[36] Takashi Nanya, Yoichiro Ueno, Hiroto Kagotani, Masashi Kuwako, and Akihiro
Takamura. TITAC: Design of a quasi-delay-insensitive microprocessor. IEEE Design &
Test of Computers, vol.11, no.2, pp. 50–63, 1994.

[37] C. Myers. Timed circuits: A new paradigm for high-speed design. In Proc. of Asia and
South Pacific Design Automation Conference, February 2001.

[38] Ken Stevens, Ran Ginosar, and Shai Rotem. Relative timing. In Proc. International
Symposium on Advanced Research in Asynchronous Circuits and Systems, pp. 208–218, April
1999.

[39] Hoshik Kim and Peter A. Beerel. Relative timing based verification of timed circuits
and systems. In Proc. International Workshop on Logic Synthesis, June 1999.

[40] Jordi Cortadella, Michael Kishinevsky, Alex Kondratyev, Luciano Lavagno, Enric
Pastor, and Alexandre Yakovlev. Decomposition and technology mapping of speed-
independent circuits using Boolean relations. IEEE Transactions on Computer-Aided
Design, vol.18, no.9, September 1999.

[41] S. H. Unger, Asynchronous Sequential Switching Circuits. New York NY: Wiley-Interscience,
1969.

[42] S. M. Nowick, D. L. Dill, Automatic Synthesis of Locally-Clocked Asynchronous State
Machines. In Proceedings of ICCAD, pp. 318-321, 1991.

[43] S. M. Nowick, D. L. Dill, Synthesis of Asynchronous State Machines Using a Local
Clock. In Proceedings of ICCD, pp. 192-197, 1991.

 119

[44] K. Yun, D. Dill, Automatic Synthesis of 3D Asynchronous State Machines, In
Proceedings of ICCAD, pp. 576-580, 1992.

[45] A. Davis, B. Coates, K. Stevens, The Post Office Experience: Designing a Large
Asynchronous Chip. In Proceedings of the 26th Annual Hawaii International Conference on
Systems Sciences, vol. I, pp. 409-418, 1993.

[46] T. Murata, Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE, vol.
77, no. 4, pp. 541-580, 1989.

[47] C. E. Molnar, T. P. Fang, F. U. Rosenberger, Synthesis of Delay-Insensitive Modules.
In Proceedings of the 1985 Chapel Hill Conference on Advanced Research in VLSI, pp. 67-86,
1985.

[48] T. A. Chu, Synthesis of Self-timed VLSI Circuits from Graph-Theoretic Specifications.
M.I.T. Tech. Rep. MIT/LCS/TR-393, June 1987.

[49] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno and A. Yakovlev.
Petrify: a tool for manipulating concurrent specifications and synthesis of
asynchronous controllers. IEICE Transactions on Information and Systems, vol. E80-D, no.
3, March 1997, pp. 315-325.

[50] A. J. Martin, “Programming in VLSI: From Communicating Processes to Delay-
Insensitive Circuits”, in UT Year of Programming Institute on Concurrent Programming, C. A.
R. Hoare, Ed. MA: Addison-Wesley, 1989, pp. 1-64.

[51] J. Kessels, A. Peeters The Tangram framework: asynchronous circuits for low power.
Proceedings of the ASP-DAC 2001, pp. 255 –260, 2001

[52] A. Bardsley, D. A. Edwards. The Balsa Asynchronous Circuit Synthesis System. FDL
2000. 4-8th September 2000

[53] F. Commoner, A. W. Holt, S. Even, and A. Pnueli. Marked directed graphs. Journal of
Computer and System Sciences, 5:511–523, 1971.

[54] Private communications with Andrew W. Lines, 2001.

 120

 121

[55] I. Sutherland, and S. Fairbanks. GasP: a minimal FIFO control. In Proc. of ASYNC,
2001, pp. 46–53.

[56] W.S. Coates, J.K. Lexau, I.W. Jones, S.M. Fairbanks, and I.E. Sutherland. FLEETzero:
an asynchronous switching experiment. In Proc. of ASYNC, 2001, pp. 173–182.

[57] M. Singh, and S.M. Nowick. High-throughput asynchronous pipelines for fine grain
dynamic datapaths. In Proc. of ASYNC, 2000, pp. 198–209.

[58] M. Singh, and S.M. Nowick. Fine-grain pipelined asynchronous adders for high-speed
DSP applications In Proc. of IEEE Computer Society Annual Workshop on VLSI, Orlando,
FL, April 2000, pp. 111–118.

[59] T.E. Williams, and M.A. Horowitz. A Zero-overhead self-timed 160ns 54b CMOS
divider. In ISSCC Digest of Technical Papers, 1991, pp. 98-296.

[60] J. B. Anderson and S. Mohan. Sequential coding algorithms: A survey cost analysis.
IEEE Trans. on Communications, COM-32, pp. 169-176, Feb. 1984

[61] S. Lin and Jr. D. J. Costello. Error Control Coding: Fundamentals and Applications. Prentice
Hall, Englewood Cliffs, N.J. 1983

[62] J. M. Wozencraft and I. M. Jacobs. Principles of Communication Engineering. John Wiley and
Sons, 1965

[63] P. J. Black. Algorithms and Architectures for High-Speed Viterbi Decoding. PhD
thesis, Standford University, 1993

	Introduction
	Asynchronous Circuit Design Flow
	Expected Contributions of the Thesis
	Thesis Organization

	Background
	Data Encoding Styles
	Handshaking Styles
	Delay Models
	Synthesis Based Design
	Fundamental Mode Huffman Circuits
	Burst-Mode Circuits
	Event-Based Design

	Template-Based Design
	Template-Based Compilation Systems
	Caltech’s Design Methodology
	Tangram and Balsa

	Micropipelines
	Ad Hoc Design

	Linear and Non-Linear Asynchronous Pipelines
	Linear Pipelines
	Fine Grain Pipelining
	Performance Analysis of Linear Pipelines
	Non-Linear Pipelines

	New High Speed QDI Asynchronous Pipelines
	Caltech’s QDI templates
	WCHB
	PCHB and PCFB
	Why Input Completion Sensing?

	New QDI Templates
	RSPCHB
	RSPCFB
	FSM Design
	Simulation Results
	Conclusions

	Timed Pipelines
	Williams’ PS0 Pipeline
	Lookahead Pipelines (Single Rail)
	Lookahead Pipelines (Dual Rail)
	High Capacity Pipelines (Single Rail)
	Designing Non-linear Pipeline Structures
	Slow and Stalled Right Environments in Forks
	Slow and Stalled Left Environments in Joins

	Lookahead Pipelines (Single Rail)
	Solution 1 for LPSR2/2
	Solution 2 for LPSR2/2
	Pipeline Cycle Time

	Lookahead Pipelines (Dual Rail)
	Joins
	Forks

	High Capacity Pipelines (Single Rail)
	Handling Forks and Joins
	Pipeline Cycle Time

	Conditionals
	Simulation Results
	Conclusions

	A Design Example: The Fano Algorithm
	The Fano Algorithm
	Background on the Algorithm

	The Synchronous Design
	Normalization and its benefits
	Register-Transfer Level Design
	Chip Implementation

	The Asynchronous Fano
	The Asynchronous Fano Architecture
	The Skip-Ahead Unit
	The Memory Design
	The Fast Data and Decision Registers
	Simulation Results and Comparison

	An Asynchronous Semi-Custom Physical Design Flow
	Physical Design Flow Using Standard CAD Tools

	References

