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Sibling-Substitution-Based BDD Minimization Using
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Youpyo Hong, Member, IEEE, Peter A. Beerel, Member, IEEE, Jerry R. Burch, and Kenneth L. McMillan

Abstract—In many computer-aided design tools, binary decision
diagrams (BDD’s) are used to represent Boolean functions. To in-
crease the efficiency and capability of these tools, many algorithms
have been developed to reduce the size of the BDD’s. This paper
presents heuristic algorithms to minimize the size of the BDD’s
representing incompletely specified functions by intelligently as-
signing don’t cares to binary values. Experimental results show
that new algorithms yield significantly smaller BDD’s compared
with existing algorithms yet still require manageable run-times.
These algorithms are particularly useful for synthesis application
where the structure of the hardware/software is derived from the
BDD representation of the function to implement because the min-
imization quality is more critical than the minimization speed in
these applications.

Index Terms—Binary decision diagrams (BDD’s), incompletely
specified functions, sibling-substitution.

I. INTRODUCTION

T HE EFFICIENT representation and manipulation of
Boolean functions is critical to many computer-aided de-

sign applications including logic synthesis, formal verification,
and testing. Binary decision diagrams (BDD’s) [1] have proven
to be an efficient means of representing and manipulating many
commonly used Boolean functions. For BDD-based tools, the
size of the BDD’s can determine their run-time efficiency,
the problem size that they can handle and/or the quality of
the circuits or software they synthesize. This paper focuses
on BDD-based synthesis applications in which the quality of
minimization is more critical than the minimization run-time.

The size of BDD’s are heavily affected by the variable or-
ders and many techniques have been developed to find BDD
variable orderings that lead to compact BDD’s [2]–[5]. Among
many types of BDD’s, reduced ordered BDD’s (ROBDD’s) are
most widely used ones in practice. For a given variable ordering,
the ROBDD representation of a completely specified function is
unique. For an incompletely specified function, however, many
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ROBDD’s can be used to represent the function, each associ-
ated with a different assignment of don’t cares (DC’s) to binary
values. This paper assumes the variable ordering is fixed and
addresses the problem of finding an assignment of DC’s that
yields a small ROBDD representation.

There are many synthesis tools in which circuits are directly
derived from their BDD functional representation. For example,
hazard-free multilevel logic based on multiplexor-based cir-
cuits can be directly derived from BDD’s [6], [7]. In addition,
T. Karoubaliset al. showed that differential cascode voltage
switch (DCVS) logic circuits, which have many potential
advantages such as performance and high layout density, can
be optimally synthesized from BDD’s due the canonicity of
BDD’s [8]. Moreover, Lavagnoet al. presented a BDD-based
timed Shannon circuits synthesis tool in which reducing the
BDD size can lead to lower power consumption [9].

In the technology mapping area, multiplexor-based field pro-
grammable gate array (FPGA) mapping can be directly per-
formed on the BDD’s that represent the logic functions [10],
[11]. Changet al.applied DC-based BDD minimization in their
FPGA mapping framework to reduce the size of the BDD’s rep-
resenting subject graphs, yielding more area-efficient circuits
[11].

The application of BDD’s can also be found in software syn-
thesis area. Chiodoet al.[12] use a BDD as an intermediate rep-
resentation to generate a software program because of the close
connection between the BDD representation of a function and
the structure of the software program they synthesize. The size
of the software is determined by the BDD size, which means
that the size of the BDD is critical to reduce software size [13],
[14].

For incompletely specified functions, many BDD’s can be
used to represent the function; each associated with a different
assignment of binary values to DC’s. Finding the assignment
that leads to the smallest BDD is known to be NP-complete [15]
and exact techniques [16], [17] are typically too computation-
ally expensive. Therefore, heuristic algorithms have been devel-
oped to address thisBDD minimization problem[11], [18]–[20].
These heuristics try to maximize the instances ofnode sharing
or sibling-substitution[19] during the minimization process.
BDD nodes becomesharedif the reassignment of DC’s makes
their associated functions identical.Sibling-substitutionis a spe-
cial case of node sharing where a child of a BDD nodeis re-
placed by the other child of. Sibling-substitution leads to fewer
nodes because a parent and its two children are replaced by the
child when the two children are made identical.

Restrictandconstrain(also known asgeneralized-cofactor)
[18], [21], [22] are well known BDD minimization algorithms
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based on sibling-substitution and often achieve significant size
reduction. Interestingly, however, these algorithms can yield a
BDD far from being optimal and in fact larger than the original
BDD.

Changet al. [11] proposed a heuristic that makes multiple
sub-BDD’s shared by assigning DC’s to binary values while
traversing the BDD from top to bottom level by level. The reduc-
tion potential of their method is large, but its high computational
complexity prohibits its application to large BDD’s.

Shipleet al.[19] proposed a framework to relate sibling-sub-
stitution-based heuristics and Chang’s heuristic, and explored
their variants. Their experimental results suggest that sibling-
substitution-based heuristics, specifically restrict and its vari-
ants typically outperform others in terms of both run-time and
resulting BDD size.

Recently, Drechsleret al. proposed evolutionary algorithm-
based BDD minimization algorithms that can handle multiple-
output functions [20]. However, the minimization quality in this
approach is very sensitive to some user-defined parameters [17].

Note that all the existing heuristics may produce larger
results and a common way to avoid using a larger BDD is to
compare the original BDD with the “minimized” BDD and
use the smaller one. We refer to this approach asthresholding.
The potential for the size increase, however, suggests that these
methods may not produce BDD’s as small as those produced by
algorithms thatinherentlyguarantee that no sub-BDD becomes
larger.

This paper describessafeBDD minimization heuristics, i.e.,
they guarantee the resulting BDD is not larger than the original
BDD inherently. These algorithms are based on sibling-substitu-
tion because sibling-substitution itself is very powerful and effi-
cient. The key idea ofsafeminimization heuristics is to perform
sibling-substitution only on the nodes that we can guarantee will
not cause an overall increase in BDD size. These techniques can
lead to better minimization results by preventing sibling-substi-
tutions that can cause overall size growth while allowing sib-
ling-substitutions elsewhere. Our heuristics can also be applied
to minimize multiple BDD’s safely.

Our experimentations on ISCAS and MCNC benchmarks
using various types of DC’s demonstrate that our new heuris-
tics outperform existing sibling-substitution based heuristics
significantly in minimization quality. Another strength of
our heuristics is their low computational complexity which
allows them to be able to minimize large BDD’s that cannot be
handled by competitive existing heuristics.

The organization of the paper is as follows. After defining
the problem and presenting relevant notations in Section II, we
present three new heuristics in Section III. We report our exper-
imental results in Section IV and present conclusions in Sec-
tion V.

II. PRELIMINARIES

An -input -output Boolean function is a mapping
. A Boolean function can also be described as the set of

all input points, i.e., minterms, for which the functionevalu-
ates to 1; this set is referred as the “on-set” of. Similarly, the
“off-set” of is the set of all input points for which the func-
tion evaluates to 0. If we do not care if the function evaluates

to 0 or 1 for a set of input points, i.e., the function is defined
over a subset of , the function isincompletely specified, and
such input points are called the “don’t care-set.” Therefore, the
domain of any single-output Boolean function can be parti-
tioned into three subsets, (the on-set), (the off-set),
and (the don’t care-set). A completely specified function
has empty, while an incompletely specified function has
a nonempty don’t care set. Any two of these sets uniquely de-
scribes an incompletely specified function.

An incompletely specified function can be represented
by a pair of completely specified functions for which

, , and . For a given
incompletely specified function , there are many such func-
tions , each referred to as acoverof [19], [23], representing
different partitions of into and .

A BDD represents a function as a graph [1]. A BDD can have
two types of nodes; leaf nodes and nonleaf nodes. The leaf nodes
are either 0 or 1, representing the Boolean functions 0 and 1,
respectively. Each nonleaf nodehas two outgoing edges; a
then-edgeand anelse-edge. Each edge is connected to achild
node of and is theparentof the child nodes. The two child
nodes aresiblingsof each other. Each nonleaf nodeis associ-
ated with a Boolean variable. The child of reached via the
then-edge is called the positive cofactor ofwith respect to
and is denoted by ; the other child is called the negative co-
factor of with respect to and is denoted by . The cofactor
of with respect to a cube1 is the successive cofactoring of
with respect to all the literals in the cube. Each noderepre-
sents a Boolean function. The size of , denoted , is the
number of nodes in the BDD rooted at.

An OBDD is a BDD with the constraint that the input
variables are ordered and input variables appear in ascending
order in every path from root to leaves. An ROBDD is an
OBDD where there is only one node representing a distinct
function. Bryant [1] proved that ROBDD’s are canonical, i.e.,
the ROBDD representation of a completely specified function
is unique under a fixed variable ordering. ROBDD’s have
practically proven most useful because of their canonicity and
compactness. Therefore, we focus on ROBDD’s and we refer
to ROBDD’s simply as BDD’s in this paper.

An incompletely specified function can be represented by
a BDD pair describing a pair of completely specified
functions , where is a cover of the incompletely speci-
fied function and denotes the care-function. Among all covers
of , there must be at least one coverwhose BDD is
smallest in size. Unfortunately, finding a smallestis NP-com-
plete [15], so we consider heuristic approaches. Given ,
finding an that is hopefully close to minimal in size is called
BDD minimization using don’t cares. We call the original
BDD and theminimizedBDD.

III. SAFE BDD MINIMIZATION BASED ON

SIBLING-SUBSTITUTION

The main differences among sibling-substitution based BDD
minimization techniques lie in the criteria on which they per-

1A cube is a set of literals and represents the function obtained by their product
[24].
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form sibling-substitution. The simplest criterion is based on the
observation that a function can be covered by any function
if corresponds to a DC function. We refer to this condition
asDC-substitutabilitywhich is formally defined as follows.

Definition 1—DC-Substitutability: is DC-substitutable if
.

The most widely used heuristic, restrict, is based on DC-sub-
stitutability. Restrict recursively traversesand concurrently
in depth-first order. In each recursive call, a new pair ofand

nodes is visited and restrict checks if either of the positive or
negative cofactor of the node is DC-substitutable with respect
to their corresponding nodes. Whenever a cofactor is found
DC-substitutable, sibling-substitution is performed to the parent
(removing the parent and one child), and the result is built re-
cursively by continuing traversal only to the cofactors that are
not substituted.

Note that restrict, while always reducing the size of the target
sub-BDD, can increase the size of a BDD that contains the target
sub-BDD, as illustrated in Fig. 1.2 Consider the node in Fig.
1(a) which can be reached from the root by two differentpaths
and has two different associated care subsets, represented by
node and leaf-1, respectively in depicted in Fig. 1(b). The
different pairs of node and associated care subsets will be an-
alyzed in different recursive calls of restrict. Consider first the
recursive call in which the negative cofactor of node(with re-
spect to the variable) in , node , is analyzed with the corre-
sponding care nodein . Because the care node is not leaf-0,
the algorithm recurs to nodeand analyzes its positive and neg-
ative cofactors. Since’s negative cofactor corresponds to a DC
(leaf-0 in C), sibling-substitution is applied to(replacing
with its positive cofactor leaf-0). Notice that this results in a
smaller sub-BDD rooted at. However, when node is ana-
lyzed with the care node leaf-1 in a subsequent recursive call,
the sub-BDD rooted at (including node ) cannot be reduced
at all because the entire sub-BDD corresponds to a care sub-
function. Consequently, nodebecomes unshared orsplit, and
this node-splittingleads to the overall size increase illustrated
in Fig. 1(c).

We can formally describe node-splitting using a relation
from edges in to nodes in defined as follows.

Definition 2: Given two BDD’s and , the then-edge
(else-edge) of a node in is related to a node in iff
there exist cubes and such that

denotes denotes , and denotes , where is
the variable associated withand is the cofactor of with
respect to . We denote a set of nodes in that an edge in

is related to by .
Intuitively, the set describes the set of care nodes that

are visited during the recursive calls of restrict obtained by re-
curring through the edge. More precisely, the set consists
of those care nodes analyzed in recursive calls: 1) in which the
target of is analyzed and 2) that are called by recursive calls
in which the source of is analyzed. For example, consider
and shown in Fig. 1. For the cubesand , is denoted by

2In this paper, we label each node in a BBD by the variable that the node
is associated with. When more than two nodes are associated with the same
variable, numeric subscripts are used to distinguish the nodes. The then-edge
(else-edge) is represented by a solid line(broken line).

(a)

(b)

(c)

Fig. 1. Restrict example: (a)F , (b)C , and (c)F .

the node in , by in , and by in . According
to Definition 2, the else-edge of in is related to in . In-
tuitively, this means that in the only recursive call through the
else-edge of , the corresponding care node is.

As another example, consider the cubesand . Both
and are represented by in . and are repre-
sented by leaf-1 in , and and are represented by
and leaf-1, respectively, in . Consequently, the then-edge of

in is related to both and leaf-1 in . This makes sense
because the then-edge ofis recurred through twice, once with
the corresponding care nodeand a second time with the care
node 1.

The related nodes of all edges ofare shown in Fig. 2.
Notice that restrict applies sibling-substitution toif the re-

lated nodes of its outgoing edgeincludes leaf-0, i.e., leaf-0
. Node-splitting may occur if also includes a non-DC

because the original node (or a modified version of it) is needed
in the result in such case. Consequently, an originally shared
node, such as , can become unshared by the minimization
process, leading to overall BDD size growth.

We note that DC-substitutability is a sufficient but not nec-
essary condition for a node to be able to substitute its sibling
as pointed out by Shipleet al.in [19]. They developed variants
of restrict using relaxed criteria that allow more sibling substi-
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Fig. 2. An example of the relationR (0 and 1 mean leaf-0 and leaf-1,
respectively).

Fig. 3. Top level pseudocode for the proposed heuristics.

tutions. However, like restrict, many of these sibling substitu-
tions cause node-splitting and consequently often cause BDD
size growth.

We define general-substitutability as follows.
Definition 3—General-Substitutability3: is substitutable

by if is a cover of .
We develop safe minimization heuristics by performing only

the sibling-substitution that we can guarantee will not cause
an overall BDD size increase. In other words we further con-
strain the condition to perform sibling-substitution even if sub-
stitutability holds.

Our algorithms basically consist of two phases. In the first
phase, calledmark-edges, the original BDD is preprocessed to
conservatively identify nodes for which applying sibling-substi-
tution does not increase overall BDD size. In the second phase,
calledbuild-result, sibling-substitution is selectively applied to
the nodes identified in the first phase. In the trivial case when
is zero BDD, the zero BDD is returned as a minimization result
without calling mark-edges. The top-level pseudocode for our
algorithms is presented in Fig. 3.

We present three different compaction algorithms. The first,
calledbasic compaction, performs a subset of the sibling-sub-
stitutions that we can conservatively guarantee do not lead to
node-splitting. The second, calledleaf-identifying compaction,
allows special types of node-splitting and the last, calledgen-
eralized-substitutability-based compaction, uses a generalized
sibling-substitution criterion to achieve further gain. The three
algorithms have the same basic top-level pseudocode (Fig. 3)
but differ in the implementation of mark-edges and build-result.

A. Basic Compaction

Basic compaction (B-compaction)is designed to conserva-
tively avoid sibling-substitutions that may cause node-splitting.
In particular, B-compaction applies sibling-substitution to a
node only when an out-going edgeis related to the DC-leaf

3General-substitutability is more general than one-sided match proposed by
Shipleet al. [19] because one-sided match requiresff � gg to substitute
ff by gg even ifgg is a cover offf .

Fig. 4. An example of mark-edges.

Fig. 5. Mark-edges pseudocode.

Fig. 6. An example of build-result.

only, i.e., . To do this, B-compactionmarksedges
that are related to a non-DC node in the mark-edges prepro-
cessing phase and then selectively performs sibling-substitution
only on the source nodes of nonmarked edges in the build result
phase.

Consider an edge between nodesand in that is related
to multiple nodes in . If any of these nodes is not leaf-0, we
can conservatively assume that substitutingwith its sibling
may cause node-splitting (i.e., nodeor a modified version of
it is needed). Consequently, mark-edges marks an edge if it is
related to anything other than leaf-0. For example, in Fig. 4, the
else-edge of in is related to both leaf-0 and leaf-1 inand
therefore it is marked. The pseudocode for mark-edges is shown
in Fig. 5.

The second build-result phase creates minimized BDD solely
based on the markings on edges in. If an edge from a node
to any of its child nodes is not marked, then can be safely
replaced by ’s sibling via sibling-substitution. Otherwise,is
preserved and its children are recursively rebuilt. Fig. 6 illus-
trates thisselectivesibling-substitution based rebuilding tech-
nique on an edge-marked BDD.

Fig. 7 shows the pseudocode of the build-result routine. For
example, iff.then_markis 1 andf.else_markis zero, that means
the sub-BDD rooted at must remain (in its original or mod-
ified form) and the sub-BDD rooted at is replaced by its
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Fig. 7. Build-result pseudocode.

Fig. 8. Basic compaction pseudocode.

sibling in the result. A symmetric rule applies to the reverse
case. Note that mark-edges marks at least one of then-edge and
else-edge for each node and, thus, does not need to consider the
case in which both edges are not marked.

Fig. 8 presents the pseudocode of B-compaction. The time
complexity of mark-edges is because each pair
of nodes from and is called only once by using an
operation cache. Due to the application of a second operation
cache, build-result processes each node only once, yielding
a time complexity of . Clear-edgesroutine clears the
edge-marking fields after building the result and has time com-
plexity of . Consequently, the overall time complexity of
B-compaction is , the same complexity as restrict.

We show that B-compaction issafe. Recall that a BDD mini-
mization using DC’s is safe if the minimized BDD is guaranteed
to be no larger than the original BDD, i.e., .

Theorem 1: B-compaction is safe.
Proof: The result of B-compaction on is produced by

build-result. Hence, results from by replacing some nodes
with one of their descendents.

Intuitively, B-compaction is safe because it ensures that no
nodes will be split. This property can be deduced from the struc-
ture of build-result. It creates one node for each node it visits
(which uniquely depends on the edge-marking) and visits each
node at most once (because of the operation cache). Specifically,
nodes that are not reachable from the root by a path of marked
edges are not visited by build-result and, thus, not included in
the minimized BDD.

B. Leaf-Identifying Compaction

This subsection presents an enhanced safe minimization tech-
nique in which a special type of node splitting is allowed. Con-
sider the set of sibling-substitutions applied toto substitute
its child with another child of . When the results of all the
substitutions for are unique, then the sibling-substitutions can
increase the BDD size only by the size of the unique result.
Leaf nodes are special in that they areessentialfor all nontrivial

BDD’s. So, the idea of the new algorithm is to accept the result
of sibling-substitution if the result is a unique leaf (i.e., replace
the edge from to with an edge from to the leaf). Note
that, may be preserved or replaced in the minimized BDD if
it has multiple parents, depending on sibling-substitutions with
respect to its other parents.

In effect, more sibling-substitution is allowed in LI-com-
paction compared to B-compaction. That is, LI-compaction
allows sibling-substitution to a nodeto replace a child by
its sibling if = {leaf-0} (like B-compaction does) or to
replace by a leaf if the leaf is a cover of for all ,
where is the edge betweenand .

This approach will usually lead to better results for two rea-
sons. First, a sub-BDD that is preserved in B-compaction can
be replaced by a leaf in LI-compaction. We call this type of
gainGain 1. Second, the number of edges marked can be less
than in B-compaction because the edge-marking routine needs
not recur through edges to be redirected to leaves. This type of
gain is calledGain 2. Typically, fewer edge-markings leads to
smaller BDD’s because build-result removes nodes connected
by unmarked edges. Note, however, that this approach is not
guaranteed to produce better results than B-compaction because
the two algorithms can result in different unshared nodes be-
coming shared unpredictably.

This new approach can be implemented using a two-phase
edge-marking routine and a modified build-result. The first
phase of edge-marking computes the results of all possible
sibling-substitutions from which it identifies the edges that
can be redirected to leaves. The second phase is similar to the
basic mark-edges routine except that it does not recur through
edges that can be redirected to leaves. After the edge-marking,
the modified build-result routine redirects all identified edges
to their annotated leaf and applies sibling substitution to all
remaining unmarked edges.

Fig. 9 shows an example where both gains contribute in
minimizing the BDD. First, the then-edge from nodeand the
then-edge from node can be redirected to the leaf-0 (Gain
1). Consequently the then-edge of nodeis unmarked (Gain
2). The modified build-result routine leads to a minimized
BDD with two nodes less than the original BDD. In contrast,
B-compaction leads to no minimization because the basic
edge-marking routine must mark all edges.

The run-time complexity of this approach is almost twice as
much as B-compaction because of the two-phase edge-marking
routine since each edge-marking phase has com-
plexity. If we do not pursue the gain from fewer marked edges
(Gain 2), it is possible to merge the two phases of edge marking
into one. Our experiments suggest that degradation of quality
is negligible. We believe this is because it is unlikely that all
nodes on the paths leading to an excessively marked edge can
be redirected to a unique leaf (so that no marking is required
for the edge). Thus, this compromise represents a good perfor-
mance/run-time tradeoff.

We refer to this enhanced algorithm with the above compro-
mise asleaf-identifying compaction (LI-compaction)and it is
given in Fig. 10. Finding and annotating nodes is performed
in a preprocessing phase calledLI-mark-edges. Like restrict,
this phase recursively performs sibling-substitution. However,
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Fig. 9. Improved result by leaf-identification: (a)F , (b) C , (c) edges
associated with leaves, (d) edge-marking skipping edges associated with
leaves, (d) build-result being applied, and (f)F .

instead of returning the actual BDD result, it returns a classifica-
tion of the result. This classification identifies whether the edge
can be redirected to a 1 (encoded b01), 0 (encoded b10), DC
(encoded b00), or nonleaf (encoded b11). The encoding facili-
tates a bitwise-OR scheme that implements the relative priority
of nonleaves over leaves and leaves over DC’s. Fig. 11 illustrates
an example of leaf-identifying compaction where one edge, the
then-edge of , is additionally marked compared to the example
in Fig. 9(d).

The overall time complexity of LI-compaction is the same as
the complexity of B-compaction which is .

We would like to note that it is not difficult to identify more
essentialnodes (rather than just leaf nodes) by comparing each

node and its corresponding nodes. That is, if a node in
corresponds to leaf-1 in , the node is essential. Consequently,
we can extend LI-compaction by allowing sibling-substitutions
that returns such essential nodes (instead of just leaves). Our ex-
periments suggest, however, that this extension does not lead to
significant improvements over LI-compaction (presumably be-
cause the possibility of being able to replace a node with a non-
leaf essential node is typically not high). Due to lack of space,
we refer the reader to [25] for more details.

C. General-Substitutability Based Compaction

Recall that various criteria can be applied to determine when
a node can be replaced by its sibling and we discussed two sib-
ling substitution criteria, DC-substitutability and general substi-
tutability. Fig. 12 illustrates why general substitutability is more
powerful than DC-substitutability. Notice that sibling-substitu-
tion can be applied to nodesor by general-substitutability,

Fig. 10. LI-compaction pseudocode.

however, only is substitutable by DC-substitutability. The re-
sulting BDD produced by the sibling-substitution applied to,
illustrated in Fig. 12(d), is smaller than obtained by substituting
node , illustrated in Fig. 12(c). The primary reason for this size
difference is that node corresponds to a larger sub-BDD than
node and thereby its sibling substitution typically removes
more nodes. Consequently, the application of general substi-
tutability provides more opportunities for sibling substitution
than possible using DC-substitutability and, if wisely applied,
can lead to smaller BDD’s.

We present the pseudocode for the substitutability check
based on general-substitutability in Fig. 13. When two nodes
can substitute each other, we give priority to substituting the
node at the higher level because, as mentioned previously, this
typically yields smaller BDD’s. Alternatively, we can measure
the size of each BDD to find a larger one, but in our experience
this does not lead to significant improvements.

To incorporate the generalized criterion into B-compaction,
we could simply change the sibling-substitution criteria
from DC-substitutability to general substitutability in the
edge-marking routine. However, this naive approach fails
and the reason is as follows. Consider theand BDD’s
illustrated in Fig. 14(a) and (b), respectively. The else-edge
of node (connected to node) in is related to care nodes

. Let’s first apply edge-marking using the care node
based on general substitutability. The nodeis substitutable
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Fig. 11. LI-compaction example: (a)F , (b)C , (c) edge-marking result, and (d)F .

Fig. 12. DC-substitutability versus general-substitutability: (a)F , (b)C , (c) sibling substitution tob by DC substitutability, and (d) sibling substitution toa by
general substitutability.

Fig. 13. Substitutability check pseudocode (a constantf to f , f to f , or
NONE is returned according to substitutability direction).

by its sibling in this case because they differ only whenis 0
which is in the don’t care set specified by. Consequently, the
else-edge of is not marked and using the naive edge-marking
procedure we do not recur through. Thus, at this point all
edges below are not marked [see Fig. 14(c)]. This makes
sense because the entire sub-BDD rooted at nodeat this
point seems unnecessary since we are under the assumption
that node will be removed by a sibling substitution to node
. This assumption, however, breaks down when mark-edges

processes the else-edge of nodewith its other corresponding
care node which prohibits sibling substitution to node. The
consequence of this assumption breakdown is that mark-edges
does not mark some edges that should be marked. In our

example, mark edges fails to mark the then-edge ofwhich
should be marked because the sibling-substitution to node
cannot be performed and this edge relates to leaf-1 [see Fig.
14(e)]. This leads to an incorrect cover ofas shown in Fig.
14(f).

This example suggests that we can safely skip recurring
mark-edges through an edgeonly when we are guaranteed that
the intended sibling-substitution will be performed as assumed.
In order to guarantee that the intended sibling-substitution on a
node is performed, we must analyze all of its ancestors in con-
junction with all of their associated care nodes. This motivates
processing the nodes in in a top-down level-by-level order.

We can process edges while traversing from top to
bottom level by level. However, this requires cumbersome
bookkeeping of all related nodes for each edge. Alternatively,
we can accomplish this top-down processing using a two-phase
mark-edges routine without increasing run-time complexity.
The basic idea is that one phase performs edge-marking
assuming that currently unmarked edges will stay unmarked.
The other phase checks if the assumption associated with each
sibling-substitution (that a particular edge remains unmarked)
holds and reinvokes the first edge-marking phase as required if
the assumption is invalidated.

The pseudocode for this new compaction algorithm called
generalized substitutability based compaction (GS-compaction)
is presented in Fig. 15. The first edge-marking phase, called
mark-essential-edges, tests the sibling-substitution condition
only if the edge connected to the node considered has not been
marked thus far. If the substitutability holds, it does not recur
through the node to be substituted, marks the edge connected to
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Fig. 14. Failure of using general-substitutability in B-compaction: (a)F , (b)
C , (c) markF edges byc , (d) markF edges byc , (e) final marking, and (f)
minimized result (not a cover of[F; C]).

its sibling, and continues this process to the node connected by
the marked edge. The sibling-substitution is recorded in a list
whose elements are triples of the node in, the node in , and
the sibling-substitution direction. For the example presented
in Fig. 14 the marking-result shown in Fig. 14(e) is the result
of mark-essential-edges. The second edge-marking phase,
calledmark-supplemental-edges, sorts the list by the level of
nodes in order to process the edges connected from higher
nodes first. Then, it removes the first sibling-substitution, e.g.,
substituting in with its sibling , from the list and check if
it is valid. If the sibling-substitution is still valid, the care-set of

needs to be added to the care-set of. This care-set update is
implicitly done by invoking mark-essential-edges withand
the node representing the care-set ofas parameters. If the
sibling-substitution of is found invalid, mark-essential-edges
is invoked with and the node representing the care-set
of as parameters. Whenmark-essential-edgesfinishes,
mark-supplemental-edgesresumes the validation process until
the list is empty. Note that new sibling-substitutions might
be recorded bymark-essential-edgeswhich is invoked by
mark-supplemental-edges.Build-result routine is the same as
in B-compaction. In our example, the sibling-substitution to
in is checked first. As both outgoing edges are found marked,
the sibling-substitution is invalidated and then-edge ofin
becomes marked eventually.

The time complexity of mark-essential-edges is
because the substitutability routine requires

and that routine is called at most times
by mark-essential-edges. The time complexity of mark-essen-
tial-edges is , where
the first term describes the time complexity of mark-essen-
tial-edges and the second term describes the time complexity

Fig. 15. GS-compaction pseudocode.

for quick sort. Note that mark-essential-edges does not repeat
the same computation because of the operation cache. Build-re-
sult and clear-edges both have time complexity.
Therefore, the overall time complexity of GS-compaction is

.

D. Multiple BDD’s Minimization

It is important to note that safe BDD minimization does not
itself guarantee overall reduction in the size of multioutput
circuits. This is because each output is represented by one BDD
and existing safe BDD minimization does not consider the
sharing among BDD’s. Consequently, minimizing one BDD
may reduce the sharing among BDD’s, potentially leading
to an overall increase in BDD nodes. This suggests that the
synthesized circuit might be larger after BDD minimization
using existing techniques.

Fortunately, we can extend the concept of safety to handle
multiple BDD’s. The basic idea is to first complete all edge-
markings for each output functionand corresponding care set
, and only then apply build-result for each. It is easy to show

that this simple modification ensures that minimization of mul-
tiple BDD’s will be safe. In fact, for circuits with lots of sharing
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TABLE I
MINIMIZATION RESULTS ONBBD’s FOR SEQUENTIAL CIRCUITS USING UNREACHABLE STATES AS DC’s

among cones of logic this feature can have a significant impact
in overall BDD size.

We can apply this separated edge-marking and build-re-
sult concept to all three proposed compaction heuristics.
In our experiments, however, we only applied this method
to GS-compaction. We call this variant of GS-compaction
GSM-compaction.

IV. EXPERIMENTAL RESULTS

We conducted experiments in SIS-1.2 [26] to compare our
heuristics to existing sibling-substitution based heuristics,
specifically, restrict and one of its variantsosm-bt[19]. Osm-bt
was chosen among a variety of heuristics developed by Shiple
et al. [19] because it showed the best overall results in the
examples they tested. Because the two existing heuristics can
produce larger BDD’s than the original BDD’s, we applied
thresholding to them which means that we return the original
BDD’s if the heuristics produce larger BDD’s. All the experi-
ments were conducted on a SUN SPARC 20/128 MB.

In our first experiment, we minimized the BDD’s repre-
senting the combinational logics of sequential circuits from
ISCAS-89 and ISCAS-Addendum-93 benchmark circuits using
their unreachable states as DC’s. The BDD variables were
ordered using the static variable ordering heuristic proposed in
[22].4 For some of the largest circuits, exact reachable states
could not be computed because the memory requirements were
too high. For three of these circuits, however, we were able to
compute a superset of reachable states usingmachine-by-ma-
chine (MBM) traversal, an approximate finite state machine
(FSM) traversal technique proposed by Choet al. [27], and
used the complement of the result as DC’s. The result of MBM
traversal takes the form of implicit conjunction, i.e., a set of

4Performing dynamic variable ordering (DVO) on the original and/or min-
imized BBD’s can sometimes achieve further reductions in BDD size (at the
expense of significant additional run-time) but was not considered here to keep
the experiment and the analysis of the results simple and focused.

BDD’s representing reachable states on partitioned state spaces,
and we constructed a single care BDD by conjuncting all of
them. We minimized each BDD representing a combinational
logic cone using the single care BDD, individually.

The results are given in Table I. The nodes shared by mul-
tiple BDD’s are counted once for each BDD to better illustrate
the minimization quality on individual BDD’s. GS-compaction
demonstrates the best performance except for one example s510
in which the difference is only 2 nodes. This suggests that the
safety feature consistently improves minimization quality when
combined with general substitutability. We show the ratio of the
smallest BDD sizes obtained using new heuristics and existing
heuristics in the column denotedimprov. New heuristics pro-
duce up to 15.5% (6.3% on average) smaller BDD’s than the
BDD’s produced by existing heuristics. We observed that there
were many BDD’s that no heuristics can reduce their sizes at all
(possibly because those BDD’s were already minimized). When
we exclude such BDD’s from the result, the improvement factor
becomes almost two times larger.

The numbers in parentheses in the Table I indicate the
run-time of each minimization in units of CPU seconds. Be-
cause compaction heuristics require more phases than restrict,
they are slower than restrict. In particular, GS-compaction
requires a time-consuming substitutability check which re-
quires significant run-time overhead. However, GS-compaction
is much faster than its counterpart osm-bt for large BDD’s
even though GS-compaction uses a more general substitution
criterion than the one used by osm-bt. This is because GS-com-
paction skips many substitutability checks, i.e., GS-compaction
does not check substitutability for the nodes connected by
marked edges.

In our second experiment, we minimized the BDD’s rep-
resenting the combinational circuits from ISCAS-89 and
MCNC-91 benchmark. The BDD variables were statically
ordered using the heuristic proposed in [2]. We used randomly
created DC’s with 95% and 5% DC fractions for each BDD
representing a combinational logic cone to demonstrate the
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TABLE II
MINIMIZATION RESULTS ONBBD’s FOR COMBINATIONAL CIRCUITS WITH RANDOMLY GENERATED 95% DC’s

TABLE III
MINIMIZATION RESULTS ONBBD’s FOR COMBINATIONAL CIRCUITS WITH RANDOMLY GENERATED 5% DC’s

impact of the DC fraction on the improvement ratio. As
suggested in [23], [28], and [29], to increase the statistical
significance of our results, for each DC fraction, we used five
different seeds to generate 5 different DC sets and report the
average minimization ratios. In particular, for each DC set,
we minimized each BDD representing a combinational logic
cone using its respective care BDD with all the minimization
heuristics. Recall that GSM-compaction, the modified ver-
sion of GS-compaction which safely minimizes multioutput
BDD’s, however, performs edge-markings on all BDD’s before
building the result. The results from the modified version of
other compaction heuristics are not shown because they show
similar improvements compared to their original versions.

Tables II and III show the results with 95% DC’s and 5%
DC’s, respectively. We count the nodes shared by multiple
BDD’s only once for these results. The results show that our
compaction algorithms consistently outperform the competitive
algorithms in all cases. The improvement factors for our
compaction algorithms, however, are much higher in the case
of 95% DC fractions. This is because there is more flexibility
of minimization with more DC’s. Second, the results show that
the additional safety feature of GSM-compaction for multi-
output BDD’s can lead to dramatic reductions in BDD size.
For example, the BDD’s obtained using GSM-compaction for

C499 are more than two times smaller than the BDD’s obtained
using GS-compaction. However, it is also interesting to note
that GSM-compaction does not always produce better results
than GS-compaction because sometimes node splitting leads to
smaller BDD’s whose total size is smaller than its originally
shared BDD. (Recall that this is the same reason why safe BDD
minimization might not be better than nonsafe heuristics.)

The advantage of GSM-compaction over osm-bt in terms of
run-time is clearer in this experiment because we observe two
examples that osm-bt cannot complete the minimization within
10 h.

V. CONCLUSION

We presented new efficient heuristics to minimize the size of
BDD’s using DC’s. The key idea of new heuristics is to selec-
tively minimize sub-BDD’s while traditional heuristics blindly
minimize all sub-BDD’s. By removing the source of size
growth, we were able to achieve better overall minimization
quality. We demonstrate that the new heuristics significantly
outperform traditional heuristics on most examples from bench-
mark circuits. We also generalize our mechanism to prevent the
size growth to handle multiple BDD’s with sharing and present
experimental results that demonstrate its effectiveness.
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