
Reducing Probabilistic Timed Petri Nets for Asynchronous
Architectural Analysis †

Sangyun Kim, Sunan Tugsinavisut
University of Southern California

Los Angeles, CA 90089, USA
{sangyunk,tugsinav}@eiger.usc.edu

Peter Beerel ‡
Fulcrum Microsystems

Calabasas Hills, CA 91301
pabeerel@fulcrummicro.com

ABSTRACT
This paper introduces structural reductions of probabilistic
timed Petri nets that preserve a large class of performance
measurements. In particular, the paper proposes a class
of reductions that preserve efficiently computable bounds
of statistics of time-separation of events (TSEs). It iden-
tifies two specific reductions within this class. It demon-
strates the utility of these reductions by reducing a detailed
Petri net describing the four-phase protocol of a well-known
asynchronous pipeline template into a simpler two-phase
architectural-level Petri net model. The benefit of this re-
duced model is that the run-time of subsequent TSE analysis
can be greatly improved.

Categories and Subject Descriptors
B.8.2 [Hardware]: Performance and Reliability—Perfor-
mance Analysis and Design Aids

General Terms
Algorithms, Design, Performance, Theory

1. INTRODUCTION
Recently, asynchronous designs have demonstrated poten-

tial benefits in low power, high performance, composability,
and improved noise immunity. (e.g. [6, 1, 12, 14]). For high-
speed applications, many fine-grain pipelining techniques
are developed [7, 13, 11].

Estimation and optimization of their performance, how-
ever, remains somewhat of a stumbling block due to the
complex interaction of various handshaking protocols. Tra-
ditionally, performance analysis has been limited to sim-
ulation of detailed design models which suffers from long

†This work was partially supported by NSF ITR Award No.
CCR-00-86036.
‡Professor Beerel is currently on a leave of absence from the
University of Southern California.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
TAU’02,December 2–3, 2002, Monterey, California, USA.
Copyright 2002 ACM 1-58113-526-2/02/0012 ...$5.00.

run-times and results that are subject to the reliability of
the input vector statistics. For this reason, many analyt-
ical methods to analyze the performance of asynchronous
circuits efficiently have been proposed [17]. Many of these
techniques use timed Petri net with fixed delay [3], interval
delay [4, 5, 10], and/or stochastic delay [16, 15] as circuit
models. Numerous methods of analyzing these Petri nets
have been proposed but most are limited to a small subclass
of Petri nets or suffer from severe capacity limitations. For a
large class of stochastic Petri nets (ones that do not involve
arbitrarion), a recently developed approach using statisti-
cal simulation to obtain bounds on TSE statistics has been
shown to be computationally efficient, able to handle mod-
els with hundreds of places and transitions. Nevertheless,
real system models may have tens of thousands of places
and transitions and increasing the capacity of analysis and
reducing run-time is very important, particularly if analy-
sis is used internal to a synthesis or design loop. It is this
problem that this paper addresses.

The goal of this paper is to introduce simple reductions of
Petri nets that preserve performance properties. In partic-
ular, we identify structural reductions that preserve bounds
on TSE statistics, as computed using the algorithms in [16,
15]. This means that the reduced Petri nets can be ana-
lyzed instead of their more complicated counterparts. One
intended use of this reduction algorithm is to simplify the
performance model of small asynchronous cells which make
up the building blocks of large asynchronous systems. These
cells may be as small a single pipeline stage or consist of a
collection of small cells that make up a larger re-usable li-
brary component. The reduced performance model of such
cells can hide internal handshaking details and highlight the
key performance parameters of the cells along with the crit-
ical interactions with its environment. The reduced perfor-
mance models also greatly simplifies the combined perfor-
mance model of any larger system comprised of these build-
ing blocks, making system-level performance analysis much
more efficient. In this way, this work may form the basis to
supplement any building-block based asynchronous design
flow with efficient performance analysis.

In particular, the paper proposes two specific reductions,
projection and redundancy removal, and proves that these
reductions are in the identified class of reductions that pre-
serve TSE statistics. The paper demonstrates the utility of
these reductions by reducing a detailed Petri net describing
the four-phase protocol of a linear pipeline comprised of well-
known pre-charged half-buffer (PCHB) pipeline buffers [7].
The result is a much simpler model of the linear pipeline at

more of an architectural level, highlighting the critical paths
through the pipeline buffers.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the class of probabilistic timed Petri nets
(PTPNs) we address and defines a notion of their timed ex-
ecution. Section 3 reviews the bounding algorithm for TSE
statistics. Section 4 and 5 introduce a class of reduction op-
erators that preserves TSE bounds and two specific reduc-
tion algorithms within this class. Section 6 and 7 consist of
our PCHB case study and some conclusions.

2. PTPN MODELS OF ASYNCHRONOUS
SYSTEMS

This section reviews the subclass of Petri nets on which
our proposed reduction techniques operate. More detailed
review of Petri nets can be found in a survey paper [9].

A Petri net is a triple N = (P, T, F) where P is the set of
places, T the set of transitions, and F ⊆ (P × T) ∪ (T × P)
the flow relation. N is a marked graph (also known as event
graph) if every place has at most one input and one output
transition. A place p is a choice place if |p•| > 1. N is a free-
choice (FC) net if ∀p1, p2 ∈ P , p1• ∩ p2• 6= ∅ =⇒ |p1•| =
|p2•| = 1. Equivalently, in a FC net, if two transitions share
an input place, they do not have any other input places.
A Petri net is extended free-choice (EFC) if ∀p1, p2 ∈ P ,
p1•∩p2• 6= ∅ =⇒ p1• = p2•. An EFC net can be translated
into a FC net [9]. A choice place is asymmetric if it is neither
FC nor EFC. An asymmetric choice is unique-choice if at
most one of its output transitions can be enabled at a time.
Otherwise, it is an arbitration choice.

The class of underlying (untimed) nets of the performance
models we consider is the PNs with (extended) free-choice
and/or unique-choice, i.e., PNs without arbitration choice.

A marking is a mapping M : P→{0, 1, 2, · · · } where M(p)
denotes the number of tokens in place p. A transition t is en-
abled at marking M if M(p) ≥ 1,∀p ∈ •t. An enabled tran-
sition may fire. The firing of t removes one token from each
place in its preset and deposits one token to each place in its
poset, leading to a new marking M ′, denoted by M [t〉M ′. A
sequence of transitions σ = t0t1 · · · tm−1 is a firing sequence
from a marking M0 iff Mk[tk〉Mk+1 for k = 1, · · · , m−1. In
this case, we write M0[σ〉Mm and say σ has a length of m
denoted by |σ|. We write ~σ to be the firing counter vector
of σ, indicating the numbers of times transitions are fired
along σ. The vector is called a T -invariance if there is a
marking M such that M [σ〉M .

A marked net Σ is a tuple (N, M0), where N is a net and
M0 is its initial marking. The set of reachable markings of
Σ is denoted by R(M0). Σ is live iff all transitions will even-
tually be enabled from every M ∈ R(M0). It is k-bounded
if M(p) ≤ k for ∀M ∈ R(M0),∀p ∈ P . A 1-bounded net
is also called safe. A live and bounded (LB) marked net
has no source or sink places and no source or sink transi-
tions (e.g.,[9]). Thus, a LB net can be partitioned into a
set of strongly connected components each evolving inde-
pendently of others. Below, we assume the net is strongly
connected. In particular, we restrict ourselves to LB nets
with free-choice and unique-choice places.

2.1 Timing and choice probabilities
In this paper, we associate time with places and adopt

the fixed delay model to model the passage of time. That is,

a token flowing into a place p experiences a specified fixed
delay associated with p denoted by d(p), before it can be
consumed by an output transition of p. The actual firing of
a transition is assumed to be instantaneous. For Petri nets
with free- or unique- choices, these assumptions imply there
is no race condition among transitions in structural conflict,
i.e., the poset of a choice place.

For each choice place p, we assume there is a probability
mass function (p.m.f) µ(p, ·) to resolve the choice. That
is, if t ∈ p•, µ(p, t) is the probability that t consumes the
token each time p is marked. Of course,

P
t∈p• µ(p, t) = 1.

Pc, Pnc denote a set of all choice places, and a set of all places
without choice respectively. We call this subset of Petri nets,
probabilistic timed Petri nets (PTPN), and note that they
are a subset of stochastic timed Petri nets introduced in
[16]. Figure 1(a) shows an example of such a net where P8

is free-choice place with probability mass function.
We say ψ is a deterministic path in Petri net N if it is a

sequence of non-choice places connected by transitions. The
set of all deterministic paths leading from x to y is denoted
by Ψ(x, y) where x, y ∈ Pnc ∪ T . Let ∆(ψ) be sum of delay
along that deterministic path, that is, ∆(ψ) = Σp∈ψd(p).
Let M(ψ) be sum of tokens along that deterministic path,
that is, M(ψ) = Σp∈ψM(p).

2.2 Timed executions
We call a possible run of a PTPN a timed execution where

choices are resolved and places are assigned delay values.
In particular, we call a firing of a transition an event . A
timed execution can be described as a sequence of events
and their occurrence times. Alternatively, it can be depicted
as a timed event graph which describes the causality among
events.

For example, Figure 1(b) shows the event graph of a timed
execution of the PTPN in Figure 1(a). The numbers along
the (instanced) places denote the delay values. For conve-
nience, we write tk and pj to denote the k-th event due to
the firing of t and the j-th instance of place p, respectively.

Formally, a timed execution π of Σ is a triple (Nπ, dπ, `)
where Nπ = (Pπ, Tπ, Fπ) is an acyclic event graph, d denotes
the delay value of each place in Pπ and a labeling function
` : Pπ ∪ Tπ→P ∪ T that maps each places and transitions
of Nπ to their corresponding ones in Σ. We use a function
τ (called timing function) to denote the occurrence times of
events. For a given timed execution, the occurrence time of
event t(k) is determined as follows:

τ(t(k)) = max
(s(j), p) ∈ Fπ,

p ∈ •t(k)

τ(s(j)) + d(p) (1)

where the term τ(s(j))+ d(p) reduces to d(p) if p is a source
place of π.

2.3 TSEs and their statistics
Given a timed execution π, the time separation of an event

pair (TSE) is the time distance between the two events.

More precisely, the TSE of event pair (s(k), t(k+ε)), denoted

by, γ(k)(s, t, ε), is:

γ(k)(s, t, ε) = τ(t(k+ε))− τ(s(k)) (2)

where τ is the timing function of π, and (s, t, ε) is called
the corresponding separation triple. When π is viewed as a
random timed execution, the TSE γ(k)(s, t, ε) is a random

t0

t3t1

t4

t5

p0

p1

p3

p2

t2

t6

t8

t7

p4

p5

p6

p7

p8

p9

p10

(4)

(3)

(2)

(3)

(6)

(5)

(3)

(1)

(4) (4)

(2)

�
1(p8,t8) = 0.6

�
2(p8,t7) = 0.4

(a) A PTPN

t1
k-1

t0
k-1

p2
k

p1
k

p3
kp0

k-1

t2
k-1

t3
k

p5
k

p4
k

t5
k

p7
k

t6
k

p8
k

t8
j

p10
k

t1
k

t0
k

p2
k+1

p1
k+1

p3
k+1p0

k

t2
k

t3
k+1

p5
k+1

p4
k+1

t5
k+1

t4
k t4

k+1

p6
k p9

k

(2)

(3)

(4) (3)

(5)

(6)

(1)

(3)

(4) (2)

(4)

(2)

(3)

(4) (3)

(5)

(6)

�
kUr

k Uo
k �

k+1Ur
k+1 Uo

k+1

p7
k+1

t6
k+1

p8
k+

1

t8
j+1

p10
k+1

t1
k+1

t0
k+1

p2
k+2

p1
k+2

p3
k+2p0

k+1

t2
k+1

t3
k+2

p5
k+2

p4
k+2

t5
k+2

t4
k+2

p6
k+1 p9

k+1

(1)

(3)

(4) (2)

(4)

(2)

(3)

(4) (3)

(5)

(6)

�
k+2Ur

k+2 Uo
k+2

(b) A timed execution of the PTPN in (a)

Figure 1: A probabilistic timed Petri net and its timed execution.

variable, and the sequence {γ(k)(s, t, ε) : k = 1, 2, · · · } is a
random process.

Definition 1. The average TSE due to separation triple
(s, t, ε), denoted by γ(s, t, ε), is the average of the corre-
sponding TSEs of an infinite timed execution of the PTPN.
That is,

γ(s, t, ε) = lim
n→∞

1

n

nX
k=1

γ(k)(s, t, ε). (3)

Many system performance metrics such as average through-
put and latency can be directly expressed as the average
TSEs of some indicating event pairs. In addition, extensions
to variance and other higher order statistics of the TSE can
be similarly defined [15].

3. BACKGROUND: BOUNDING TSES
The key idea of the bounding approach is to partition an

infinite timed execution into a sequence of so called seg-
ments. These segments are independent and identically
distributed (iid). The targeted TSEs are then analyzed
within individual segments independent of remaining seg-
ments. Since the analysis is done using limited history, it
yields upper and lower bounds on the TSEs (via longest path
analysis) instead of exact values of the TSEs. These bounds
are iid, which facilitates the estimation of the statistics of
the bounds with well-known statistical methods [16].

3.1 Partitioning infinite timed executions
Let π = (Nπ, d, `) be a timed execution of Σ. It is known

that every (untimed) reachable marking of Σ induces a cut ξ
(a set of instanced places) which partitions the event graph

Nπ [2]. The portion of the event graph in between two differ-
ent cuts due to the same reachable marking M is a segment .
Formally, if σ is a firing sequence that starts from a cut ξ
and ends at another cut ξ′ such that `(ξ) = `(ξ′) = M ,
then the portion of Nπ between ξ and ξ′ is a segment, de-
noted by S(ξ, σ). A segment S(ξ, σ) can also be denoted
by S(ξ, θ) such that θ = {(s, t)|s ∈ Ts, t ∈ Tπ} is a strict
partial order of event pairs where Ts is a set of all events
in the segment. The segment is minimal if it does not
contain any other segment starting from ξ. For example,
in Figure 1(b), the kth minimal segment is defined over
Ts = {tk

0 , tk
1 , tk

2tk
3 , tk

4 , tk
5 , tk

6 , tj
8} and is denoted by S(ξk, θk)

where ξk = {pk
1 , pk

2 , pk
3} and θk is the strict partial order of

the events on Ts projected from the partial order implied by
Tπ. This partial order is specified by an infinite set of pairs
of events that includes {(tk

3 , tk
5), (tk

3 , tk
4), (tk

3 , tk
6), (tk

5 , tk
6)}.

One simple property of a random time execution of a Petri
net considered in this section is that the structures of its seg-
ments are independent of each other. This is because the
structure of a segment is determined by the choices made
on the places inside the segment and choices made in dif-
ferent segments are independent. As a result, the sequence
of segments generated by a random timed execution has the
property that their structures are not determined by the
location of the segment in the sequence. In fact, they are
independent and identically distributed (iid). This fact al-
lows us to reason about an infinite execution by considering
all possible finite executions of as little as one segment in
length.

3.2 Bounding a single TSE instance
We obtain bounds on a TSE instance belonging to a par-

ticular segment by ignoring the history of the segment. In

other words, our bounds on a TSE instance are defined by
assuming tokens in the source places of the segment can be
available at any time within (−∞,∞). This subsection de-
scribes a method to compute the upper bound using longest
path analysis. The lower bound can be computed using du-
ality.

To compute the upper bound, we identify a set of reference
events that serve the synchronization points for the targeted
events. By assuming each of the synchronization points to
be critical, one obtains a set of time separations of the event
pair. The upper bound is simply the largest separation ob-
tained. To detail this idea, consider upper bounding the
TSEs due to separation triple (s, t, ε = 0). Extension to the
case where ε 6= 0 is not difficult.

Let ρ be a path in the event graph of a timed execution
π = (Nπ, d, `). The set of all paths leading from x to y is
denoted by P(x, y) where x, y ∈ Pπ∪Tπ. A reference set for
event e of π is a subset of events of π such that every path
from a source place of Nπ to e contains at least one event in
R, and every event in R has a path to e.

It follows from the timing relation (1) that if x has a path
to y, then y must occur after x by at least the the sum of
place delays along any path from x to y. That is, whenever
P(x, y) 6= ∅,

τ(x) + max
ρ∈P(x,y)

δ(ρ) ≤ τ(y). (4)

where δ(ρ) =
P

p∈ρ d(p). In particular, we say event x is

critical for event y if (4) holds in equality. Further, if R be
a reference set for event y. Then, the occurrence time of y is
uniquely determined by the occurrence times of the events
of R plus the delay values of places following these events.
That is,

τ(y) = max
x∈R

[τ(x) + max
ρ∈P(x,y)

δ(ρ)]. (5)

The term maxρ∈P(x,y) δ(ρ) in (5) measures the maximum
delay on any path from event x to y. For convenience, we
write:

δ∗(x, y) = max
ρ∈P(x,y)

δ(ρ), (6)

where δ∗(x, y)
4
= −∞ if there is no path from x to y, i.e.,

P(x, y) = ∅. For completeness, we define an event e itself to
be a path of delay 0, and consequently, δ∗(e, e) = 0.

Suppose the m-th TSE instance starts in the l-th seg-
ment of π denoted by S(l). Since the set of source places
of a segment is a cut of Nπ, its poset must contain a refer-
ence set for every event e of segment S(l) (in fact, for every

event in segments S(l′) if l′ ≥ l). For convenience, if event

e ∈ S(l′)(l′ ≥ l), let us denote by R(e, l) such a reference

set. An upper bound Uγ
(m)(s, t, 0) on TSE γ(m)(s, t, 0) is

determined by (7) ([16]).

Uγ
(m)(s, t, 0) = max

e∈R(t(m),l)
[δ∗(e, t(m))− δ∗(e, s(m))] (7)

Note that the above upper bound Uγ
(m)(s, t, 0) is indepen-

dent of the occurrence times of the events in the reference set
of s(m). In other words, it does not depend on the history
of the timed execution prior to segment S(l). Applying a
longest path analysis from a fixed event e as outlined above,
the term δ∗(e, t(m)) in (7) is computed in O(|T (S)|+ |P (S)|)
time where |P (S)| is the number of places in S. Thus,

Uγ
(m)(s, t, 0) is computed in O((|T (S)|+ |P (S)|) ∗ |R|) time

where |R| is the size of the referent set of e. This way,

Uγ
(m)(s, t, 0) is computed in O(|T (S)|+ |P (S)|) time.

3.3 Bounding and evaluating TSE statistics
As pointed out earlier, the structure of segments are inde-

pendent. However, multiple TSEs due to the same separa-
tion triple may start in one segment. Thus, these TSEs can
be dependent on each other. To overcome this dependency,
we treat all the TSE instances starting from one segment as
a group and translate the problem of bounding the average
TSE to that of bounding the average grouped TSE [16, 15].
In addition, extensions to variance and other higher order
statistics of the TSE bounds can also be similarly proved.
For the purposes of this paper, we refer to the derived bound
of any statistic (average, variance, etc..) of a TSE γ(s, t, e)
as Sγ(s, t, e). Evaluation of a statistic S can be performed
via Monte-Carlo simulation (e.g.,[8]) in which each indepen-
dent segment yields one sample of Sγ(s, t, e).

4. REDUCED PETRI NET AND ITS TSE
STATISTICS

One of the goals of this work is to take a PTPN N and
reduce it to a smaller net N ′. The key requirement is that
N ′ should preserve all TSE statistics related to those signals
also in N . We now introduce a class of reduced Petri nets
for which we will prove that this performance-preservation
property is guaranteed.

Definition 2. Reduced Petri Net: A reduced Petri net
N ′ = (P ′, T ′, F ′) is a reduced Petri net of N = (P, T, F) if,

1. T ′ ⊆ T

2. P ′c ≡ Pc

3. M ′
0(p) = M0(p), ∀p ∈ Pc

4. (t, p) ∈ F ⇔ (t, p) ∈ F ′, ∀p ∈ Pc ∀t ∈ T ′

5. (p, t) ∈ F ⇔ (p, t) ∈ F ′, ∀p ∈ Pc ∀t ∈ T ′

6. ∀(s, t) ∈ (T ′, T ′), ∀k,

max
ψ′∈ΨN′ (s,t),M(ψ′)=k

∆(ψ′) = max
ψ∈ΨN (s,t),M(ψ)=k

∆(ψ)

As an example, the reduced Petri net of the net in Figure
1(a) is depicted in 2(a). The key property of a reduced Petri
net is the last property in Definition 2. It states that the
maximum delay along any path between two transitions in
the reduced net that has k tokens must be identical to the
maximal delay of any path between those transitions in the
original net that has the same number of tokens.

To prove the performance-preservation property, we must
introduce a few definitions. For a Petri net N and its re-
duced Petri net N ′, we call Nπ and N ′

π corresponding event
graphs if the sequence of decisions is identical in Nπ and N ′

π,
i.e., pk• ∈ Tπ = pk• ∈ T ′π, ∀p ∈ Pc. A segment S′(ξ′, θ′) is a
corresponding segment of the segment S(ξ, θ) if the partial
order of S′ is preserved in the partial order of S, i.e., θ′ ⊆ θ.

Next, we need to define the following partial order opera-
tors.

Definition 3. For a set of events E and an event e,

e ¹ E ⇔[(e ∈ E) ∨ (∃(e, ei), ei ∈ E)]∧
[¬(∃(ej , e), ej ∈ E)]

e º E ⇔[(e ∈ E) ∨ (∃(ei, e), ei ∈ E)]∧
[¬(∃(e, ej), ej ∈ E)]

e ≺ E ⇔(e ¹ E) ∧ (e /∈ E)

e Â E ⇔(e º E) ∧ (e /∈ E)

Definition 4. For a pair of sets of events E1 and E2,

E1 ¹ E2 ⇔ (∀ei ∈ E1, ei ¹ E2) ∧ (∀ej ∈ E2, ej º E1)

E1 º E2 ≡ E2 ¹ E1

E1 ≺ E2 ⇔ (E1 ¹ E2) ∧ (E1 ∩ E2 = ∅)
E1 Â E2 ≡ E2 ≺ E1

To prove the theorem we establish that each statistical
sample of the TSE obtained from the reduced net has an
equally likely sample in the original net. To do this we show
that there is one-to-one correspondence of partitioning seg-
ment sequences in the original and reduced nets in Lemma
1. We then show that the samples of the upper and lower
bounds obtained from the sequences in the reduced net can
be no tighter than one that can be obtained from the cor-
responding segment sequences of the original net in Lemma
2. The proof relates the computation of these bounds to
the delay of critical paths in the reduced net and uses the
last property of Definition 2 to guarantee that their delay is
equal to the delay of corresponding paths in the original net.
In particular, the critical paths consist of those paths from
transitions of corresponding reference events to the pairs of
transitions in the TSE.

Lemma 1. For any sequence of segments which partitions
N ′

π, there exists a sequence of segments which partitions Nπ

such that the k-th segment in N ′
π corresponds to the k-th

segment in Nπ where N ′ is the reduced Petri net of N , and
N ′

π is the corresponding event graph of Nπ.

Proof (Sketch) Let ξ′k be the k-th cut and θ′k be the
partial order of the k-th segment where the k-th segment,
S′k(ξ′k, θ′k), is a segment between ξ′k and ξ′k+1. We have
θ′k = {(s, t)|s ∈ T ′k ∧ t ∈ T ′π where T ′k is a set of events

in a segment S′k}. Let
Sk

o and
S′k

o be ∀t ∈ S∀p∈ξk p• and

∀t ∈ S∀p∈ξ′k p• and
Sk

r and
S′k

r be ∀t ∈ S∀p∈ξk •p and

∀t ∈ S∀p∈ξ′k •p. Figure 1(b) and 2(b) shows examples ofSk
o ,
Sk

r ,
S′k

r and
S′k

o .

For any ξ′k of N ′
π, there exists a ξk of Nπ such that

S′k
r ¹Sk

r ≺ Sk
o ¹ S′k

o because Nπ and N ′
π are corresponding

event graphs and T ′π ⊆ Tπ. Thus, for any k-th segment
of N ′

π, there exists the k-th segment of Nπ which yields a
one-to-one mapping between segments in N ′

π and Nπ.
From the definition of the corresponding segments, if θ′k ⊆

θk, then the one-to-one mapping maps corresponding seg-
ments. Since

Sk
o ¹

S′k
o ¹ T ′k ¹

S′k+1
r ¹ Sk+1

r and partial
order operators are transitive in set-to-set operations, we
have that T ′k ⊆ T k. From Definition 2, we have θ′π ⊆ θπ.
θ′k = {(ei, ej)|ei ∈ T ′k, ej ∈ T ′π} and θk = {(ei, ej)|ei ∈
T k, ej ∈ Tπ}. Thus, θ′k ⊆ θk since θ′π ⊆ θπ, T ′k ⊆ T k and
T ′π ⊆ Tπ.

As an example, the segment S′k(ξ′k, θ′k) of the reduced
Petri net shown in Figure 2(b) is the corresponding segment

of the segment Sk(ξk, θk) of the original Petri net shown in
Figure 1(b).

Lemma 2. Let S′k and Sk be the k-th segments of cor-
responding event graphs N ′

π, Nπ, respectively. Then, any
upper (lower) bound U ′γ

(k)(s, t, ε) (L′γ
(k)(s, t, ε)) on a TSE

instance of a pair of events (s, t) belonging to the segment

S′k is a bound on the TSE instance γ(k)(s, t, ε) belonging to
the segment Sk.

Proof (Sketch)
For any reference set, R′k, of a target event t in S′k, there

exists a reference set, Rk, of the target event t in Sk such
that Rk ¹ R′k because

Sk
o ¹

S′k
o ¹ R′k. For example, we

can choose Rk =
Sk

o . Thus, for any events r ∈ Rk, we have

(r ∈ Rk) ⇔ (r ∈ R′k) ∨ ∃(r, r′) ∈ θk, r ∈ R, r′ ∈ R′

Case 1. r ∈ R′k

δ∗(r, t) = δ′∗(r, t)

δ∗(r, s) = δ′∗(r, s)

δ∗(r, t)− δ∗(r, s) ≤ U ′γ
(k)(s, t, ε) (8)

Case 2. ∃(r, r′) ∈ θk, r ∈ R, r′ ∈ R′

δ∗(r, t) = max
r′∈R′ks

(δ∗(r, r′) + δ∗(r′, t)) (9)

δ∗(r, s) = max
r′∈R′ks

(δ∗(r, r′) + δ∗(r′, s)) (10)

Let r′j and r′i be such that,

δ∗(r, t) = δ∗(r, r′j) + δ∗(r′j , t) (11)

≥ δ∗(r, r′i) + δ∗(r′i, t) (12)

δ∗(r, s) = δ∗(r, r′i) + δ∗(r′i, s) (13)

≥ δ∗(r, r′j) + δ∗(r′j , s) (14)

From equations (11) and (14)

δ∗(r, t)− δ∗(r, s) ≤ δ∗(r, r′j) + δ∗(r′j , t)− δ∗(r, r′j)− δ∗(r′j , s)

≤ δ∗(r′j , t)− δ∗(r′j , s) (15)

From (15),

δ∗(r, t)− δ∗(r, s) ≤ δ∗(r′j , t)− δ∗(r′j , s) ≤ U ′γ
(k)(s, t, ε)

(16)

Since the above equation is true for every r ∈ Rk, Uγ
(k)(s, t, ε) ≤

U ′γ
(k)(s, t, ε). Similarly, the following inequality, Lk(s, t) ≥

L′k(s, t), can easily be proved through the duality of bounds.
Thus, any bound on a TSE instance of a pair of events be-
longing to the segment S′k is a bound on the TSE instance
belonging to the segment Sk.

To demonstrate a concrete example of this proof, consider
a TSE instance γ′(k)(t6, t6, 1) obtained by sampling from the
sequence of segments S′k(ξ′k, θ′k) and S′k+1(ξ′k+1, θ′k+1) in
the reduced net shown in Figure 2(b). Repetitive applica-

tion of Equation 1 yiels U ′γ
(k)(t6, t6, 1) = 20. The proof

argues that this upper bound is also valid for the original
net shown in Figure 1(b). Repetitive application of Equa-
tion 1 produces the same value, 20, which proves that the
obtained value in the reduced net is valid.

t0

t1

t4

t5

pr1

t6

t8

t7

p6

p7

p8

p9

p10pr2 pr4

pr3
(3)

(1)

(4) (4)

(2)

(7)

(9)

(8)

(8)
�

1(p8,t8) = 0.6
�

2(p8,t7) = 0.4

(a) A reduced Petri net

t1
k-1

pr4
k

pr2
k

pr1
k

t5
k

t4
k

t0
k-1

pr3
k

(7)

(8)

(8)

(9)

���
kU

�
r
k U

�
o

k

p7
k

t6
k

p8
k

t8
j

p10
k

t1
k

t0
k

p6
k p9

k

pr4
k+1

pr2
k+1

pr1
k+1

t4
k+1

pr3
k+1

(1)

(3)

(4) (2)

(4)

(7)

(8)

(8)

(9)

���
k+1U

�
r
k+1 U

�
o

k+1

p7
k

t6
k+1

p8
k+

1

t8
j+1

p10
k

t1
k+1

t0
k+1

p6
k+1

p9
k+1

pr4
k+2

pr2
k+2

pr1
k+2

t4
k+2

pr3
k+2

(1)

(3)

(4) (2)

(4)

(7)

(8)

(8)

(9)

���
k+2U

�
r
k+2

t5
k+2

U
�

o
k+2

t5
k+1

(b) A timed execution of the Petri net in (a)

Figure 2: A reduced Petri net of the net in Figure 1(a) and its timed execution.

Theorem 1. Let N ′ be a reduced Petri net of N . Then,
any bound of a TSE statistic in N ′ defined by S ′(s, t, e) is a
bound of the corresponding TSE statistic in N .

Proof (Sketch) From Lemma 1, there exists a sequence of
segments which partitions Nπ such that k-th segment in N ′

π

is a corresponding k-th segment in Nπ. From extensions of
Lemma 2 to grouped TSEs, we know that each sample of
S ′(s, t, e) is also a bound for the corresponding TSE statistic
in N . Thus, the resulting probabilistic bound obtained by
the Monte-Carlo simulation for S ′(s, t, e) is also valid for
N .1

5. PETRI NET REDUCTION OPERATIONS
In this section, we propose two reduction operations and

prove that the modified Petri net through those operations
is a reduced Petri net of the original net.

5.1 Projection
Reduction Rule 1.(Projection)
Precondition: There exist two sets of transitions Ti, To, two
sets of places Pi, Po, and a transition td.

1. |•p| = |p•| = 1, ∀p ∈ Pi and Po.

2. (s, p) ∈ F and (p, td) ∈ F where s ∈ Ti, ∀p ∈ Pi

1Note, however, that the obtained bounds of TSE statis-
tics of Nπ and N ′

π may still be numerically different due to
differences in cut and/or the reference set selection.

3. (td, p) ∈ F and (p, t) ∈ F where t ∈ To, ∀p ∈ Po

Rule: For every pair of places (pi, po), pi ∈ Pi, po ∈ Po,
create new place pn ∈ Pn such that d(pn) = d(pi) + d(po),
M(pn) = M(pi) + M(po), •pn = •pi and pn• = po•. Re-
move pi ∈ Pi, po ∈ Po and td.

After applying projection operation to the Petri net N ,
the modified Petri net N ′ is a reduced Petri net of N . Since
only transition td is removed from N , T ′ ⊆ T and the places
with choice are not considered in this operation, hence prop-
erties 1-5 of the reduced Petri net are satisfied. Furthermore,
for any pair of transitions (ti, to) where ti ∈ Ti and to ∈ To,
there exists a path from ti to to with equal path delay and
number of initial markings. Thus all properties of the re-
duced Petri net are satisfied. Figure 3 illustrates an example
of the projection operation.

5.2 Redundancy removal
Reduction Rule 2.(Redundancy Removal)
Precondition: There exist a transitions ti and a transition
to and a place pd.

1. •pd = {ti} and pd• = {to}

2. ∃ψ ∈ Ψ(ti, to) such that pd /∈ ψ, ∆(ψ) ≥ d(pd) and
M(ψ) = M(pd).

Rule: Remove pd.

Proj(t2): Ti = {t0}; To = {t4}; Pi = {p0}; Po = {p3}; Pn = {pd1}
d(pd1) = d(p0) + d(p3); M(pd1) = M(p0) + M(p3);

Proj(t3): Ti = {t0, t1}; To = {t4, t5}; Pi = {p1, p2}; Po = {p4, p5}; Pn = {pd2, pr1, pr2, pr4}
d(pd2) = d(p1) + d(p4); d(pr1) = d(p1) + d(p5); d(pr2) = d(p2) + d(p4); d(pr4) = d(p2) + d(p5)
M(pd2) = M(p1) + M(p4); M(pr1) = M(p1) + M(p5); M(pr2) = M(p2) + M(p4); M(pr4) = M(p2) + M(p5)

RR(pd1): ti = t0; to = t4 and d(pd2) > d(pd1), M(pd2) = M(pd1)

t0

t3

t1

t4 t5

p0 p2

p3 p5p4

t2

p1 Proj(t2) +
Proj(t3)

t0 t1

t4 t5

pd2

pr1 pr2

pr4
pd1

t0 t1

t4 t5

pr3 pr4

RR(pd1)(4) (3) (2)

(3) (6) (5)

(8) (8)
(7) (9) (7)

pr1 pr2

(8) (8)

(9) (7)

Figure 3: Projection of t2, t3 as well as redundancy removal of pd1.

After applying redundancy removal operation to the Petri
net N , a modified Petri net N ′ is a reduced Petri net of N .
Since all transitions remains the same and the places with
choice are not considered in this operation, properties 1-5 of
the reduced Petri net are satisfied. Furthermore, for a pair
of transitions (ti, to), there exists a path from ti to to with
equal path delay and number of initial markings. Thus, all
properties of the reduced Petri net are satisfied. Figure 3
illustrates an example of projection operation.

6. CASE STUDY
We now demonstrate the power of the proposed reduc-

tion operations on a well-known 4-phase Petri net model of
a 3-stage PCHB linear pipeline illustrated in Figure 4. To
semi-automate reduction, we developed a C program that
would check the validity of user-proposed projection and re-
dundancy removal reductions and if valid return the reduced
Petri net. Our future work includes developing heuristics to
guide the application of these reduction operations, thereby
creating a more fully-automated reduction tool.

Table 1 shows the number of places/transitions in the in-
put model and the percentage of places/transitions that were
removed compared to the original model due to the proposed
reductions. As shown in Table 1, after the proposed series of
reductions, the number of places were reduced by more than
half and the number of transitions were reduced by a factor
of 6. Thus, using this model in place of its more complicated
orignal model for system-level performance analysis would
yield a significant run-time improvement.

In addition, the reduced Petri net highlights performance
characteristics and dependencies not obvious in the origi-
nal, more complicated, net. For example, Ri is the typi-
cal forward latency, B1i is the typical reverse latency, and
B2i is a special reverse latency typical of pipelines based on
half-buffer templates. B2i highlights the dependency across
three pipeline stages that was not obvious from the more de-
tailed Petri nets or, for that matter, the original description
of PCHB in [7].

places reducp # transitions reduct

PCHB model 37 0% 24 0%
Intermediate I 26 35% 12 50%
Intermediate II 22 41% 8 67%
Reduced model 15 59% 4 83%

Table 1: An Example of Petri net reduction on 3-
stage PCHB model.

7. CONCLUSION AND FUTURE WORK
This paper characterizes a class of Petri net reduction op-

erations that preserve TSE statistics as well as two useful
operators that fall into this class. We applied these two oper-
ations using a novel semi-automated Petri net reduction tool
to a Petri net model of well-known asynchronous pipeline.
The resulting reduced Petri net is both significantly and
adds insight into its performance characteristics. Our tool
can be used to obtain performance models for libraries of
asynchronous cells on which system-level performance anal-
ysis tools can be applied. Potential future work includes the
development of more reduction operations, the further au-
tomation of the tool, and the expansion of our work to more
general stochastic Petri nets.

8. REFERENCES
[1] M. Benes, S. M. Nowick, and A. Wolfe. A fast

asynchronous Huffman decoder for compressed-code
embedded processors. In Proc. International
Symposium on Advanced Research in Asynchronous
Circuits and Systems, pages 43–56, 1998.

[2] E. Best. Partial order behavior and structure of Petri
nets. Formal Aspects of Computing, 2:123–138, 1990.

[3] Steven M. Burns. Performance Analysis and
Optimization of Asynchronous Circuits. PhD thesis,
California Institute of Technology, 1991.

[4] Jo Ebergen and Robert Berks. Response time
properties of linear asynchronous pipelines.

Proceedings of the IEEE, 87(2):308–318, February
1999.

[5] H. Hulgaard, S. M. Burns, T. Amon, and G. Borriello.
An algorithm for exact bounds on the time separation
of events in concurrent systems. IEEE Transactions
on Computers, 44(11):1306–1317, November 1995.

[6] Joep Kessels and Paul Marston. Designing
asynchronous standby circuits for a low-power pager.
Proceedings of the IEEE, 87(2):257–267, February
1999.

[7] Andrew M. Lines. Pipelined asynchronous circuits.
Master’s thesis, California Institute of Technology,
1996.

[8] I. R. Miller, J. E. Freund, and R. Johnson. Probability
and Statistics for Engineers. Prentice Hall, 1990.

[9] T. Murata. Petri nets: Properties, analysis and
applications. Proceedings of the IEEE, 77:541–580,
April 1989.

[10] Chris J. Myers and Teresa H.-Y. Meng. Synthesis of
timed asynchronous circuits. IEEE Transactions on
VLSI Systems, 1(2):106–119, June 1993.

[11] Recep O. Ozdag and Peter A. Beerel. High-speed QDI
asynchronous pipelines. In Proc. International
Symposium on Advanced Research in Asynchronous
Circuits and Systems. IEEE Computer Society Press,
April 2002.

[12] Shai Rotem, Ken Stevens, Ran Ginosar, Peter Beerel,
Chris Myers, Kenneth Yun, Rakefet Kol, Charles
Dike, Marly Roncken, and Boris Agapiev. RAPPID:
An asynchronous instruction length decoder. In Proc.
International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 60–70,
April 1999.

[13] Montek Singh and Steven M. Nowick.
High-throughput asynchronous pipelines for fine-grain
dynamic datapaths. In Proc. International Symposium
on Advanced Research in Asynchronous Circuits and
Systems, pages 198–209. IEEE Computer Society
Press, April 2000.

[14] Hiroaki Terada, Souichi Miyata, and Makoto Iwata.
DDMP’s: Self-timed super-pipelined data-driven
multimedia processors. Proceedings of the IEEE,
87(2):282–296, February 1999.

[15] A. Xie and P. A. Beerel. Performance analysis of
asynchronous circuits and systems using stochastic
timed Petri nets. In A. Yakovlev, L. Gomes, and
L. Lavagno, editors, Hardware Design and Petri Nets,
pages 239–268. Kluwer Academic Publishers, March
2000.

[16] Aiguo Xie, Sangyun Kim, and Peter A. Beerel.
Bounding average time separations of events in
stochastic timed Petri nets with choice. In Proc.
International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 94–107,
April 1999.

[17] A. Yakovlev and A. M. Koelmans. Petri nets and
digital hardward design. In Lectures on Petri nets II:
Basic Models, Lecture Notes in Computer Science.
Springer-Verlag, 1998.

�
�
� �

�
� �

�
�

�
�
�

�
�
��

�
�
��

�
�
�

�	

�
�

�	

�
�

�
�
��

�
�
��

�
�
�

�	

�
�

�	

�
�

�
�
��

�
�
��

�
�
�

�	

�
�

�	

�
�

�	

�
�

�
�
��

�
�
���

�
��

�
�
���

�
���

�
��

�
�
��

�
�
��

�
�
�

�	

�
�

�	

�
�

�
�
� �

�
�

�	

�
�

�	

�
�

�
�
�

�	

�
�

�	

�
�

�	

�
�

�
��

�
�
�

�
�

�
��

�
�
�

�
�

�
��

�
�
�

�
�

�
��

�
�
�

�
�

�
��

�
�
�

�
�

(a) Initial PCHB model

Proj(t4i): D2i = Ri- + LCDi+1+; D3i = Ri- + RCDi+

Proj(t1i): D0i = Ri+ + LCDi+1-; D1i = Ri+ + RCDi-;

Proj(t2i): D4i,D6i = D0i + Li
e-; D5i,D7i = D1i+ + Li

e-;

RR(D7i): D6i+1 = max(D7i, D6i+1)

��� ���
���

��
��

D20

D31

D21

D32

D22

D33

D23

�	
����

����
��

�	
����

����
��

D60 D61 D62 D63

D41
D51

D42
D52

D43
D53

	
�
	

�

	
�

	
	

�
�
�

�

�
	

�
�

(b) Intermediate model I

Proj(t3i): D9i = D8i + D2i; D14i = D4i + D3i; D10i = D8i + D3i; D13i = D5i+1 + D2i

D11i = D4i + D2i; D12i = D5i + D3i-1

RR(D14i+1): D9i = max(D9i, D14i+1)
RR(D13i-1): D10i = max(D10i, D13i-1)

��� ���
���

����

�	����������

�	����������

D111
D90

D101

D112
D91

D102

D113
D92

D122 D123

D103

D93

�
�
�

�

�
	

�
�

(c) Intermediate model II

������

SL1

F11

B21

SL2 SL3

���

B11

F12

B22

B12

F13

B13

SL0

RR(L1e+): Remove all gray edges since Li
e+

�
Ri-1 + Li

e+

Proj(t3i): F1i = D11i + Li+1
e+; B1i = D10i + Li

e+; B2i = D12i+1 + Li
e+; SLi = D9i + Li+1

e+;

(d) Reduced PCHB model

Figure 4: Reduction of 3-stage PCHB pipeline
model.

