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Don't Cares
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Abstract—in many computer-aided design tools, binary decision ROBDD’s can be used to represent the function, each associ-
diagrams (BDD's) are used to represent Boolean functions. To in- ated with a different assignment of don’t cares (DC’s) to binary
crease the efficiency and capability of these tools, many algorithms values. This paper assumes the variable ordering is fixed and

have been developed to reduce the size of the BDD'’s. This paper - . ,
presents heuristic algorithms to minimize the size of the BDD’s addresses the problem of finding an assignment of DC’s that

representing incompletely specified functions by intelligently as- Yi€lds a small ROBDD representation.

signing don’t cares to binary values. Experimental results show  There are many synthesis tools in which circuits are directly
that new algorithms yield significantly smaller BDD’s compared  derived from their BDD functional representation. For example,
with existing algorithms yet still require manageable run-times. hazard-free multilevel logic based on multiplexor-based cir-

These algorithms are particularly useful for synthesis application . . . , .
where the structure of the hardware/software is derived from the cuits can be directly derived from BDD's [6], [7]. In addition,

BDD representation of the function to implement because the min- T- Karoubaliset al. showed that differential cascode voltage
imization quality is more critical than the minimization speed in  switch (DCVS) logic circuits, which have many potential

these applications. advantages such as performance and high layout density, can
Index Terms—Binary decision diagrams (BDD's), incompletely be optimally synthesized from BDD’s due the canonicity of
specified functions, sibling-substitution. BDD'’s [8]. Moreover, Lavagnet al. presented a BDD-based

timed Shannon circuits synthesis tool in which reducing the
BDD size can lead to lower power consumption [9].
] ) ] In the technology mapping area, multiplexor-based field pro-
T HE EFFICIENT representation and manipulation 0frammable gate array (FPGA) mapping can be directly per-
Boolean functions is critical to many computer-aided dgprmed on the BDD's that represent the logic functions [10],
sign applications including logic synthesis, formal verification 1), Changet al.applied DC-based BDD minimization in their
and testing. Binary decision diagrams (BDD's) [1] have proveapGA mapping framework to reduce the size of the BDD's rep-
to be an efficient means of representing and manipulating ma@%enting subject graphs, yielding more area-efficient circuits
commonly used Boolean functions. For BDD-based tools, tigr1
size of the BDD’s can determine their run-time efficiency, The application of BDD’s can also be found in software syn-
the problem size that they can handle and/or the quality @fesis area. Chiodet al.[12] use a BDD as an intermediate rep-
the circuits or software they synthesize. This paper focus@sentation to generate a software program because of the close
on BDD-based synthesis applications in which the quality @onnection between the BDD representation of a function and
minimization is more critical than the minimization run-time. the structure of the software program they synthesize. The size
The size of BDD'’s are heavily affected by the variable ofsf the software is determined by the BDD size, which means
ders and many techniques have been developed to find BR3¢ the size of the BDD is critical to reduce software size [13],
variable orderings that lead to compact BDD’s [2]-[5]. Amon 4).
many types of BDD's, reduced ordered BDD's (ROBDD's) aré for incompletely specified functions, many BDD's can be
most widely used ones in practice. For agiven variable orderingseq to represent the function; each associated with a different
the ROBDD representation of a completely specified function jgsignment of binary values to DC’s. Finding the assignment
unique. For an incompletely specified function, however, manifat leads to the smallest BDD is known to be NP-complete [15]
and exact techniques [16], [17] are typically too computation-
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based on sibling-substitution and often achieve significant site0 or 1 for a set of input points, i.e., the function is defined
reduction. Interestingly, however, these algorithms can yieldoaer a subset aB™, the function isncompletely specifiednd
BDD far from being optimal and in fact larger than the originasuch input points are called the “don’t care-set.” Therefore, the
BDD. domain of any single-output Boolean functigif can be parti-

Changet al. [11] proposed a heuristic that makes multipl¢ioned into three subset$f,, (the on-set)f f.x (the off-set),
sub-BDD’s shared by assigning DC'’s to binary values whilend f f,. (the don't care-set). A completely specified function
traversing the BDD from top to bottom level by level. The redudias f f,. empty, while an incompletely specified function has
tion potential of their method is large, but its high computational nonempty don’t care set. Any two of these sets uniquely de-
complexity prohibits its application to large BDD's. scribes an incompletely specified function.

Shipleet al.[19] proposed a framework to relate sibling-sub- An incompletely specified functiorf f can be represented
stitution-based heuristics and Chang’s heuristic, and exploreyl a pair of completely specified functiorig, ¢| for which
their variants. Their experimental results suggest that siblings, 2 ffou, fox 2 ffox, ande = ffon U ffon. FOr a given
substitution-based heuristics, specifically restrict and its varircompletely specified functiorf f, there are many such func-
ants typically outperform others in terms of both run-time antibns f, each referred to ascaverof f f [19], [23], representing
resulting BDD size. different partitions off f,. into f,, and f.g.

Recently, Drechsleet al. proposed evolutionary algorithm- A BDD represents a function as a graph [1]. A BDD can have
based BDD minimization algorithms that can handle multipléwo types of nodes; leaf nodes and nonleaf nodes. The leaf nodes
output functions [20]. However, the minimization quality in thisare either O or 1, representing the Boolean functions 0 and 1,
approachis very sensitive to some user-defined parameters [1&}pectively. Each nonleaf nodehas two outgoing edges; a

Note that all the existing heuristics may produce largeéhen-edgeand anelse-edgeEach edge is connected tahild
results and a common way to avoid using a larger BDD is twde ofu andw is theparentof the child nodes. The two child
compare the original BDD with the “minimized” BDD andnodes araiblingsof each other. Each nonleaf nofles associ-
use the smaller one. We refer to this approacthessholding ated with a Boolean variable. The child of F' reached via the
The potential for the size increase, however, suggests that thitem-edge is called the positive cofactorfofvith respect tor
methods may not produce BDD'’s as small as those produceddmd is denoted by ; the other child is called the negative co-
algorithms thatnherentlyguarantee that no sub-BDD becomefactor of 7" with respect tac and is denoted byz. The cofactor
larger. of F' with respect to a cubiés the successive cofactoring bf

This paper describesafeBDD minimization heuristics, i.e., with respect to all the literals in the cube. Each nddeepre-
they guarantee the resulting BDD is not larger than the originsgnts a Boolean functiofi. The size ofF’, denoted |, is the
BDD inherently. These algorithms are based on sibling-substituamber of nodes in the BDD rooted At
tion because sibling-substitution itself is very powerful and effi- An OBDD is a BDD with the constraint that the input
cient. The key idea afafeminimization heuristics is to perform variables are ordered and input variables appear in ascending
sibling-substitution only on the nodes that we can guarantee walider in every path from root to leaves. An ROBDD is an
not cause an overall increase in BDD size. These techniques @BDD where there is only one node representing a distinct
lead to better minimization results by preventing sibling-subsfiinction. Bryant [1] proved that ROBDD’s are canonical, i.e.,
tutions that can cause overall size growth while allowing silthe ROBDD representation of a completely specified function
ling-substitutions elsewhere. Our heuristics can also be applisdunique under a fixed variable ordering. ROBDD’s have
to minimize multiple BDD’s safely. practically proven most useful because of their canonicity and

Our experimentations on ISCAS and MCNC benchmarl®mpactness. Therefore, we focus on ROBDD’s and we refer
using various types of DC’s demonstrate that our new heuris-ROBDD’s simply as BDD’s in this paper.
tics outperform existing sibling-substitution based heuristics An incompletely specified function can be represented by
significantly in minimization quality. Another strength ofa BDD pair [F, C] describing a pair of completely specified
our heuristics is their low computational complexity whicHunctions|f, ¢|, wheref is a cover of the incompletely speci-
allows them to be able to minimize large BDD'’s that cannot Heed function and: denotes the care-function. Among all covers
handled by competitive existing heuristics. of ff, there must be at least one coy€rwhose BDDF” is

The organization of the paper is as follows. After definingmallestin size. Unfortunately, finding a small&tis NP-com-
the problem and presenting relevant notations in Section Il, yptete [15], so we consider heuristic approaches. GVerC],
present three new heuristics in Section I1l. We report our expdinding anF"” that is hopefully close to minimal in size is called
imental results in Section IV and present conclusions in SE8PD minimization using don’t caredVe call F' the original

tion V. BDD and F’ the minimizedBDD.
Il. PRELIMINARIES [ll. SAFE BDD MINIMIZATION BASED ON
An m-input n-output Boolean function is a mappitg™ — SIBLING-SUBSTITUTION

B™. A Boolean functionf can also be described as the set of The main differences among sibling-substitution based BDD
all input points, i.e., minterms, for which the functigrnevalu- - minimization techniques lie in the criteria on which they per-
ates to 1; this set is referred as the “on-set’foSimilarly, the

“_off—set" of f is the set of all input pom_ts for Whl(?h the func- 15 cupeisasetofliterals and represents the function obtained by their product
tion f evaluates to 0. If we do not care if the function evaluates4].
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form sibling-substitution. The simplest criterion is based on the
observation that a functiofif can be covered by any function
if ff corresponds to a DC function. We refer to this condition
asDC-substitutabilitywhich is formally defined as follows.
Definition 1—DC-Substitutability:f f is DC-substitutable if
ffonuffoff = .
The most widely used heuristic, restrict, is based on DC-sub-
stitutability. Restrict recursively traversésandC concurrently
in depth-first order. In each recursive call, a new paiFodnd

C nodes is visited and restrict checks if either of the positive or @)
negative cofactor of th&" node is DC-substitutable with respect
to their corresponding’ nodes. Whenever a cofactor is found (»)

DC-substitutable, sibling-substitution is performed to the parent /
(removing the parent and one child), and the result is built re- ;
cursively by continuing traversal only to the cofactors that are N
not substituted.

Note that restrict, while always reducing the size of the target .
sub-BDD, canincrease the size of a BDD that contains the target (o]
sub-BDD, as illustrated in Fig. ZConsider the node in Fig.

1(a) which can be reached from the root by two differeaths (b)
and has two different associated care subsets, represented by
noded and leaf-1, respectively i@’ depicted in Fig. 1(b). The
different pairs of node and associated care subsets will be an-
alyzed in different recursive calls of restrict. Consider first the
recursive call in which the negative cofactor of nadavith re-

spect to the variable) in F', noded, is analyzed with the corre-
sponding care nodéin C. Because the care node is not leaf-0,
the algorithm recurs to nodgand analyzes its positive and neg-
ative cofactors. Sincé's negative cofactor correspondstoa DC
(leaf-0 in C), sibling-substitution is applied tb (replacingd

with its positive cofactor leaf-0). Notice that this results in a (c)
smaller sub-BDD rooted at. However, when node is ana- _
lyzed with the care node leaf-1 in a subsequent recursive cglﬁ' L
the sub-BDD rooted at (including nodef) cannot be reduced ] ] ] )
at all because the entire sub-BDD corresponds to a care stig Nodeby in 7, £z by cin F', andCz; by d in C. According
function. Consequently, nodebecomes unshared split, and to Definition 2, the else-edge éf in I is related tad in C. In-
this node-splittingleads to the overall size increase illustrateB/itively, this means that in the only recursive call through the

Restrict example: (&, (b) C, and (c)F”.

in Fig. 1(c). else-edge ob,, the corresponding care nodedis
We can formally describe node-splitting using a relation ~ AS another example, consider the cubggndab. Both 173
from edges inf’ to nodes inC defined as follows. and Fy,; are represented hyin . Fo5 and I5,. are repre-

Definition 2: Given two BDD’s F and C, the then-edge Sented by leaf-1ir’, andC; . andCo,. are represented by

(else-edge} of a nodeu in F is relatedto a nodev in C iff ~and leaf-1, respectively, itV. Consequently, the then-edge of
there exist cubes andp’ = p U {z}(p' = p U {Z}) such that ¢ in Fis related to both! and leaf-1 inC. This makes sense

u denotesf,,, u, denotesf,,, andv denotesc,,, wherez is because the thgn—edgeajs recurred through. twice., once with

the variable associated withand £, is the cofactor off with the corresponding care nodeand a second time with the care

respect top. We denote a set of nodes @i that an edge: in  node 1. o

Fis related to byR(e). The related nodes of all edges Bfare shown in Fig. 2.
Intuitively, the setR(c) describes the set of care nodes that Notice that restrict applies sibling-substitutioriaf the re-

are visited during the recursive calls of restrict obtained by rkated nodes of its outgoing edgencludes leaf-0, i.e., leaf-@

curring through the edge More precisely, the sdt(c) consists £(¢). Node-splitting may occur if¢(e) also includes a non-DC

of those care nodes analyzed in recursive calls: 1) in which tRgcause the original node (or a modified version of it) is needed

target ofe is analyzed and 2) that are called by recursive calid the result in such case. Consequently, an originally shared

in which the source of is analyzed. For example, consider Nnode, such as,, can become unshared by the minimization

andC shown in Fig. 1. For the cub@sandab, F; is denoted by Process, leading to overall BDD size growth..
We note that DC-substitutability is a sufficient but not nec-

_2n this paper, we label each node in a BBD by the variable that the nog&sary condition for a node to be able to substitute its sibling
is associated with. When more than two nodes are associated with the sam

e . f . .
variable, numeric subscripts are used to distinguish the nodes. The then-ed epom_ted O_Ut by Shiplet 5_‘“”_ [19]. They develop_ed_va”ants .
(else-edge) is represented by a solid line(broken line). of restrict using relaxed criteria that allow more sibling substi-
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Fig. 4.

Fig. 2. An example of the relatio®? (0 and 1 mean leaf-0 and leaf-1,
respectively).

bdd compact (bdd £, bdd ¢) {
if (¢ == 0) return (0);
mark-edges(f, ¢);
result = build-result(f);
return(result);

}

Fig. 3. Top level pseudocode for the proposed heuristics.

tutions. However, like restrict, many of these sibling substitu-

tions cause node-splitting and consequently often cause BBED 5.

size growth.

We define general-substitutability as follows.

Definition 3—General-Substitutability ff is substitutable
by gg if gg is a cover off f.

We develop safe minimization heuristics by performing only
the sibling-substitution that we can guarantee will not cause
an overall BDD size increase. In other words we further con-
strain the condition to perform sibling-substitution even if sub-
stitutability holds.

Our algorithms basically consist of two phases. In the firglg 6.

7 /’
. - AN
- \ .
(o] (o}
(a)F ) C (c) Edge-marked F
An example of mark-edges.

void mark-edges (bdd £, bdd ¢) {

if (¢ == 0) return;

if (f== leaf) return;

x = top variable(f; ¢);

if (¢, !=0)
if (f!=1,) fthen_mark = 1;
mark-edges(f,, c,);

if (cz 1=0)
if (f1=1;) felse_mark =1;
mark-edges(fy, cr);

Mark-edges pseudocode.

(a)
Y .
Build-result
() —
[ ]
, Q,
l’ - ./
@ -

Edge-marked BDD Minimization result

An example of build-result.
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phase, callednark-edgesthe original BDD is preprocessed to
conservatively identify nodes for which applying sibling-substignly, j.e., R(¢) = DC. To do this, B-compactiomarksedges
tution does not increase overall BDD size. In the second phaggyt are related to a non-DC node in the mark-edges prepro-
calledbuild-result sibling-substitution is selectively applied tocessing phase and then selectively performs sibling-substitution
the nodes identified in the first phase. In the trivial case wiien gnly on the source nodes of nonmarked edges in the build result
is zero BDD, the zero BDD is returned as a minimization resylfyase.
without calling mark-edges. The top-level pseudocode for our consider an edge between nodesndv in F that is related
algorithms is presented in Fig. 3. to multiple nodes irC. If any of these nodes is not leaf-0, we
We present three different compaction algorithms. The firgfan conservatively assume that substitutingith its sibling
calledbasic compactionperforms a subset of the sibling-submay cause node-splitting (i.e., noder a modified version of
stitutions that we can conservatively guarantee do not leadi@s needed). Consequently, mark-edges marks an edge if it is
node-splitting. The second, callézaf-identifying compactian related to anything other than leaf-0. For example, in Fig. 4, the
allows special types of node-splitting and the last, caled- e|se-edge of in F is related to both leaf-0 and leaf-1 i and
eralized-substitutability-based compactiarses a generalizedtherefore it is marked. The pseudocode for mark-edges is shown
sibling-substitution criterion to achieve further gain. The threg rig. 5.
algorithms have the same basic top-level pseudocode (Fig. 3)ne second build-result phase creates minimized BDD solely
but differ in the implementation of mark-edges and build-resuligsed on the markings on edgesinif an edge from a node
to any of its child nodes is not marked, them can be safely
replaced by's sibling via sibling-substitution. Otherwise,is
Basic compaction (B-compactiorg designed to conserva-preserved and its children are recursively rebuilt. Fig. 6 illus-
tively avoid sibling-substitutions that may cause node-splittingrates thisselectivesibling-substitution based rebuilding tech-
In particular, B-compaction applies sibling-substitution to aique on an edge-marked BDD.
node only when an out-going edges related to the DC-leaf  Fig. 7 shows the pseudocode of the build-result routine. For
dexample, iff.then markis 1 andf.else markis zero, that means
tﬁé sub-BDD rooted af,, must remain (in its original or mod-
ified form) and the sub-BDD rooted gt is replaced by its

A. Basic Compaction

3General-substitutability is more general than one-sided match propose
Shipleet al. [19] because one-sided match requifgs. C gga. to substitute
ff byggevenifgg is a cover off f.
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bdd build-result(bdd /) { BDD'’s. So, the idea of the new algorithm is to accept the result
if (f = leaf) retum(f); of sibling-substitution if the result is a unique leaf (i.e., replace
x = top variable(f); the edge fromw to » with an edge fromv to the leaf). Note
if (f then_mark == 1 and f.else_mark == 0) that,« may be preserved or replaced in the minimized BDD if
return (build-result(7,)); it has multiple parents, depending on sibling-substitutions with

else if (.then_mark == 0 and f.else_mark ==1)
return (build-result(fy));
else /* if (fthen_mark == 1 and f.else_mark==1) */

respect to its other parents.
In effect, more sibling-substitution is allowed in LI-com-

return (bdd-find(x, build-result(f,), build-result(£,))); paction compared to B-compaction. That is, LI-compaction
allows sibling-substitution to a nodeto replace a child by
Fig. 7. Build-result pseudocode. its sibling if R(e) = {leaf-0} (like B-compaction does) or to
replacev by a leaf if the leaf is a cover 6f, | forall c € R(e),
bdd B-compaction (bdd £, bdd ¢) { wheree is the edge betweemnandw.
if (c = 0) return (0); This approach will usually lead to better results for two rea-
mark-edges(f, c); sons. First, a sub-BDD that is preserved in B-compaction can
result = build-result(f); be replaced by a leaf in LI-compaction. We call this type of
clear-edges(f); gain Gain 1 Second, the number of edges marked can be less
) return(result); than in B-compaction because the edge-marking routine needs
not recur through edges to be redirected to leaves. This type of
Fig. 8. Basic compaction pseudocode. gain is calledGain 2 Typically, fewer edge-markings leads to

smaller BDD’s because build-result removes nodes connected
bey unmarked edges. Note, however, that this approach is not

sibling in the result. A symmetric rule applies to the revers .
uaranteed to produce better results than B-compaction because
case. Note that mark-edges marks at least one of then-edge an . T
the two algorithms can result in different unshared nodes be-

else-edge for each node and, thus, does not need to consider the.

; . coming shared unpredictably.
case in which both edges are not marked. This new approach can be implemented using a two-phase
Fig. 8 presents the pseudocode of B-compaction. The tim P P 9 P

complexity of mark-edges i©(|F| - |C|) because each Ioairegge-marklng routine and a modified build-result. The first

of nodes fromF and C is called only once by using an phase of edge-marking computes the results of all possible

. - sibling-substitutions from which it identifies the edges that
operation cache. Due to the application of a second operation . e

) - .can be redirected to leaves. The second phase is similar to the
cache, build-result processes each node only once, yield

ng.. . .
a time complexity ofO(|F|). Clear-edgesroutine clears the BiSic mark-edges routine except that it does not recur through

edge-marking fields after building the result and has time CO?ehgges that can be redirected to leaves. After the edge-marking,

; . : e modified build-result routine redirects all identified edges
plexity of O(| F'|). Consequently, the overall time complexity o ; : S -
N . - . to their annotated leaf and applies sibling substitution to all
B-compaction ig)(|F| - |C]), the same complexity as restrict. remaining unmarked edaes
We show that B-compaction g&fe Recall that a BDD mini- g ges.

mization using DC’s is safe if the minimized BDD is guaranteerq] iE:?ﬁiz?nShtﬁ\gngrllj e;(i?;]ptlﬁe?ﬁ;;?ego;hfrgznsoggﬂzl?#ée n
to be no larger than the original BDD, i.jg] > |F”|. g y ' g

i C 2 then-edge from nodé, can be redirected to the leaf-0 (Gain
Theorem 1. B-compaction is safe. . : 1). Consequently the then-edge of nofles unmarked (Gain
Proof: The result7 of B-compaction o' is produced by _{

. . 2). The modified build-result routine leads to a minimized
build-result. Hence( results fromF” by replacing some nodes : -

. . BDD with two nodes less than the original BDD. In contrast,
with one of their descendents.

" o . B-compaction leads to no minimization because the basic
Intuitively, B-compaction is safe because it ensures that e} . :
edge-marking routine must mark all edges.

nodes will be split. This property can be deduced from the struc-.l.he run-time complexity of this approach is almost twice as

ture of build-result. It creates one node for each node it ViSitSuch as B-compaction because of the two-phase edge-marking
(which uniquely depends on the edge-marking) and visits ear%iutine since each edge-marking phase G&| - |C) com-

node at most once (because of the operation cache). Specifically, . !
xity. If we do not pursue the gain from fewer marked edges
nodes that are not reachable from the root by a path of mar . o . )
g : ) Gain 2), it is possible to merge the two phases of edge marking
edges are not visited by build-result and, thus, not included. it : ; .
L into one. Our experiments suggest that degradation of quality
the minimized BDD. : L . o S .
is negligible. We believe this is because it is unlikely that all
nodes on the paths leading to an excessively marked edge can
be redirected to a unique leaf (so that no marking is required
This subsection presents an enhanced safe minimization tefoin-the edge). Thus, this compromise represents a good perfor-
nigue in which a special type of node splitting is allowed. Commance/run-time tradeoff.
sider the set of sibling-substitutions appliedudo substitute  We refer to this enhanced algorithm with the above compro-
its child « with another child ofy. When the results of all the mise asleaf-identifying compaction (LI-compactioapd it is
substitutions for: are unique, then the sibling-substitutions cagiven in Fig. 10. Finding and annotating nodes is performed
increase the BDD size only by the size of the unique resuiih a preprocessing phase calleimark-edgesLike restrict,
Leaf nodes are special in that they assentiafor all nontrivial this phase recursively performs sibling-substitution. However,

B. Leaf-ldentifying Compaction
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bdd LI-compaction (bdd £, bdd ¢) {
if (¢ == 0) return (0);
(void) LI-mark-edges (¥, ¢);
result = LI-build-result (f);
clear-edges(f);
return (result);

h

int LI-mark-edges (bdd /, bdd c) {

if (¢ == 0) return (00);

if (f = 1) return (01);

if (f = 0) return (10);

x =top variable(f, ¢);

templ = Ll-mark-edges (£, ¢,);

temp2 = LI-mark-edges (fi, cy);

if (=1
fthen_mark = fithen_mark| templ; /* ‘|’ is bitwise-or */
felse_mark = f.else_mark | temp2,;

return (temp1 | temp?2);

}
bdd LI-build-result(bdd f) {

if (f = leaf) return (f);
x = top variable (f);

if (fthen_mark == 11) f_left = L1-build-result (f,);

(d) Edge-marking skipping (QT Build-result (OF* else if (fthen_mark=01) f left = 1;
edges associated with leaves being applied else f left =0,
if (felse_mark == 11) f_right = LI-build-result (f);
Fig. 9. Improved result by leaf-identification: (&', (b) C, (c) edges else if (felse_mark==01)f right=1;
associated with leaves, (d) edge-marking skipping edges associated wit else f right=0; -

leaves, (d) build-result being applied, and £f).
if (f-then_mark == 00 and felse_mark != 00) return f right;
else if (fthen_mark = 00 and felse_mark == 00) return /" left;
instead of returning the actual BDD result, it returns a classifica- else return (bdd-find (x, f_left, f_right));
tion of the result. This classification identifies whether the edge}
can be redirected to a 1 (encoded b01), 0 (encoded b10), IIQC 0. L _ docod
(encoded b00), or nonleaf (encoded b11). The encoding facild 10~ Li-eompaction pseudocode.
tates a bitwise-OR scheme that implements the relative priority
of nonleaves over leaves and leaves over DC's. Fig. 11 illustrateswever, only; is substitutable by DC-substitutability. The re-
an example of leaf-identifying compaction where one edge, thelting BDD produced by the sibling-substitution applied:to
then-edge ofl, is additionally marked compared to the exampl@lustrated in Fig. 12(d), is smaller than obtained by substituting

in Fig. 9(d). nodeg, illustrated in Fig. 12(c). The primary reason for this size
The overall time complexity of LI-compaction is the same adgifference is that node corresponds to a larger sub-BDD than
the complexity of B-compaction which &(|F| - |C]). nodeb and thereby its sibling substitution typically removes

We would like to note that it is not difficult to identify more more nodes. Consequently, the application of general substi-
essentiahodes (rather than just leaf nodes) by comparing eatitability provides more opportunities for sibling substitution
F node and its correspondin@ nodes. That is, if a node i than possible using DC-substitutability and, if wisely applied,
corresponds to leaf-1 i€, the node is essential. Consequentlyan lead to smaller BDD's.
we can extend LI-compaction by allowing sibling-substitutions We present the pseudocode for the substitutability check
that returns such essential nodes (instead of just leaves). Ourteased on general-substitutability in Fig. 13. When two nodes
periments suggest, however, that this extension does not leaddn substitute each other, we give priority to substituting the
significant improvements over LI-compaction (presumably b&ode at the higher level because, as mentioned previously, this
cause the possibility of being able to replace a node with a nagpically yields smaller BDD’s. Alternatively, we can measure
leaf essential node is typically not high). Due to lack of spacthe size of each BDD to find a larger one, but in our experience
we refer the reader to [25] for more details. this does not lead to significant improvements.

To incorporate the generalized criterion into B-compaction,
we could simply change the sibling-substitution criteria
from DC-substitutability to general substitutability in the

Recall that various criteria can be applied to determine whedge-marking routine. However, this naive approach fails
a node can be replaced by its sibling and we discussed two sibd the reason is as follows. Consider thieand C BDD's
ling substitution criteria, DC-substitutability and general substillustrated in Fig. 14(a) and (b), respectively. The else-edge
tutability. Fig. 12 illustrates why general substitutability is moref nodeb (connected to node) in F is related to care nodes
powerful than DC-substitutability. Notice that sibling-substitue; , c>. Let’s first apply edge-marking using the care nade
tion can be applied to nodesor b; by general-substitutability, based on general substitutability. The nades substitutable

C. General-Substitutability Based Compaction
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(aF (b)C (c) Edge-marking result (d) F’

Fig. 11. Ll-compaction example: (&), (b) C, (c) edge-marking result, and (d) .

/
! [0

[0]
@F bC (c) Sibling-substitution to b, (d) Sibling-substitution to a
by DC substitutability by general substitutability

Fig. 12. DC-substitutability versus general-substitutability:Ha)b) C, (c) sibling substitution té; by DC substitutability, and (d) sibling substitutionddy
general substitutability.

int substitutability (bdd f, bdd c) { example, mark edges fails to mark the then-edge which
x = top variable(f, c); should be marked because the sibling-substitution to rode
if (c, == 0) retum (fyfofy); cannot be performed and this edge relates to leaf-1 [see Fig.
if (cy = 0) return (f3tof,); . . . .
iy i 14(e)]. This leads to an incorrect cover Bfas shown in Fig.
Jdiff =xor (&, fz);
temp1 = intersect (fdiff, c,) 14(f) : . .
temﬂ:imersea(fdiﬁ,: c;) This example suggests that we can safely skip recurring
mark-edges through an edgely when we are guaranteed that
the intended sibling-substitution will be performed as assumed.
In order to guarantee that the intended sibling-substitution on a
. i node is performed, we must analyze all of its ancestors in con-
else if (temp1 == &) return (f tofz); . . . . . . .
elise if (temp2 == @) return (ftof.); junction with all of their associated care nodes. This motivates
else return (NONE); * processing the nodes K in a top_-down Ievgl-by-level order.
} We can procesd’ edges while traversing” from top to
bottom level by level. However, this requires cumbersome
Fig. 13.  Substitutability check pseudocode (a consfario f., f. to f., or - hookkeeping of all related nodes for each edge. Alternatively,
NONE is returned according to substitutability direction). we can accomplish this tOp-dOWI’l processing using a two-phase
mark-edges routine without increasing run-time complexity.
by its sibling in this case because they differ only whes 0 The basic idea is that one phase performs edge-marking
which is in the don’t care set specified by. Consequently, the assuming that currently unmarked edges will stay unmarked.
else-edge ob is not marked and using the naive edge-markinghe other phase checks if the assumption associated with each
procedure we do not recur through Thus, at this point all sibling-substitution (that a particular edge remains unmarked)
edges below: are not marked [see Fig. 14(c)]. This makeholds and reinvokes the first edge-marking phase as required if
sense because the entire sub-BDD rooted at nodé this the assumption is invalidated.
point seems unnecessary since we are under the assumptiorhe pseudocode for this new compaction algorithm called
that nodec will be removed by a sibling substitution to nodegeneralized substitutability based compaction (GS-compaction)
b. This assumption, however, breaks down when mark-edgespresented in Fig. 15. The first edge-marking phase, called
processes the else-edge of nédeith its other corresponding mark-essential-edgegdests the sibling-substitution condition
care node:; which prohibits sibling substitution to nodeThe only if the edge connected to the node considered has not been
consequence of this assumption breakdown is that mark-edgesked thus far. If the substitutability holds, it does not recur
does not mark some edges that should be marked. In drough the node to be substituted, marks the edge connected to

if (templ == I & temp2 = )
if (root level of £, > root level of f;) return (f,tofy);
else return (fetof.);
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bdd GS-compaction (bdd £, bdd ¢) {
if (¢ ==0) return (0);
fes_list = create-list();
mark-essential_edges(f, c, fcs_list);
mark-supplemental-edges(fcs_list);
clear-edges();
return (build-result(f));

{c1, Cz}/ {1, 1}

{0, 1y {%1\1}

1] }
void mark-essential-edges (bdd f; bdd ¢, list fes_list) {
if (¢ ==0 || f==leaf) return;
@F x = top variable(f, ¢);

if(1=1)
s = substitutability (f, ¢);
if (f.then_mark== 0)
if (s == f tofy) insert(fes_list,{f, c, s});
else f.then-edge = 1;
if (felse_mark= 0)

N
Ii] 1 if (s = fytof) insert(fes_list, {f, ¢, s});

(c) Mark F edges by ¢; (d) Mark F edges by ¢, else felse-edge = 1;
if (fthen_mark == 1 || f==f;) mark-essential-edges(f;, c,, fcs_list);
if (felse_mark == 1|| f==f,) mark-essential-edges(fy, cy, fcs_list);

® }
/ void mark-supplemental-edges (list fcs_list) {
® Ej while (fes_list not empty) {

sort fcs_list by the level of fin each triple;
Jfes = first(fes_list);

(e) Final marking (f) Minimized result remove (fcs, fes_list);
(Not a cover of [F, C]) f=fesf, ¢ = fes.c; s = fes.s;
X = top variable(f; c);
Fig. 14. Failure of using general-substitutability in B_-compact_ionﬂalb) if (s = fytofy)
C, (c) markF" edges by, (d) markF edges by, (e) final marking, and (f) if (f.then_mark == 0) mark-essential-edges(f, c,, fes_list);

minimized result (not a cover ¢, C1). /* fr is guaranteed to substitute f,. Include ¢, to the care sets of f; */

else mark-essential-edges(f,, c,, fes_list);

its sibling, and continues this process to the node connected * fy cannot substitute f;. Do edge-marking that was skipped. */
the marked edge. The sibling-substitution is recorded in a i if s — fytof)

whose elements are triples of the nodéirthe node in”, and if (feelse_mark == 0) mark-essential-edges(f}, ¢, fes_lis?);

the sibling-substitution direction. For the example presente /¥ fy is guaranteed to substitute fy. Include ¢y to the care sets of f; */
in Fig. 14 the marking-result shown in Fig. 14(e) is the resul else mark-essential-edges(fy, ¢y, fes_list);

. . /* t substi . -] i i | ¥
of mark-essential-edgesThe second edge-marking phase Jy cannot substitute fr. Do edge-marking that was skipped. */

calledmark-supplemental-edgesorts the list by the level of  }
nodes in order to process the edges connected from higher
nodes first. Then, it removes the first sibling-substitution, e.d:.',g
substitutingv in £ with its siblingw, from the list and check if
it is valid. If the sibling-substitution is still valid, the care-set ofor quick sort. Note that mark-essential-edges does not repeat
v needs to be added to the care-setoThis care-set update isthe same computation because of the operation cache. Build-re-
implicitly done by invoking mark-essential-edges withand Sult and clear-edges both ha@¥|F’| - |C]) time complexity.
the node representing the care-setvohis parameters. If the Therefore, the overall time complexity of GS-compaction is
sibling-substitution of is found invalid, mark-essential-edge<?((|£| - |C])?).
is invoked with v and the node representing the care-set ) e
of v as parameters. Whemark-essential-edgedinishes, D- Multiple BDD’s Minimization
mark-supplemental-edgessumes the validation process until It is important to note that safe BDD minimization does not
the list is empty. Note that new sibling-substitutions migtitself guarantee overall reduction in the size of multioutput
be recorded bymark-essential-edgewhich is invoked by circuits. This is because each outputis represented by one BDD
mark-supplemental-edgeBuild-result routine is the same asand existing safe BDD minimization does not consider the
in B-compaction. In our example, the sibling-substitutiorb to sharing among BDD’s. Consequently, minimizing one BDD
in F'is checked first. As both outgoing edges are found markeday reduce the sharing among BDD's, potentially leading
the sibling-substitution is invalidated and then-edge of /* to an overall increase in BDD nodes. This suggests that the
becomes marked eventually. synthesized circuit might be larger after BDD minimization
The time complexity of mark-essential-edges igsing existing techniques.
O((JF] - |C|)?) because the substitutability routine requires Fortunately, we can extend the concept of safety to handle
O(|F| - |C|) and that routine is called at modt| - |C| times multiple BDD’s. The basic idea is to first complete all edge-
by mark-essential-edges. The time complexity of mark-essenarkings for each output functighand corresponding care set
tial-edges iO((|F| - |C))? + |F| - |C| - log(|F| - |C|)), where ¢, and only then apply build-result for ea¢hlt is easy to show
the first term describes the time complexity of mark-essethat this simple modification ensures that minimization of mul-
tial-edges and the second term describes the time complexipte BDD’s will be safe. In fact, for circuits with lots of sharing

.15. GS-compaction pseudocode.
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TABLE |
MINIMIZATION RESULTS ONBBD’s FOR SEQUENTIAL CIRCUITS USING UNREACHABLE STATES ASDC’s
circuit | BDD; BDD, reduced BDDgsize (reduction runtime) improv.
size size | on-set (%) restrict osm_bt B LI GS (%)
5298 183 57 1.3 137 (0.01) 129-'(0.06) 149 (0‘38-) 140 (0.37) 118 (1.08) 93
s344 260 610 8.0 253 (0.15) 248 (1.00) 253 (0.62) 253 (0.61) 235(1.62) 5.5
5382 262 304 04 245 (0.04) 231 (0.35) 265 (0.54) 245 (0.53) 200 (1.54) 15.5
s444 300 173 04 218(0.12) 205 (0.32) 261 (0.54) 224 (0.53) 193 (1.56) 6.2
5499 1073 72 5.2e-5 340 (0.05) 340 (0.11) 340 (0.85) 340 (0.54) 272 (2.42) 25
s510 281 8 734 265 (0.01) 262 (0.04) 269 (0.26) 265 (0.27) 264 (0.72) -1.0
$526 301 125 0.4 251 (0.03) 220 (0.13) 254 (0.53) 251 (0.52) 204 (1.51) 7.8
s641 884 83 0.3 607 (0.06) 577 (0.86) 599 (0.85) 599 (0;85) 548 (2.48) 53
5820 499 8 78.1 472 (0.02) 471 (0.07) 469 (0.47) 469 (0.45) 468 (1.39) 0.6
5953 867 562 1.6 739 (0.04) 739 (0.39) 751 (0.97) 739 (0.99) 712 (2.78) 38
s1196 3974 919 14 3974 (0.49) 3971 (10.5) 3974 (0.93) 3974 (0.95) 3966 (3.05) 0.1
s1269 | 40487 949 1.1 29699 (2.71) 29724 (222) 28000 (6.63) 27995 (6.55) 27968 (25.5) 6.2
51423 37269 66 1.3 30610 (1.50) | 30974 (1084) 30611 (4.80) 30610 (4.50) 30580 (19.9) 0.1
s3271 2917 417 0.8 2787 (0.74) 2733 (29.5) 2793 (10.6) 2781 (11.0) 2629 (21.0) 4.0
total 70597 (5.97)| 70824 (1349) 68988 (29.0) 68885 (28.7) 68357 (240) 6.3

among cones of logic this feature can have a significant imp&DD’s representing reachable states on partitioned state spaces,
in overall BDD size. and we constructed a single care BDD by conjuncting all of
We can apply this separated edge-marking and build-titem. We minimized each BDD representing a combinational
sult concept to all three proposed compaction heuristidegic cone using the single care BDD, individually.
In our experiments, however, we only applied this method The results are given in Table I. The nodes shared by mul-
to GS-compaction. We call this variant of GS-compactiotiple BDD’s are counted once for each BDD to better illustrate
GSM-compaction. the minimization quality on individual BDD’s. GS-compaction
demonstrates the best performance except for one example s510
in which the difference is only 2 nodes. This suggests that the
. . safety feature consistently improves minimization quality when
Wg c.onducted_egperlments n SIS_—l..Z [26] to compare OHp mpined with general substitutability. We show the ratio of the
heuristics to existing sibling-substitution based heuristic

" ) . . Smallest BDD sizes obtained using new heuristics and existing
specifically, restrict and one of its variardsm-b{19]. Osm-bt _heuristics in the column denoteéchprov. New heuristics pro-

was chosen among avariety of heuristics developed by_SNe@ce up to 15.5% (6.3% on average) smaller BDD's than the
et al. [|19] tk;]ecatu S? '(; séw owed thtf] b?\;t OV?r?” risultg tl'n s produced by existing heuristics. We observed that there
exa(;np esl ey gsDeD,' f(lacauie et OI T?i(lleDmg euns 'Cl.s e many BDD’s that no heuristics can reduce their sizes at all
produce ‘arger S than the origina S, We apphie ossibly because those BDD’s were already minimized). When

thres,hqldmg o th.er.n which means that we’return the ONYNge exclude such BDD's from the result, the improvement factor
BDD's if the heuristics produce larger BDD's. All the eXPeriyacomes almost two times larger

ments were conducted on a SUN SPARC 20/128 MB. The numbers in parentheses in the Table | indicate the

In our first experiment, we minimized the BDD's '®P'€ n-time of each minimization in units of CPU seconds. Be-

senting the combinational logics of sequential circuits fror@ . o ; .
L . cause compaction heuristics require more phases than restrict,
ISCAS-89 and ISCAS-Addendum-93 benchmark circuits u3|qgey are slower than restrict. In particular, GS-compaction

their unreachable states as DC's. The BDD variables werree

. . ) . . guires a time-consuming substitutability check which re-
ordered using the static variable ordering heuristic proposed Dires significant run-time overhead. However, GS-compaction

[22].4 For some of the largest circuits, exact rea(_:hable staﬁ Smuch faster than its counterpart osm-bt for large BDD's
fouf. nr(])t'k:)e (:t?]mput?(:hbecau§e t_rt1e r:]]emory requwementslw&;gn though GS-compaction uses a more general substitution
00 high. For three of these circuits, however, we were able iy o o than the one used by osm-bt. This is because GS-com-

Cﬁ.m pultha'\VIsutperset Olf reachable S tatte S fygiaghtinf—by-ma? gaction skips many substitutability checks, i.e., GS-compaction
chine ( ) raversal, an approximate finite state maching,os not check substitutability for the nodes connected by
(FSM) traversal technique proposed by Céipal. [27], and marked edges

used the complement of the result as DC’s. The result of MB In our second experiment, we minimized the BDD's rep-

traversal takes the form of implicit conjunction, i.e., a set c}fesenting the combinational circuits from ISCAS-89 and

MCNC-91 benchmark. The BDD variables were statically
4performing dynamic variable ordering (DVO) on the original and/or mingrdered using the heuristic pI’OpOSEd in [2] We used randomly
imized BBD’s can sometimes achieve further reductions in BDD size (at the d DC’ ith 9504 d 5% DC f . f h BDD
expense of significant additional run-time) but was not considered here to kédigated DC’s wit 70 an o DC fractions for eac
the experiment and the analysis of the results simple and focused. representing a combinational logic cone to demonstrate the

IV. EXPERIMENTAL RESULTS
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TABLE I
MINIMIZATION RESULTS ONBBD’s FOR COMBINATIONAL CIRCUITS WITH RANDOMLY GENERATED 95% DC's
circuit BDD; | BDD, reduced BDDysize (reduction time) improv.
size size restrict osm_bt B LI GS GSM (%)

bw 112 40 48.0 (0.01) 45(?«).02) 48.0 (0.50) 48.0 (0.46) 48.0 (1.28) 50.3 (0.05) 0.00

misex3c 797 359 251.2(0.06)| 221.6(0.48) 306.0 (0.32) 280.0 (0.32) 219.2 (0.91) 229.2 (0.27) 1.09

duke2 973 1559 474.0 (0.07) 399.0 (0.72) 561.3 (0.59) 409.7 (0.61) 295.0 (1.66) 290.0 (0.34) 375

vg2 1044 5028 442.0(0.09)] 419.6(0.21)| 419.5(0.20) 381.5(0.21) 283.0 (0.70) 283.9 (0.34) 48.3

misex3 1301 359 471.0 (0.04)| 436.3(0.48) 581.1 (0.34) 505.1 (0.32) 414.0 (0.92) 412.8 (0.22) 5.70

C432 1733 202 [| 1673.2(0.01)| 1673.2(0.01)| 1640.0(0.24)|1634.8.9(0.10){ 1612.8 (0.22)| 1581.5(0.06) 3.70

alupla 17266 21699 || 17482.0 (3.7)| 15190.7 (78.9) | 15609.0 (2.87) | 15188.0 (2.85)| 6667.5(15.1)} 6562.9 (15.0) 131.5

C1908 36007 4490 ([ 31640.1 (21.0) timeout | 31264.8 (16.3) | 32546.8 (16.5) | 31822.8 (74.1) | 29494.2 (83.8) 7.28

C499 45922 726 || 7566.0 (44.0) timeout [ 7880.9 (36.7) 9663.0 (39.0)| 9031.4(234)| 4354.4(380) 73.8

seq 142252 7763 || 89880.0 (8.28) | 82516.5 (302) | 79330.0 (14.0) | 77637.0 (14.3) | 67157.5 (62.1) | 67949.0 (78.2) 229

average 332

TABLE Il
MINIMIZATION RESULTS ONBBD’s FOR COMBINATIONAL CIRCUITS WITH RANDOMLY GENERATED 5% DC's
circuit BDD; BDD, reduced BDDysize (reduction time) improv.
size size restrict osm_bt B LI GS GSM (%)

bW 112 40 92.0 (0.01) 87.0(0.01)|  92.2 (0401) 92.2 (0.45) 87.0 (1.30) 1.0 (0.05) 0.0
misex3c 797 359 759.2 (0.01) 757.4(0.39) 785.1(0.32) 755.1(0.31) 739.9 (0.92) 751.3(0.21) 237
duke2 973 1559 956.5 (0.04) 951.5(1.01) 966.7 (0.62) 953.7 (0.62) 932.0 (1.78) 932.0 (0.28) 2.09
vg2 1044 5028 1050.0 (0.07)| 1050.0 (3.12)| 1048.3(0.38) | 1048.3 (0.35)| 1048.3(0.65)| 1030.2(0.34) 1.92
misex3 1301 359 || 1301.0(0.05){ 1301.0(0.77)] 1291.2(0.35)| 1288.9(0.39)( 1300.7(1.05)| 1301.8(0.78) 0.94
C432 1733 202 || 1734.0(0.16)| 1734.0(44.0)| 1734.0(0.39)| 1734.0(0.32)( 1732.0(1.56)| 1731.5 (1.3) 0.14
alupla 17266 21699 ([ 17268.1 (2.30) | 17268.1 (117)| 17266.3 (3.12) | 17266.2 (3.10) | 17257.2 (12.9) | 17258.4 (12.7) 0.06
C1908 36007 4490 || 36612.5 (22.3) timeout | 36005.1 (17.4) | 36053.2 (18.7) | 36031.2 (67.5)| 35801.4 (69.2) 227
C499 45922 726 || 45922.0 (52.8) timeout | 45922.0 (48.1) | 45922.0 (49.0) | 45922.0 (439)| 45922.0 (431) 0.0
seq 142252 7763 ||142150.2 (5.40) | 141590.0 (956) |138566.2 (16.9) [138384.0 (18.0) {137991.0 (65.1) |137962.3 (64.4) 2.63
average 1.24

impact of the DC fraction on the improvement ratio. A€£499 are more than two times smaller than the BDD'’s obtained
suggested in [23], [28], and [29], to increase the statisticating GS-compaction. However, it is also interesting to note
significance of our results, for each DC fraction, we used fihat GSM-compaction does not always produce better results
different seeds to generate 5 different DC sets and report than GS-compaction because sometimes node splitting leads to
average minimization ratios. In particular, for each DC sesmaller BDD’s whose total size is smaller than its originally
we minimized each BDD representing a combinational logghared BDD. (Recall that this is the same reason why safe BDD
cone using its respective care BDD with all the minimizatiominimization might not be better than nonsafe heuristics.)
heuristics. Recall that GSM-compaction, the modified ver- The advantage of GSM-compaction over osm-bt in terms of
sion of GS-compaction which safely minimizes multioutputun-time is clearer in this experiment because we observe two
BDD'’s, however, performs edge-markings on all BDD's beforexamples that osm-bt cannot complete the minimization within
building the result. The results from the modified version df0 h.
other compaction heuristics are not shown because they show
similar improvements compared to their original versions.

Tables Il and Il show the results with 95% DC'’s and 5%
DC's, respectively. We count the nodes shared by multiple We presented new efficient heuristics to minimize the size of
BDD'’s only once for these results. The results show that oBDD’s using DC’s. The key idea of new heuristics is to selec-
compaction algorithms consistently outperform the competitiviely minimize sub-BDD’s while traditional heuristics blindly
algorithms in all cases. The improvement factors for ouminimize all sub-BDD’s. By removing the source of size
compaction algorithms, however, are much higher in the cagmwth, we were able to achieve better overall minimization
of 95% DC fractions. This is because there is more flexibilityuality. We demonstrate that the new heuristics significantly
of minimization with more DC'’s. Second, the results show thatutperform traditional heuristics on most examples from bench-
the additional safety feature of GSM-compaction for multimark circuits. We also generalize our mechanism to prevent the
output BDD’s can lead to dramatic reductions in BDD sizesize growth to handle multiple BDD’s with sharing and present
For example, the BDD'’s obtained using GSM-compaction faxperimental results that demonstrate its effectiveness.

V. CONCLUSION
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