
Design of a High-Speed Asynchronous Turbo Decoder

Pankaj Golani, Georgios D. Dimou, Mallika Prakash, Peter A. Beerel

Department of Electrical Engineering-Systems
University of Southern California, Los Angeles, CA 90089

{pgolani,dimou,mallikap,pabeerel}@usc.edu

Abstract

This paper explores the advantages of high
performance asynchronous circuits in a semi-custom
standard cell environment for high-throughput turbo
coding. Turbo codes are high-performance error
correction codes used in applications where maximal
information transfer is needed over a limited-
bandwidth communication link in the presence of
data corrupting noise. Specifically we designed an
asynchronous high-speed Turbo decoder that can be
potentially used for new wireless communications
protocols with close to OC-12 throughputs. The
design has been implemented using a new static
single-track-full-buffer (SSTFB) standard cell library
in IBM 0.18µm technology that provides low latency,
fast cycle-time, and more robustness to noise than
previously studied single-track full-buffer technology
(STFB). A high-speed synchronous counterpart using
the same high-speed architecture is designed in the
same technology for comparison. The results
demonstrate that for a variety of network constraints,
the asynchronous design provides advantages in
throughput per area. Moreover, the asynchronous
design can support very low-latency network
constraints not achievable with the synchronous
alternative.

1. Introduction

Driven by overwhelming design-time constraints,
standard-cell based synchronous design styles
supported by mature CAD design tools and a largely
automated flow dominate the ASSP and ASIC market
places. As device feature sizes shrink and process
variability increases, however, the reliance on a
global clock becomes increasingly difficult, yielding
far-from-optimal solutions. Because standard-cell
designs use very conservative circuit families and are
often over-designed to accommodate worst-case
variations, the performance and power gap between

full-custom and standard-cell designs continuously
widens [20].

Recent research demonstrates that it is possible to
narrow this gap using conventional standard-cell
techniques with asynchronous cell libraries. For
example, two prototype standard-cell libraries in TSMC
0.25µm technology for two different asynchronous
templates have demonstrated high-performance [1][2].
One using a Single Track Full Buffer (STFB) library
[1][2] successfully operate over a wide range of
temperatures and voltages, with a measured frequency
of over 1.2 GHz at a nominal 2.5 Volts [1]. This should
be compared to the typical 300 MHz standard-cell
synchronous designs achievable in the same process. In
addition, a second generation single track family called
Static Single Track Full Buffer (SSTFB) has been
proposed which promises to have similar advantages
while being more robust to higher process variability,
crosstalk noise, and leakage currents [4][6].

This paper explores the library development and
application of SSTFB to the asynchronous core of an
ultra-high-throughput turbo decoder designed for close
to OC-12 data rates [18] with different data block sizes.

We designed both synchronous and asynchronous
ASIC cores to compare area, throughput, and power.
The synchronous design requires substantially more
parallelism to match the throughput of the
asynchronous design. Consequently, our post-layout
results on a significant portion of the design, including
the critical path, indicate that we achieve up to a 2X
improvement in throughput per area for small to
medium block sizes and can support smaller block sizes
at higher throughputs than achievable by the
synchronous counterpart.

The remainder of this paper is organized as follows.
Section 2 will cover necessary circuit and an
introduction to turbo coding, with emphasis on the
implementation challenges of a high-speed turbo
decoder. Section 3 will introduce an efficient high-
speed turbo decoding tree-SISO architecture and our
synchronous baseline implementation. Section 4 will
then describe our asynchronous implementation,

2

covering both the IBM 0.18µm SSTFB library
development as well as P&R design flow. Section 5
will then describe the design verification and post-
layout performance of both designs. Section 6 details
the comparison between synchronous and
asynchronous cores. Finally, Section 7 concludes and
outlines areas of future work.

2. Background

This section begins by describing the STFB and
SSTFB templates, followed by necessary background
on Turbo decoding.

2.1. STFB Template

Figure 1. Typical STFB transistor-level schematic

Figure 1 shows a typical STFB cell’s transistor-
level diagram of a n-bit input 1-bit logic function.
When there is no token in the dual-rail output channel
(R0/R1), the 2-input NOR acts as right completion
detection (RCD) block and asserts the “B” signal,
enabling the processing of next set of input token. In
particular, when the next set of tokens arrive at the n
dual-rail input channels (L0i/L1i) the logic function is
evaluated and one of the state signal “S0” or “S1” is
lowered, dependent upon if the logic function
evaluates to 0 or 1. Simultaneously, the state signal
lowering causes the 2-input NAND gate which acts
as a state completion detection block (SCD) to assert
“A”, resetting the tokens from the left channels by
driving all inputs low, overpowering the
corresponding staticizers (M1, M2). The presence of
the output token on the right channel resets the “B”
signal which activates the two PMOS transistors at
the top of the N-stack, restoring “S0/S1”, and
deactivating the NMOS transistor at the bottom of the
N-stack, thus disabling the stage from firing while the
output channel is busy. The cycle time of the STFB
template is 6 transitions with the forward latency of 2
transitions.

Notice that the output and input channels can have
different tokens at the same time, highlighting why

this template is a full buffer [1][2]. Notice also that the
NMOS transistor stack (N-stack) is designed to be
semi-weak-conditioned in that it will not evaluate until
all expected input tokens arrive. This combination of
functionality and input completion detection removes
the need of using a left environment completion
detection block (LCD), reducing the template
complexity, size and cycle-time. Alternatives such as
the PCHB quasi-delay-insensitive template separate the
N-stack and LCD functionality, but are substantially
larger and slower [2].

2.2. Static STFB Template

The basic concern of the STFB circuit family is that
the communication wires can be tri-stated for some
period of time with only a small staticizer fighting
leakage and crosstalk noise. While effective for
250nm, the noise margin for this technology may be too
low in deeper submicron processes. In particular, a
cross-coupling noise event on a long tri-stated wire can
either create a new token or remove a token from the
system causing system failure (often in the form of a
deadlock). Moreover, in smaller geometries leakage
currents may become so high that the staticizers would
need to be made stronger to the point that they cannot
be easily over-powered.

For this reason, Ferretti et al. [6] proposed a new
STFB family called static STFB (SSTFB) in which the
channel wires are always actively driven with modified
driver circuits. The functionality of a SSTFB cell is the
same as STFB cell with a noticeable difference that
after the sender drives the line high, the receiver is
responsible for actively keeping the line high until it
wants to drive it low as shown in Figure 2. Similarly,
after the receiver drives the line low, the sender is
responsible for actively keeping the line low until it
wants to drive it high. The line is always statically
driven and no fight with staticizers exists. This means
that the keeper circuitry can be sized to a suitable
strength creating a tradeoff between
performance/power/area and robustness to noise. The
inverters in the keeper circuitry can be also be skewed
such that they turn on early creating an overlap between
the driving and hold logic (as suggested in [11]). This
overlap avoids the channel wire being in a tri-state
condition thus making the circuit family more robust to
noise. The overlap also helps ensure that the channel
wires are always driven close to the power supplies
further increasing noise margins [4]. In this way, the
lines are never tri-stated and are statically driven;
explaining whey the circuit family is called static
STFB. Figure 3 shows a transistor level diagram of a
SSTFB Buffer.

3

Figure 2. SSTFB driver circuitry

The SSTFB template is very flexible and can be
expanded to implement different functionalities and
non linear pipeline stages, including a merge, fork,
and full-adder. We refer the reader to [4] for more
details.

keeper

keeper

keeper

keeper

B
A

S0
R0

L0

B
A

S1
R1

L1

S0

S1

A

R0
R1

B

Figure 3. Schematic of SSTFB BUFFER

2.3. Turbo decoding

Turbo decoding is becoming a very popular
solution for error correction especially in wireless
applications [13]. Turbo coding started with the
introduction of Parallel Concatenated Convolutional
Codes (PCCC) that were proven to achieve
performance that is very close to the theoretical
coding bound defined by Shannon’s Capacity. Since
then several variations have been introduced, such as
Serially Concatenated Convolutional Codes (SCCC)
and Low Density Parity Check Codes (LDPCC). The
same Turbo-Like decoding schedule could be used to
process all of the above. In the case of LDPCC this is
true when the code belongs to a class of LDPCC that
can be described as a Generalized Repeat-
Accumulate code (GRA) [21]. All these codes
achieve Turbo-Like performance, but vary slightly in
terms of performance and computational complexity
and the selection for a particular design is made

based on the operational conditions of the final system.
In our design we have chosen to implement a SCCC,

which is known for its very low error floor capabilities,
but the design proposed could be easily modified to
decode any of the other types of codes listed above.

Figure 4. An example of a 4-state FSM encoder and
the corresponding trellis used for decoding

2.3.1. Theoretical background. The basic Turbo-Like
encoder structure involves an interleaver and a set of
simple error correction/detection codes (most
commonly convolutional codes). The structure on the
decoder side looks very similar to that of the encoder,
with two key differences and is illustrated in Figure 5.
First every code in the encoder is replaced by a Soft-In-
Soft-Out (SISO) module. Second the data flow on the
decoder is bi-directional and iterative, and an
interleaver/de-interleaver module in the decoder
replaces the interleaver on the encoder side. In our
implementation one SISO is used that can perform both
operations to reduce design complexity.

Received
Data

Buffer

Outer
SISO

De-
Interleaver

Interleaver

Decoded
Data Inner

SISO

Figure 5. The decoder structure where each SISO is
used to decode one CC.

During each SISO operation the data block is
processed along a trellis that represents the state of the
encoder during the transmission process, as illustrated
in Figure 4. The state number is indicated inside each
state, while each branch is characterized by the values
of the inputs and outputs of the state machine (shown as
x/y on each branch in Figure 4). The length of the trellis
matches the number of bits in the data block. Each
branch in the trellis has a branch metric associated with
it (not shown in Figure 6), updated each iteration,
which corresponds to a notion of the relative probability
assuming that branch took place in the encoder. The
SISO module is responsible for updating the probability
that at time k the value b was encoded by finding the

4

shortest path through the entire trellis that has value b
at time k.

To do this, for each trellis transition the decoder
computes the forward state metrics which represent
the shortest path from the beginning of the trellis up
to that point and the backward state metrics which
represent the shortest path information from the end
of the trellis up to that transition. This is shown in
Figure 6, where the shortest path is shown by the
bold lines in the trellis and can be derived by the
values of the state metrics. The decoder then can find
the shortest path where bk=1 and the shortest path on
which bk=0. Using this information it can produce
the new probability for this bit being a 1 relative to
being a 0 based on the information available across
all the branches of the trellis.

t = 0 t = 1 t = 2 t = k t = k+1 t = K-2 t = K-1 t = K

B0
K

B1
K

B0
K-1

B1
K-1

B0
K-2

B1
K-2

B0
k+1

B1
k+1

F0
k

F1
k

F0
0

F1
0

F0
1

F1
1

F0
2

F1
2

Figure 6. An example of a 2-state trellis and the
associated metrics during the decoding process.

In particular, we have chosen to use the Min-Sum
algorithm for the SISO operation. The Soft Input to
the SISO is defined for each bit at time k as the
negative log-likelihood ratio of the probability of a 1
being transmitted over that of a 0:

()() ()()}0{log}1{log =−−=−= kkb bPbPSI
k

. (1)

The branch metrics between state i and state j (if such
exists) is the joint probability for the particular trellis
branch given all SI, or:

∑
=

=
1

,

k

k
b

b
ji

k SIBM . (2)

The forward and backward state metrics for time
instance k are then defined recursively as follows:

()ji
k

i
kji

j
k BMFF ,

11,
min −− += (3)

()ji
k

j
kji

i
k BMBB ,

1,
min += + (4)

where, i
kF is the value of the forward state metric

for state i at time k. The index j only takes the values
for which the transition from state j to state i is valid.
The state metric calculations are also referred to as
the Add-Compare-Select operation or ACS and
constitute the majority of the processing taking place
in the SISO. An example 4-bit ACS is shown in
Figure 7.

Figure 7. A bit-pipelined 4-bit ACS operator. The

black rectangles indicate pipeline boundaries

The SISO outputs are called the Soft Outputs (SO)
for all input and output bits of the encoder FSM. To
prevent the values that are sent between SISO modules
in the decoder from growing indefinitely, instead of the
actual value the SISO outputs the differential (called the
extrinsic SO) between the actual value calculated (also
called intrinsic SO) and the original SI inputted. The
final quantities are also saturated to a fixed bitwidth, to
reduce the complexity of the SISO modules. So the Soft
Output for bit b at time k is defined as:

() ()j
k

ji
k

i
k

b
ji

j
k

ji
k

i
k

b
jibr BBMFBBMFSO

kk

k 1
,

0
,1

,

1
,int minmin +

=
+

=

++−++= (5)

kkk brbbextr SISOSO −= int . (6)

The decoding process from a top-level standpoint
starts by the received signal being translated into
metrics that represent the probabilities for each of the
received bits. Then a SISO module uses the received
sequence as inputs and produces soft outputs. The soft
outputs are then interleaved (or de-interleaved
depending on the code) and passed onto the SISO
modeling the next convolutional encoder in the transmit
sequence as Soft Inputs. During the decoding process
the SISOs that correspond to all the codes exchange
Soft Input data both in the encoder sequence and in the
reverse direction. Each SISO is fired several times and
the process iterates until the metrics stop improving, or
the maximum number of iterations is reached. For our
comparisons we use 6 iterations which achieves most of
the coding gain without being too computationally
intensive.

2.3.2. High-speed implementation challenges. The
immediate effect of this iterative approach is that in
order to achieve a certain decoded data rate the SISO

5

has to run several times faster internally in order to
keep up with the data. For example a system using a
code with two convolutional codes and decoding
using 5 iterations would have to run roughly 10 times
faster internally than the target throughput. The
calculation is iterative and cannot be speed up easily.
Several tiling approaches have been developed that
break the block into sub-blocks that can be processed
in parallel, but normally the logic itself cannot be
sped up further than the state metric calculation
process (i

kF and i
kB) due to the data dependency in

that calculation. The adopted Tree-SISO architecture
addresses this problem and will be described in detail
in a later section.

Even if the state update loop is broken (as in
Massera’s and Tree-SISO architectures [14][7][15])
there are other practical problems that hinder the
throughput. A popular approach to increase
throughput is to use many units in parallel. Although
this generally works, it has implementation problems
that make the design of very high-speed Turbo
decoders extremely challenging.

The first problem is related to memory access. As
mentioned above the data after being processed has
to be interleaved between SISO modules. In order to
get good coding performance, the interleaver must
use a permutation that is ideally random. Therefore,
with a high degree of parallelism many bits per cycle
have to first be stored into a RAM structure and then
retrieved in random order. The usual approach is to
have multiple banks of RAM that each receives data
corresponding to one processed bit. As the data
comes out of those banks in random order, it then has
to be multiplexed and distributed back to the SISOs.
Constraints are placed on the interleaver to ensure it
is clash-free. That not only adds significant
complexity to the decoder, due to the crossbar switch
that has to be built into the interleaver, but also places
constraints on the interleaver design that could yield
very sub-optimal interleaver performance, due to lack
of randomness. From a hardware standpoint it also
requires the instantiation of many more RAM cores
that are extremely small and shallow, that
consequently require a lot more area and power than
fewer larger and narrower RAM instances.

The second problem is also a side effect of the
interleaver presence. The entire block of data has to
be written into the interleaver before the data can
read to start the next SISO process. This is due to the
interleaver’s random permutation, which implies that
the first bits of data that have to be fetched are likely
to be among the last bits of data previously stored.
Consequently, as the degree of parallelism is
increased the processing time can be linearly

reduced, but the pipeline latency remains constant
yielding diminishing benefits.

Throughput (Mbps)

0
50

100
150
200
250
300

0 20 40 60 80 100 120 140

of Parallel Processors

Figure 8. Throughput vs. # of processors

Performance degradation is more pronounced in
cases with small data block sizes where the pipeline
latency is comparable or in extreme situations larger
than the actual processing time. This does not only
occur once, but occurs every SISO operation. Figure 8
illustrates this point by showing the throughput that a
decoder can achieve as a function of processors to
perform one SISO operation. The graph assumes that
each processor runs at 100 MHz for 5 iterations for a
code that has two convolutional codes and a data block
size of 2 Kbits.

of processors for fixed throughput

0

20

40

60

80

100

120

140

200 250 300 400 500
Processor Frequency (MHz)

Figure 9. # of processors vs. processor frequency

Figure 9 illustrates this point from a different
perspective by showing the number of processors that
can be used to achieve a throughput of 540 Mbps with
varying processor frequency (assuming 5 iterations and
2 Kbit data block size). It is easy to see that increasing
the processor frequency can achieve much larger
reduction in the number of processors than the expected
linear function.

3. Synchronous high speed Turbo

In order to evaluate the performance of our design
and demonstrate the capabilities that our asynchronous
technology has to offer, we designed a synchronous
core as well to be able to compare area, performance
and power between the two designs. We chose to

6

design the same unit using both technologies, using
our SSTFB library for the one and the Artisan library
for the other.

3.1. Tree SISO

Designing a very fast Turbo decoder structure has
many challenges as mentioned above. Our goal based
on our analysis was to design the fastest SISO unit
possible so that we can keep the degree of parallelism
required to a minimum. For this reason we chose to
use a Tree SISO structure [7][15] which removes the
recursive nature in the data path and thus enables fine
grain pipelining.

In order to illustrate this implementation, we must
define one additional operation that merges adjacent
transitions of the trellis into larger trellis sections that
correspond to more than one time index. In this
manner, several state metrics can be computed
simultaneously when the appropriate state metric
becomes available. The new operation, called the
fusion operation, is defined as:

),(),(min ,
,

,
,

,
, lkmBMBMBM jp

lm
pi
mkp

ji
lk ∈∀+= (7)

The min operation is defined over all valid
combinations of branch metric pairs of starting and
ending states. The new branch metrics correspond to
the shortest possible path derived from the merged
trellis sections between any pair of starting and
ending states. The structure used to implement the
SISO is borrowed from prefix adder structures, but
with the addition of a suffix path that is used to
perform the operation backwards for the Backward
State Metric calculation.

3.2. The code

We chose a typical SCCC turbo code structure
with two 2-state convolutional codes to reduce the
size of the decoder circuit. The data is first encoded
using a rate ½ non-recursive convolutional code with
polynomials [1+D, 1+D] and the results are
interleaved. Next a rate 1 recursive code with a
polynomial [1/(1+D)] is used to re-encode the
interleaved data before transmission. Overall this
yields a rate ½ code. Puncturing could be used to
achieve higher code rates and increase flexibility,
with minor modifications to the design, but this was
not done at this stage for simplicity.

For a block size of K bits the first code has a
trellis length of K and the second one of 2K.
Therefore the throughput equation is as follows:







 +

∗=

M
KpI

KfT

8
32

 (8)

where K is the block size in bits, f is the clock
frequency in Hz (or in the case of the asynchronous
design the equivalent throughput), I is the number of
iterations and 8M is the number of bits that can be
processed in parallel. Finally p is the pipeline latency in
terms of cycles. Each SISO operation has to finish and
store data back into memory, therefore the pipeline
overhead is present for every half-iteration. The
execution schedule for every iteration is shown in
Figure 10. It should also be noted that only the last
iteration produces decoded data, which is why the
throughput is inversely proportional to the number of
iterations.

p pK/4M K/8M

Pipeline
Overhead

Pipeline
Overhead

Inner SISO
Processing

Outer SISO
Processing

Figure 10. Execution schedule of every decoder

iteration

In the case of our asynchronous design M is 1 since
we are going to use a single 8-bit wide SISO processor
to achieve the desired throughput. In the case of the
synchronous design, M will have to be higher since the
synchronous design is much slower than our
asynchronous one and multiple processors of size 8
would be required to achieve the same throughput. We
chose 8 since it is the minimum size Tree-SISO for a 2-
state code, and it should be noted that due to the
structure of the Tree-SISO a 16-bit wide processor is
more complex than two 8-bit wide ones.

3.3. P&R results

After the schematic design was finished it was
exported to a Verilog netlist and imported into SOC
Encounter for P&R. The libraries for the IBM 0.18µm
technology were used for characterization, and timing
constraints were written to define the target frequency.
The core was placed as a standalone module without IO
pads. The design was placed using timing-driven
placement and was then routed using timing-driven
routing. After routing was done the clock tree was
synthesized and the design was taken through further
processing to fix hold time violations and then the final
timing analysis was performed. The clock frequency
that was achieved was 475MHz for the entire 8-bit wide
core. The area of the core was 2.46mm2. We assume

7

that for higher degrees of parallelism multiple copies
of this core could be routed separately and that no
performance degradation would be induced due to the
added circuitry. We also assumed that the clock
circuit would be mostly unaffected and that it would
just be multiplied in size just like the rest of the
circuitry.

As a point of comparison, the previously
published fastest turbo design achieves
approximately 1Gbps at 6 iterations in a 0.18µm
process, using 32mm2 area and a single-buffered
input memory [19]. The code in [19] is a PCCC
which requires the processing of 2K trellis
steps/iteration, so that structure would decode
approximately 667Mbps for an SCCC code like the
one we chose, which requires processing of 3K trellis
steps/iteration. Our synchronous design has similar
throughput (653Mbps) for M=6 and using 14.76mm2
of core area and 2.17mm2 of memory area, which
indicates that our synchronous design is comparable
with state-of-the-art decoders found in the literature.
Since our synchronous and asynchronous cores
would use the same memory area, our comparison in
Section 6 only considers the core area.

Figure 11. Asynchronous ASIC design flow

4. Asynchronous Turbo

This section covers the asynchronous Turbo
design, including a brief description of the overall
design flow, the library development, gate-level
design, and physical design.

4.1. Asynchronous ASIC Design Flow

For each SSTFB cell needed we created four
library views: functional views contains the
behavioral description of the cell in Verilog HDL,
schematic views contains the transistor level
implementation of the cell, layout view containing

detailed GDSII data, an abstract view to support
placement and routing in LEF format, and finally its
symbol. Using this library, a largely conventional
standard-cell ASIC back-end design flow using
conventional place and route tools can be used to create
the layout, as illustrated in Figure 11.

Note that we currently use Nanosim to perform
analog transistor-level simulations to verify both
correctness and measure performance. Characterizing
the library in LIBERTY format which enables faster
back-annotated gate-level Verilog simulation, as
suggested by [3] is an area of future work.

4.2. Library design

The computation in the chip consists of additions,
comparisons, and selections. Consequently, the SSTFB
library needed only 14 cells along with a variety of sub-
cells used to simplify the development of new library
cells. Extensive spice simulations were done on the
schematic to verify that all the timing assumptions and
specifications were achieved. DRC and LVS checks
using DIVA and ASSURA verification suites were
performed on the layout views to verify their
correctness.

Our SSTFB library currently includes only a single
size for each cell. With this circuit technology there are
five ways to combat noise and process variations: 1)
increase the size of the keeper transistors 2) increase the
minimum separation between wires in the place and
route flow 3) decrease the maximum allowable length
of any route 4) shield long communication wires and 5)
skew the hold inverters (INV_HI and INV_LO) shown
in Figure 3 to create more time overlap between the
driving and hold transistors. During library
development, we focused on techniques 1) and 5),
enabling the use of minimum separation between wires
with no shielding for a maximum wire length of 400
µm.

8

State + Metric Pair 1 State + Metric Pair 2

Output

Merge

1-bit
adder

1-bit
adder

1-bit
adder

1-bit
adder

1-bit
adder

1-bit
adder

1-bit
adder

1-bit
adder

1-bit
adder

2 2 2 2 2 2 2 2

Fork Fork Fork Fork Fork Fork Fork Fork

1-bit
adder

1-bit
adder

1-bit
adder

Figure 12. An example of 4-bit ACS asynchronous

block. The black rectangles are slack matching
buffers and the connections are dual rail static

single-track channels

4.3. Gate-level design of asynchronous Turbo

The implementation of the asynchronous Turbo

core was done using the same approach as that of the
synchronous version. Schematic entry was used for
all the modules, starting with the smaller ones and
moving up the hierarchy to the top level, shown in
Figure 12. The hierarchical structure for the two
designs was kept largely identical. The differences in
the asynchronous implementation are listed below:
4.3.1. Use of dedicated Fork cells. The SSTFB
library implements point-to-point communication
between cells and a particular signal cannot fork and
go to two destinations. To solve this problem we
created and used dedicated FORK cells to support
fanout.
4.3.2. Slack matching. Special design
considerations had to be taken to balance the
pipelines in the asynchronous design to avoid
pipeline stalling or starvation. Another aspect of
slack matching, which we have not yet taken full
advantage of, is the fact that the buffer cells are
generally much faster than other logic (e.g., full-
adders) cells. This allows us to use shorter buffer
chains for delaying signals, because these chains can
absorb stalled tokens while not degrading overall
performance [5][8].
4.3.3. Incorporating FORKs inside cells. The use
of dedicated FORK cells creates additional pipeline
stages, which can increase the number of slack
matching buffers needed.. In order to mitigate this
problem we decided to incorporate the FORK inside
some of the logic cells. For example consider a full

adder cell with only sum output (FA_S). In order to
distribute the sum output to two cells, conventionally
we used a dedicated FORK cell after at FA_S output.
Instead, we created a special cell, full adder with two
sum outputs (FA_2S) by copying the sum output token
internally, thus having two sum output channels. In
addition to reducing the need for slack cells, the new
full adder cell (FA_2S) is 45% less area than the
combination of FA_S and an external FORK. The same
concept can be applied to the other logic cells also.
4.3.4. SLACK2 and SLACK4 cells. We observed that
that most of our initial design was dominated by
SSTFB Buffer cells for slack matching. Most of the
times these buffer cells existed in linear chains i.e. one
buffer cell driving another buffer cell as shown in
Figure 12. In order to save area, we decided to create
two types of special cells SLACK2 and SLACK4 cells
which are functionally equivalent to 2 SSTFB Buffers
and 4 SSTFB Buffers in series, respectively. The
transistor level diagram of a SLACK2 cell is shown in
Figure 13.

L0
R0

L1

X1

A0

S0

M0

S0

S1
A0 M0

M1
B0

XO

B0
A0

S1

M1
X1

A1

B1

B0

R1

A1

B1

A1 R0
R1

B1
X0

Figure 13. SLACK2 transistor level diagram

In SLACK2 the internal channel (M0-M1) is

dynamically driven by a POUT driver quite similar to
the output driver used in STFB cells [6]. Because they
are short and internal to the cell, they have minimal
potential crosstalk noise due to coupling capacitance
and thus are relatively safe. Moreover, because the
internal wires are short, we used minimum transistor
sizes, saving both area and power. In particular,
SLACK2 and SLACK4 cells have 17% and 30% less
layout area compared to 2 and 4 Buffers, respectively.
Moreover, pre-layout transistor level simulations
indicate that SLACK2 cells and SLACK4 consume
10% and 19% less power compared to 2 Buffers and 4
Buffers, respectively.

9

4.4. P&R and design results

The design was place and routed using Cadence
SOC Encounter in a similar fashion as the
synchronous counterpart. Congestion based
placement was performed and the routing was
performed on the design using Nanoroute. The final
core has 70% utilization and the final area consumed
by the logic is 6.92mm2. This version of the core is
preliminary because there is still some slack
matching needed to achieve our target throughput and
some library development needed to remove all DRC
violations. However, the core is fully routed using 6
metal layers showing that the design is routable.

5. Verification and Simulation Results

This section covers the design verification of the
asynchronous turbo and its simulation results.

5.1. Design Verification

The schematic of the design was converted into a
Verilog netlist and the simulation was performed
using our Verilog models for the SSTFB cells in NC-
Sim. Due to the size of the design and the
instantiation of multiple identical components, the
verification was performed in a bottom-up fashion.
We started with simple cells such as adders and
moved up the hierarchy to ACS units, state update
nodes, branch metric calculation units, the
completion logic, and finally the top-level module.
For each module a set of vectors were generated that
would test all corner cases of its behavior and the
results were verified and cross referenced to the
synchronous counterpart.

5.2. Post-Layout ECO and simulation results

To estimate the performance of the chip we
simulated the 55K-transistor module that implements
Equations 5 and 6. This module contains an 8-bit
ripple carry chain of full adders which includes the
critical cycle of the design. This module represents
around 1/30th of the complete design but is the most
computationally intensive module in the SISO.

To improve the performance of the design we
added SSTFB Buffers on long wires using the ECO
flow in SOC Encounter. The addition of the buffers
increased the modules throughput by 26% and
increased the utilization factor from 70% to 76% but
otherwise did not impact area. The final layout was
extracted using Assura RC in coupled mode and the

circuit was simulated using Nanosim, yielding a
throughput of 1.15GHz.

6. Preliminary Comparisons

The previous two sections described the
synchronous baseline and asynchronous designs in
detail and showed their post P&R results. This section
compares the performance, area, throughput/area,
energy and power/area results for the two designs.
Because the SSTFB standard cell library has only one
size per cell, the number we present are conservative
and may improve if we developed and used more sizes
per cell.

Block
Size

(bits)

Async T

(Mbps)

Sync T

(Mbps)
M

Sync
area

(mm2)

T/area
ratio

512 383 - - - -

768 418 415 11 27.06 3.91

1024 438 440 6 14.76 2.13

2048 471 519 4 9.84 1.28

4096 490 513 3 7.38 1.03

Table 1. Throughput per area comparison

6.1. Performance estimates and comparison

The frequency of the post P&R synchronous core is
475 MHz. From the post layout simulation explained in
Section 5.2 we expect the asynchronous core frequency
to be approximately 1.15GHz. Thus, we expect the
asynchronous core to run 2.4 times faster then its
synchronous counterpart.

6.2. Area comparison

The logic area of the synchronous and asynchronous
cores are 2.46mm2 and 6.92mm2, respectively. Both
asynchronous and synchronous cores implement the
exact same function with the same degree of
parallelism. However since the asynchronous core is
2.4 times faster and has smaller pipeline latency than
the synchronous core, we must instantiate the
synchronous core many times in order to match the
throughput, as described in Section 2.3.2. Substituting
the numbers in Equation (8), we compute that for
equivalent throughput with 6 iterations and pipeline
latencies of 60 cycles for the synchronous design and
32 equivalent cycles for the asynchronous one, the

10

number of required synchronous cores varies from 11
for a throughput of 418Mbps for block size of 768bits
to 3 for a throughput of 490Mbps for block size of
4Kbits.

6.3. Throughput/area comparison

Throughput/area is another important metric for
the comparison, since it indicates the performance in
relation to the area used to achieve it. We chose to
use throughput/area instead of just area for
comparable throughputs as a metric for our
comparisons. This is because the throughput that is
achievable by each design is not exactly equal, so the
ratio comparison provides a normalized metric that is
fairer. From Table 1 we can see for example that for
a block size of 1Kbits which is a very common block
size used in wireless applications we obtain a
throughput per area advantage of 2.13. The
advantages are even bigger for smaller block sizes,
and for block sizes of 512 or smaller, the
synchronous design cannot match the throughput of
the asynchronous counterpart, regardless of the
degree of parallelism M. As the block size increases,
latency becomes less of a critical factor and the two
designs become more comparable.

Block
Size
(bits)

Energy per
block
(sync)

Energy per
block

(async)
Ratio

768 3.5E-05 2.84E-05 0.81
1024 2.40E-05 3.63E-05 1.5
2048 2.714E-05 6.73E-05 2.5
4096 4.11E-05 12.9E-05 3.1

Table 2. Energy per block comparison

6.4. Energy Comparisons

From the post-layout spice simulation the power
consumed of the selected module is 0.53W. If we
extrapolate the number we expect the power of the
complete Tree SISO to be approximately 15.5W. The
power for a single synchronous core (M=1) is 1.72W.
From Table 2 we can see that for smaller block sizes
we are more energy efficient than the synchronous
design, but for larger block sizes the synchronous
design more efficient. It should be stated that the
power calculation for both designs was performed for
the worst case scenario, namely with the units
processing data at the maximum rate. Even though
the calculation is based on peak power, we believe
that the numbers might be conservative, but the ratio

should be representative of the relative power
consumption of the two designs. We have also not
included leakage power comparisons in the
calculations, but given that the asynchronous design
requires less area for the same throughput and leakage
power is proportional to the total area, we expect to
have an advantage in respect to that aspect as well.

6.5. Design Time Comparisons

Another important metric to be compared is design
time. The design of synchronous turbo decoder was
done using front end views of the standard cell library
provided by Artisan. The main steps involved were
design conceptualization, schematic entry of the deisgn,
verification of the design, Placement and Routing and
finally timing enclosure of the design using PrimeTime.
This design effort took approximately 3-4 graduate-
student months. The design of the asynchronous
counterpart involved almost the same steps with two
noticeable difference. First, we had to create our own
standard cell library. Second, due to the lack of static
timing analysis tools, timing verification and closure
was performed using time-consuming Nanosim
simulations. The creation of standard cell library took 5
graduate-student months and the timing closure and
verification took approximately 10 graduate-student
months. Also we want to make clear that the
asynchronous design is not yet complete as there
remains some DRC errors to be removed in the final
layout.

7. Summary and conclusions

Our results demonstrate that SSTFB asynchronous
turbo decoder is beneficial for small to medium block
sizes. Preliminary comparisons show that the
asynchronous turbo decoder can offer more than 2X
advantage in throughput per area for block sizes of 1K
bits or less and smaller energy per block for block sizes
of 768 bits or less. Thus the asynchronous design is
particularly useful in low latency wireless applications
in which block size must be small.

More generally, this design experiment demonstrates
the potential benefits of high-performance low-latency
asynchronous libraries and standard-cell design flows
for processing intensive applications. However, this
chip design also motivates a number of areas of future
work.

The current SSTFB library has only one size per
cell. While this is sufficient to achieve high
performance, multiple sizes for each cell can
significantly reduce the overall capacitance and power
consumption. In addition, 64% of the cell instances in

11

the Tree SISO design are dual-rail buffers for slack
matching. If these are replaced by 1-of-4 or 1-of-8
buffers (that have less switching activity per bit),
significant reductions in power consumption is likely.

Finally, in order to obtain our target performance
we must perform an ECO slack-matching flow on the
entire design in order to mitigate the performance
degradation of long wires. This process is currently
manual, however we hope to automate this process
with a CAD tool that uses the slack matching
technique described in [5] and the back-annotation
flow described in [3].

Acknowledgements

We would like to thank the anonymous reviewers for
helpful comments on earlier drafts of this work. This
work was partially supported by NSF ITR Award No.
CCR 0086036.

References

[1] M. Ferretti and P. A. Beerel. High Performance

Asynchronous Design Using Single-Track Full-Buffer
Standard Cells, IEEE Journal of Solid-State Circuits,
Vol. 41, No. 6, pp. 1444-1454, June 2006.

[2] M. Ferretti and P. A. Beerel. Single-Track
Asynchronous Pipeline Templates using 1-of-N
Encoding, DATE’02, Mar. 2002.

[3] P. Golani and P. A. Beerel. Back-Annotation in High-
Speed Asynchronous Design, Journal of Low power
Electronics, Vol. 2, pp. 37-44, 2006.

[4] P. Golani and P. A. Beerel. High Speed Noise Robust
Asynchronous Circuits, ISVLSI’06, March, 2006.
Pages: 173-178

[5] P. A Beerel, A. Lines, M. Davies, N.-H. Kim. Slack
matching asynchronous designs. ASYNC’06, March
2006.

[6] M. Ferretti. Single-track Asynchronous Pipeline
Template, Ph.D. Thesis, University of Southern
California, Aug., 2004.

[7] P. A. Beerel and K. M. Chugg. A Low Latency SISO
with Application to Broadband Turbo Decoding, IEEE
Journal on Selected Areas in Communications, Vol.
19 Issue 5, May, 2001.

[8] R. Manohar and A. J. Martin. Slack Elasticity in
Concurrent Computing. Proceedings of the Fourth
International Conference on the Mathematics of
Program Construction, Lecture Notes in Computer
Science 1422, pp. 272-285, Springer-Verlag 1998.

[9] A. J. Martin, A. Lines, R. Manohar, M. Nystrom, P.
Penzes, R. Southworth, U. Cummings and T. K. Lee.
The Design of an Asynchronous MIPS R3000
Microprocessor. ARVLSI’97, 1997.

[10] M. Nyström, E. Ou, A. J. Martin. An Eight-bit Divider
Implemented in Asynchronous Pulse Logic.
ASYNC’04, April 2004.

[11] K. van Berkel, and A. Bink. Single-Track Handshake
Signaling with Application to Micropipelines and
Handshake Circuits, ASYNC’06, pp. 122---133, 1996.

[12] I. E. Sutherland and S. Fairbanks. GasP: a Minimal FIFO
Control. ASYNC’01, pp. 46---53, March 2001.

[13] K. M. Chugg, A. Anastasopoulos, and X. Chen. Iterative
Detection: Adaptivity, Complexity Reduction, and
Applications. Kluwer Academic Press, 2000.

[14] G. Masera, G. Piccinini, M. Ruo Roch, and M. Zamboni.
VLSI Architectures for Turbo Codes. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, Vol. 7,
No. 3, September 1999

[15] P. Thiennviboon and K. M. Chugg. A Low-Latency
SISO via Message Passing on a Binary Tree, Allerton
Conf., Urbana, IL, Oct. 2000.

[16] A. J. Viterbi. An Intuitive Justification and a Simplified
Implementation of the MAP Decoder for Convolutional
Codes, IEEE Journal on Selected Areas in
Communications, Vol. 16, No. 2, February 1998.

[17] R. Dobkin and M. Peleg. Parallel Interleaver Design and
VLSI Architecture for Low Latency Map Turbo
Decoders, IEEE Transactions on VLSI Systems, April
2005.

[18] IEEE 802.11 Working Groups Web Page.
http://grouper.ieee.org/groups/802/11/.

[19] B. Bougard, A. Giulietti, L.Van der Perre, F. Catthoor. A
Class of Power Efficient VLSI Architectures for High
Speed Turbo-Decoding, IEEE Global
Telecommunications Conference, Vol. 1, pp. 549 - 553,
2002

[20] D. Chinery and K. Keutzer, Closing the Gap between
ASIC & Custom. Tools and Techniques for High
Performance ASIC design. Kluwer Academic Publishers,
ISBN 1-4020-7113-2.

[21] K. M. Chugg, P. Thiennviboon, G.D. Dimou, P. Gray,
and J. Melzer, A new class of turbo-like codes with
universally good performance and high-speed decoding,
in IEEE Military Communications Conference, Vol. 5,
pp. 3117 – 3126, Oct. 2005

