

ver
n

e

y
es

 to
ini-
s in
n 6
m-

le

Relative Timing Based Verification of Timed Circuits and Systems*

Hoshik Kim and Peter A. Beerel
EE-Systems Department

University of Southern California
Los Angeles, CA 90089

{hoshik, pabeerel}@eiger.usc.edu
Abstract

Advanced clock-delayed1 and self-resetting domino circuits
are becoming increasingly important design styles in aggressive
synchronous as well as asynchronous design. Their design is par-
ticularly challenging due to the two-sided timing constraints
needed to ensure their correctness. This paper proposes a rela-
tive-timing based technique to help verify such timed circuits.
The main idea is to perform an untimed analysis to identify cir-
cuit paths for which delay-ordering constraints ensure that the
circuit works. The timing verification of these delays is then
reduced to standard simulation or a much simpler bounded delay
analysis.

The benefit of this approach is three fold. First, it reduced
the verification complexity exponentially by avoiding the model-
ing of explicit clocks. Second, it allows designers to design their
circuits very aggressively, ensuring only that the relative path
delays are met. Third, it facilitates fast incremental timing verifi-
cation in response to design changes that do not affect the gate-
level netlist.

1 Introduction

Many of aggressive timed (asynchronous) circuits and clock-
delayed/self resetting domino synchronous circuits have demon-
strated significant performance gains at the expense of compli-
cated two-sided timing constraints that existing static timing
analysis have difficulty in verifying [8, 9, 10, 11, 13, 14]. Design-
ers have observed that the key property that must be met to
ensure correct operations is the relative ordering of signal transi-
tions [2, 3, 4]. In some cases, it is possible for the designer to
identify these signal transitions and use them as constraints in a
synthesis algorithm [3, 7]. In this paper, we focus on the associ-
ated verification problem. In particular, our verification goal is to

find a (minimal) set of easily verifiable relative timing con-
straints necessary and sufficient to make the circuit work.

While recent researches have produced some good results on
timing verification of these styles of circuits [5, 12], their meth-
ods still suffer from the limitations of explicitly modeling timing.
The major problems, which are the motivation of our research,
are the followings:

• They are limited to relatively small circuits because of the
double exponential complexity of the general explicit-state
based verification problem (state space + timing).

• Timing margins need to be modeled as min-max delays o
all gates that are valid across process variations. This ofte
forces designers to be more conservative than if they wer
required to meet constraints on relative path delays.

• Minor design changes that affect bounds require complete
re-verification.

In the following section, we describe our new methodolog
and how it can overcome these limitations. Section 3 introduc
the necessary background material to understand our algorithm
find the relative timing constraints. Section 4 shows some def
tions used in our technique. Section 5 describes the algorithm
detail that generate a set of relative timing constraints. Sectio
illustrates the applications of our algorithms to a couple of exa
ples and Section 7 concludes the paper.

2 Relative Timing (RT) based verification

2.1 Verification methodology

This section gives an intuitive overview of our relative tim-
ing verification methodology through the application to a simp
circuit depicted in Figure 1.

Let us assume that a signal on node B control the output
value of NOR gate (node A) and that there is a positive signal
transition on B. This transition will trigger a negative signal tran-
sition on node A and a positive signal transition on node x conse-
quently. If a positive signal transition on node x comes earlier
than a negative signal transition on node A, a signal value on
node y will be stable HIGH. If a negative signal transition on

1 Also referred to as Delayed-Reset Domino
* This research has been partly supported by a grant from the

Semiconductor Research Corporation #98-DJ-486, NSF
grant CCR-9812164, and by a gift from the Intel Corpora-
tion.

ll

al

ts
and
 to

 cir-

el

-

ed

d
on
er
.

,

of

nt

ore
al
node A comes earlier than a positive signal transition on node x, a
signal value on node y should have a negative pulse. However, if
a positive signal transition on node x comes later than a negative
signal transition on node A but earlier than a negative signal tran-
sition on node y, then it is a hazard because a signal transition on
node y is disabled without being fired after having been enabled.
Consider the case where the stable HIGH and negative pulse are
both acceptable circuit behaviors, but the runt pulse is not.

Explicit-timing based verification require the designer to
provide upper and lower bounds of all gate delays and perform an
expensive timing verification to deduce whether this circuit
works. In contrast, we propose to find a set of relative timing
constraints on path delays that guarantees the correctness of cir-
cuit operations. In particular, our algorithm yields the following
type of constraints:

• If “ ” path delay is smaller than “ ” path, y is
stable high → OK;

• If “ ” path delay is larger than “ ” path, y has
negative pulse → OK;

• Otherwise, a runt pulse (or hazard) can occur → FAILURE.

 Figure 1: relative-timing constraints on path delays

It is important to note that these constraints are generated
using an untimed reachability analysis of the circuit before layout
[17, 18, 19]. Consequently, it avoids the more expensive timed
reachability analysis. Nevertheless, the relative timing con-
straints still must be verified after layout. To do the latter, how-
ever, one can either use SPICE-level simulation or a simpler
timing analysis of a reduced acyclic graph with bounded delays
obtained via backannotation (e.g., [15]). Consequently, the hard
part of the problem is to find the relative timing constraints,
which is the focus of this paper.

More formally, the problem we propose to solve is the fol-
lowing. We assume the user describes a set of conditions in
which the circuit should not exhibit. This description can either
be implicit, such as the circuit should exhibit no hazards, or
explicit, such as a set of states of the circuit that should not be
entered. These conditions will be translated into a set of failure
transitions in our behavioral model of the circuit. Then, our task
is to find a set of relative timing constraints that have the follow-
ing characteristics:

• All paths must have a common source. This feature makes
the timing verification of these constraints intuitively easy to
understand and perform.

• All paths must be minimal in length. This simplifies the
analysis.

• The set of constraints must be necessary and sufficient to
avoid the failure transitions. Sufficiency guarantees that a
specified failure states will not be entered. Necessesity
ensures that the relative-timing constraints do not prohibit
the entrance of any other state, thereby maintaining maxim
concurrency.

One problem is that such a set of relative timing constrain
that satisfy the above features may not exist for some circuits
set of transitions. Consequently, in some cases we are forced
yield conservative constraints which may limit the concurrency
of the circuit. For this reason, we also characterize a subset of
cuits for which we believe we can obtain exact relative timing
constraints.

2.2 Advantages of Relative Timing based verification
In general, the relative timing based approach has the fol-

lowing advantages over existing explicit-timing based
approaches:

• Reduces verification complexity exponentially
- Relative-timing based techniques do not need to mod

clocks. Thus, we can achieve the same complexity of
the verification as that of untimed verification by avoid
ing explicitly modeling clocks.

- This facilitates the use of mature symbolic BDD based
methods, suggesting that we can handle significantly
larger systems than possible using explicit-timing bas
approaches.

• Facilitates tighter timing margins
- Relative timing constraints promote the use of circuits

with tighter timing margins. Designers are likely to be
more aggressive when verifying relative timing con-
straints than they are when verifying explicit upper an
lower bounds of all gate delays [3]. One possible reas
is that, in the former case, they can more easily consid
the correlation of gate delays across process variation

• Promotes easy incremental verification
- Many minor design changes such as transistor sizing

layout, or technology/process migration can be easily
verifiable (e.g., simulation or bounded delay analysis
acyclic graphs).

3 Background

Event-based models (such as Petri nets) explicitly represe
the notions of concurrency and causality. On the other hand,
state-based models (such as transition systems) provides a m
natural formal framework to describe the behavior of sequenti
circuits and the behaviors that the circuit should not exhibit.

B
y

A

x

.

rget

ys

ce

ath

sid-

t

This work involves finding constraints on circuit paths that
restrict the circuit behavior. Because the circuit paths are closely
related to the causality in Petri nets we make use of both formal-
isms. In this section, we introduce the minimal background of
transition systems (TS) and Petri nets (PN) used in this paper. For
brevity, we assume that readers are familiar with transition sys-
tems and Petri nets, etc. For more detailed information, we refer
the reader to [1, 6, 7].

3.1 Transition Systems (TS)

A transition system (TS) is a quadruple TS = (S, E, T, sin),
where S is a set of states, E is a set of events, T is a transition
relation, T ⊆ S × E × S, and sin is an initial state. A transition (s,

e, s’) ∈ T can be denoted by . Note that a state graph SG,
which is often used to illustrate the specification and behavior of
asynchronous circuits, is simply a binary encoded TS.

3.2 Petri nets (PN)

A Petri net (PN) is a quadruple N = (P, T, F, m0), where P is
a set of places, T is a set of transitions, F is a flow relation, F ⊆
(P × T) ∪ (T × P), and m0 is an initial marking. A marking is a
function that assigns to every place a non-negative number of
tokens. A transition t ∈ T is enabled at a marking if all its input
places have at least one token. When t is enabled, it may fire. The
firing of t removes one token from each of its input places and
deposits one token to each of its output places, leading to a new
marking.

Note that Petri nets explicitly express the notions of concur-
rency, causality and conflict which are needed to derive relative
timing constraints from behavioral models of sequential systems.
Note also that exhaustive token flow analysis yields a transition
system in which each state is a different marking.

4 Relative Timing Constraints

4.1 Failure transitions

In our methodology, the set of failure transitions is assumed
to either be explicitly or implicitly specified by the user and is
those set of transitions that the user does not want the circuit to
execute. In the most common scenario, these transitions are
implicitly specified to be the special TS failure transition which
disables a signal transition on a node, indicating the possibility of
a runt pulse (or hazard). In general, however, this set can be any
subset of a TS transition relation T. In practice, these failure tran-
sitions will be identified via untimed reachability analysis of the
circuit using existing formal verification techniques (e.g., [17, 18,
19]).

4.2 Delay of an event chain

An event of a TS is a signal transition in the specified circuit
Each arc of the corresponding state graph (SG) is labeled with an
event, e.g., B+.

An event chain is a chain of events that occur along a single
path of a circuit. For example, looking at Figure 1, we see that
B+A-y- is an event chain.

The delay of an event chain is the sum of delays between
consecutive events of an event chain, e.g., DB+A-y- = DB+A- + DA-

y-.

4.3 Event PNs and Time Separation of Events (TSE)

An event PN is an acyclic Petri net describing the causality
of events. It contains a set of source transitions and a set of ta
transitions. All places are assumed to have fixed delays that
model the corresponding gate delays. The time separation of two
events (TSE) in an event PN is the delay between two events in
an event PN. This delay can be expressed in terms of the dela
of the places of the event PN. When the event PN has a single
source place and no choice places, the TSE of an event pair is
well defined and can be evaluated by assigning the source pla
to arrive at time zero and calculating the time that all events
occur. When multiple source places exist, however, then only
upper and lower bounds on the TSE can be found. To find
expressions for these bounds we rely on the simple longest-p
analysis described in [16]. Moreover, when the event PN con-
tains choice places, each possible set of choices must be con
ered, also yielding bounds on the TSE.

 Notice that in all cases the TSE expressions relate to delays
of gates along circuit paths that connect the signals correspond-
ing to the events.

4.5 Event Triples

In a transition system (TS) with a set of failure transitions
(FT), an event triple (l, t, u) is defined as follows:

• t is a target event which is a label of a failure transition
(causes a race),

t ∈ T = {e | ∃ ∈ FT};

for each event t, let Q = {s | },
• l is a lower bound event which enters the set Q,

l ∈ L = {e | ∃ , where s ∉ Q and s’ ∈ Q};
• u is an upper bound event which escapes from the set Q and

is not in the set FT,

u ∈ U = {e | ∃ , where s ∈ Q, s’ ∉ Q and e ∉ FT}.

The key idea of the paper is for a failure to occur the event
must occur after any event l that leads to Q and before each event
u. Notice that if there are multiple u events for a pair of l and t
events, the event t must occur before any of those u events for

es s′→

es →
ts →

es s′→

es s′→

there to be a failure. The intuition here is that if any of the u
events occur before the t event, the circuit escapes from the dan-
gerous set of states Q. Also, note that multiple l events for a given
t should be treated separately because the circuit may enter Q
through different l events. Notice how these conditions constrain
the time at which t can occur from both sides, i.e., the constraint
is two-sided.

These event-triple constraints can be formalized in terms of
time separation of events conditioned on the set Q. In particular,
for a given event triple, the conditions for a failure to occur is that
TSE(l, t) > 0 and TSE(t, u) > 0, where the event l must enter Q.
Our problem is thus translated to deriving expressions for TSE(l,
t) and TSE(t, u) in terms of the delay of paths in the circuit.
Notice also for relative timing constraints to exist for a given tar-
get failure event t, it must be the case that corresponding events l
and u must exist. We will discuss conditions for this to be the
case below.

4.6 Relative timing constraint for a target failure

In our methodology, multiple event triples may be formed
for each target failure event. For each event triple, as will be
explained below, we create an event PN with a minimal number
of source, or synchronization transitions. By analyzing this event
PN we derive expressions for two-sided timing constraints called
a relative timing (RT) constraint that dictates when the target fail-
ure can occur.

The most important observation in this paper may be that
two-sided constraints are needed to prevent only failure transi-
tions, i.e., to avoid unnecessarily reducing concurrency thereby
causing false negatives. In general, these relative timing expres-
sions contain both minimum and maximum operations. In many
circuits, however, they reduce to only two-sided constraints on
the delay of an event chain, making them relatively easy to ver-
ify.

Consider the example in Figure 1. The target event PN to
analyze is shown below:

The target event chain to verify the circuit is B+x+ because the
correct circuit operation depends on the relative delay of the cir-
cuit path between B and x (with B and x rising) with respect to
other path delays in the PN. Notice that since the PN has a single
source it is easy to create a pair of simulation vectors to validate
these constraints. Alternatively, a more sophisticated analysis of
this acyclic graph using delay bounds [15] on gates or delay dis-
tributions can also be performed [16].

5 Algorithms

This section describes preliminary algorithms we developed
to support relative timing based verification. The algorithms try
to address the following two core issues:

• Existence: Does a set of relative-timing constraints exist for
which the circuit will work?;

• Identification: If so, find a (minimal) set of constraints that
are sufficient (and necessary) to ensure the circuit works.

Figure 3 shows our algorithm to find a set of RT constraints
(if one exists). The input of this algorithm is a TS and a set of
failure transitions FT. It finds all target failures and forms an
event triple for each failure. For each event triple, it calls the
function find_RT_constraint (Figure 4) to find the corresponding
RT constraint.

To generate an event PN in the routine find_RT_constraint
we are currently exploring two possible approaches. The first

B+

A- y-

x+

 Figure 2: event PN for the circuit in Figure 1

 Figure 3: The algorithm to generate RT constraints

Generate_RT_constraints (TS, FT)
begin

find_set_T;
R = ∅; /* R is a set of RT constraints (failure conditions) */
for each event t ∈ FT do

find_set_L;
find_set_U;
if U is not empty then

for each event l ∈ L do
r = 1; /* r is a RT constraint */
for each event u ∈ U do

/* r’ is a sub-constraint */
r’ = find_RT_constraint (l, t, u);
r = r ^ r’;

end for
R = R ∪ {r};

end for
else print (“warning: states in Q will become unreachable”);
 exit;
end if

end for
return R;

end

 Figure 4: The algorithm to find a RT constraint

find_RT_constraint (l, t, u)
begin
find_event_PN (l, t, u); /* find an event PN from the event triple (l, t, u) */
find a (minimal) set of synchronization event SE from the event triple (l, t, u);
if SE contains more than one synchronization event se then

print (“Warning: Constraints will be conservative”);
end if
TSEu (l, t) = expression for upper bound of TSE (l, t) [16];

TSEu (t, u) = expression for upper bound of TSE (t, u) [16];

return the constraint {TSEu (l, t) > 0} ^ {TSEu (t, u) > 0};

end

re

r
i-
ure
-

ints
approach relies on previous research showing that any elemen-
tary TS (ETS) can be mapped to a Petri net with a reachability
graph isomorphic to the original ETS [1]. Fortunately, an ETS
can be obtained from any non-elementary TS by label splitting
[1]. Label splitting is the process of re-labelling events with the
same label to remove explicit OR causality which cannot other-
wise be easily expressed in Petri nets. Removing explicit OR cau-
sality also simplifies the task of finding our path constraints. One
advantage of this work is that it uses symbolic techniques thereby
allowing the analysis of very large state spaces. Unlike in [1],
however, only part of the PN need be created. While this suggests
that the computational cost of this step can be reduced, the details
of the implementation of this step must still be explored. One
potential problem with this approach, however, is that the assign-
ment of delays to places is unclear when label splitting occurs.
Moreover, this approach has high complexity since the process of
forming the Petri net from an ETS involves solving an computa-
tionally expensive covering problem.

The second approach we are exploring is to adopt the work
by Yoneda et al. [19,20] in which gates are modeled with a
library of Petri nets. The main advantage of this approach is that
creating the Petri net model of a circuit is straight forward. The
circuit model, however, consists of a distributed set of Petri nets
rather than a monolithic net. A second advantage of this approach
is that the correspondence of delays on places and gate delays is
pre-determined in the Petri net gate library. To create an event PN
for a given event triple in this approach, we hope to use a form of
backward Petri net unfolding on the distributed Petri net models.
The details of this unfolding construction are part of our future
work.

 We hope to prove the following two properties of our algo-
rithms:

• Proposition 1 If a single synchronization point exists, the
derived relative timing constraints removes only failure tran-
sitions;

• Proposition 2 If the subset of states in the state graph SG
reachable only through non-failure transitions is strongly
connected, then event triples for each target failure will exist.
If the events in each event triple have a common synchroni-
zation point then the constraints will be both necessary and
sufficient.

The first proposition would guarantee that our identification
procedure does not unnecessarily reduce the concurrency of the
circuit. We believe that the key to the proof of this proposition, as
mentioned earlier, will be our use of two-sided constraints.

If true, the second proposition would identify two conditions
which must be satisfied for our algorithm to successfully find rel-
ative timing constraints. The first condition guarantees that for
any target event t there will exist corresponding lower and upper
bound events. The second condition is that all event triples

should have a common synchronization point. Our future work
includes a more careful refinement of these conditions.

6 Examples

6.1 Static C-element

Figure 5 shows an example of a static C-element [3]. Figu
5(a) shows a state graph (SG) specification. All failure transitions
have been depicted to lead to special failure state labeled F fo
emphasis. In the formal state graph definition, the failure trans
tions actually lead to the appropriate binary labeled states. Fig
5(b) is a sum-of product C-element circuit implementation. Fig
ure 5(c) is the SG behavioral model of the circuit which is the TS
given to our algorithm. Figure 6(a) shows the event PNs for this
example. Figure 6(b) illustrates the path delays of the constra
on the circuit found by our algorithm as follows.:

• Generate Chain Constraints:
1. T = {B-, A-}
2. For t = B-,
 L = {C+}, U = {u3+}
3. Find an event PN and RT constraint for event triple
 (C+, B-, u3+) ⇒
 {TSE (C+, B-) > 0} and {TSE (B-, u3+) > 0)}
4. Find event PN and express TSEs from common
 synchronization point: C+
 TSE (C+, B-) = DC+B- - DC+

 TSE (B-, u3+) = DC+u3+ - DC+B-

5. Thus, the constraint is: DC+ < DC+B- < DC+u3+

Repeat Step 2 to 5 for t = A-
6. t = A-, L = {C+}, U = {u2+}
7. (C+, A-, u2+) ⇒

Figure 5: Static C-element: (a) specification SG, (b) sum-of-
products C-element circuit, (c) behavioral model SG.

000000

111111

010000

110000

100000

111100

111101111110

110100

011111

011110

011101

1011111

101101

001111

001101

101110

101100

001110

001100

State = [A B C u1 u2 u3]

011011

011010

011001

011000 101011

101001

001011

001001

101010

101000

001010

001000

F

011100

A+

A- B-

B+

u1+

C+

C-

u3+u2+

u2- u3-

u3-u2- u3+

B- A-

u2+

u1-

A-

A-

A-

A-

A-

A-,B-

B-

B-
B-

000

001

010

110

State = [A B C]

100

111

101011

A+

A- B-

B+

C-

C+

A

B

C

u1

u2

u3

(a)

(b) (c)

B-
B-

n

 as

 {TSE (C+, A-) > 0} and {TSE (A-, u2+) > 0}
7. TSE (C+, A-) = DC+A- - DC+

 TSE (A-, u2+) = DC+u2+ - DC+A-

 9. Thus, the constraint is: DC+ < DC+A- < DC+u2+

Recall that the circuit will work “correctly” if and only if
none of these RT constraints are satisfied

In this example, the lower bound of each RT constraint is
trivially satisfied. This means that the derived RT constraint for
this simple example is single-sided. An example of a circuit
requiring two-sided constraints is shown next.

6.2 A circuit requiring two-sided constraints

Figure 7 shows an example of a circuit which allows an
internal pulse but not a runt pulse, similar to the example in Fig-
ure 1. Figure 7(a) shows the SG specification, Figure 7(b) is a
circuit implementation, and Figure 7(c) is a SG behavioral mode.
Figure 8(a) shows the event PNs and Figure 8(b) illustrates the
path delays corresponding to the derived RT constraints.

The following procedure describes the application of our
algorithm:

• Generate Chain Constraints:

1. T = {A-, x+}
2. For t = A-,
 L = {B+}, U = {x+, y+}
3. For each event triple (l, t, u) form sub-constraints in terms
 of TSEs:
 (i) (B+, A-, x+) ⇒ TSE (B+, A-) > 0 and TSE (A-, x+) > 0
 (ii) (B+, A-, y+) ⇒ TSE (B+, A-) > 0 and TSE (A-, y+) > 0
4. Find event PN and expressions for TSEs
 (i) TSE (B+, A-) = DB+A- - DB+

 TSE (A-, x+) = DB+x+ - DB+A-

 (ii) TSE (B+, A-) = DA+B+A- - DA+B+

 TSE (A-, y+) = DA+y+ - DA+B+A-

5. Thus, the constraint is:
 (DB+ < DB+A- < DB+x+) ^ (DA+B+ < DA+B+A- < DA+y+)
Repeat Step 2 to 5 for t = x+:
6. For t = x+, L = {A-}, U = {y-}
7. (A-, x+, y-) ⇒ TSE (A-, x+) > 0 and TSE (x+, y-) > 0
8. TSE (A-, x+) = DB+x+ - DB+A-

 TSE (x+, y-) = DB+A-y- - DB+x+

9. Thus, the constraint is: DB+A- < DB+x+ < DB+A-y-

This example shows two important features: (1) multiple
sub-constraints in a single RT constraint when multiple u (escap-
ing) events exist and (2) derivation of two-sided constraints (o
DB+x+) which are composed of three different path delays.
Notice that if we had only a single-sided constraints here, such
DB+x+ < DB+A-y-, we would remove good states, such as states

11010, 11011, 11111 in this example, which in general may lead
to worse circuit performance or false negatives.

For simplicity of exposition, these examples included only
static gates. However, the proposed procedure can be directly
applied to self-resetting and clock-delayed domino circuits by

Figure 6: (a) Event PNs, (b) path delays on the circuit

 (b)

C+

C+

B-

u3+

u2+

A-

(a)

A

B

C

u1

u2

u3

E
N
V

Figure 7: A circuit requiring two-sided constraints: (a) spec-
ification SG, (b) circuit, (c) behavioral model SG.

(a)

00000

10000

State = [A B C x y]

01010

01000

01011

01001

01111

00111

F

A+

C-

y-

11001

11000

y+B+

 A-

y+ B+
10001

A-

11011

11010

x+

x+y+

C+

A-

A-
x+

x+

y+

C+

A-

B-

00101

x-

00100

y-

11111

C

A

B
C

x
y

(b)

(c)

000

State = [A B C]

100

001

A+

C-

011

110

010111

C+ A-

B+

B-

C+A-

x

A

B
y

C
C

E
N
V

 Figure 8: (a) Event PN, (b) path delays on the circuit
(b)

x+

A- y-

B+

y+A+

(a)

creating corresponding gate models (e.g., a Petri net model of a
dynamic NAND gate).

7 Conclusions

We presented novel verification techniques for supporting
the design of aggressive timed and advanced domino circuits.
These techniques identify a set of two-sided path delay con-
straints that are sufficient to guarantee the circuit works as
expected.

We are currently refining and implementing these algorithms
(using symbolic techniques) and hope to soon be able to demon-
strate their effectiveness on both aggressively designed synchro-
nous and asynchronous circuits and subsequently its utility to
circuit designers.

Acknowledgments

The authors are grateful to Jordi Cortadella and Luciano Lavagno
for insightful discussions on this work.

References

[1] J. Cortadella, M. Kishinevski, L. Lavagno, and A. Yakovlev. Syn-
thesizing Petri Nets from State-Based Models. In Proc. Int. Conf.
on Computer-Aided Design, Nov. 1995.

[2] R. Negulescu and A. Peeters. Verification of Speed-Dependences in
Single-Rail Handshake Circuits. In Proc. International Symposium
on Advanced Research in Asynchronous Circuits and Systems,
1998.

[3] K. Stevens, R. Ginosar, and S. Rotem. Relative Timing. To appear
in Proc. Int. Symp. on Advanced Research in Asynchronous Circuits
and Systems, 1999.

[4] S. Rotem, K. Stevens, R. Ginosar, P. Beerel, C. Myers, K. Yun, R.
Kol, C. Dike, M. Roncken, and B. Agapiev. RAPPID: An Asyn-
chronous Instruction Length Decoder. To appear in Proc. Int. Symp.
on Advanced Research in Asynchronous Circuits and Systems,
1999.

[5] W. Belluomini, C.J. Myers, and H.P. Hofstee. Verification of
Delayed-Reset Domino Circuits Using ATACS. To appear in Proc.
Int. Symp. on Advanced Research in Asynchronous Circuits and
Systems, 1999.

[6] J. Cortadella, M. Kishinevski, A. Kondratyev, L. Lavagno, and A.
Yakovlev. A Region-Based Theory for State Assignment in Speed-
Independent Circuits. IEEE Trans. Computer-Aided Design, vol.
16, pp. 793-812, Aug. 1997

[7] J. Cortadella, M. Kishinevski, A. Kondratyev, L. Lavagno, A.
Taubin, and A. Yakovlev. Lazy transition systems: application to
timing optimization of asynchronous circuits. In Proc. Int. Conf. on
Computer-Aided Design, Nov. 1998.

[8] D. Van Campenhout, T. Mudge, and K. A. Sakallah. Timing Verifi-
cation of Sequential Domino Circuits. In Proc. Int. Conf. on Com-
puter-Aided Design, Nov. 1996.

[9] V. Narayanan, B. A. Chappell, and B. M. Fleischer. Static timing
analysis for self-resetting circuits. In Proc. Int. Conf. on Computer-
Aided Design, Nov. 1996.

[10] K. Bernstein, K. M. Carrig, C. M. Durham, P. R. Hansen, D.
Hogenmiller, E. J. Nowak, and N. J. Rohrer. High Speed CMOS
Design Styles. Norwell, MA: Kluwer Academic Publishers, 1998.

[11] G. Yee and C. Sechen. Clock-Delayed Domino for Adder and Com-
binational Logic Design. In Proc. Int. Conf. on Computer Design,
Oct. 1996.

[12] W. Belluomini and C.J. Myers. Verification of timed systems using
POSETs. In Proc. Int. Conf. on Computer Aided Verification.
Springer-Verlag, 1998.

[13] K. Nowka, T. Galambos, and S. Dhong. Circuit design techniques
for a Gigahertz integer microprocessor. In Proc. Int. Conf. on Com-
puter Design, Oct. 1998.

[14] E. J. Shriver, D. H. Hall, N. Nassif, N. E. Raham, N. L. Rethman, G.
Watt, and J. A. Farrel. Timing verification of the 21254: A 600 Mhz
full-custom microprocessor. In Proc. Int. Conf. on Computer
Design, Oct. 1998.

[15] S. Chakraborty and D. L. Dill. More Accurate Polynomial-Time
Min-Max Timing Simulation. In Proc. International Symposium on
Advanced Research in Asynchronous Circuits and Systems, 1997.

[16] A. Xie, S. Kim and P. A. Beerel. Bounding Average Time Separa-
tions of Events in Stochastic Timed Petri Nets with Choice. To
appear in Proc. Int. Symp. on Advanced Research in Asynchronous
Circuits and Systems, 1999.

[17] D. L. Dill. Trace theory for automatic hierarchical verification of
speed-independent circuits. MIT Press, 1988.

[18] V. Vakilotojar and P. A. Beerel. Hiding Memory Elements in
Induced Hierarchical Verification of Speed-Independent Circuits. In
Workshop Notes of International Workshop on Logic Synthesis,
1998

[19] T. Yoneda and T. Yoshikawa. Using partial orders for trace theoretic
verification of asynchronous circuits. In Proc. International Sympo-
sium on Advanced Research in Asynchronous Circuits and Systems,
1996.

[20] T. Yoneda and H. Ryu. Timed Trace Theoretic Verification Using
Partial Order Reduction. In Proc. International Symposium on
Advanced Research in Asynchronous Circuits and Systems, 1999

	1 Introduction
	2 Relative Timing (RT) based verification
	3 Background
	4 Relative Timing Constraints
	5 Algorithms
	6 Examples
	7 Conclusions
	[1] J. Cortadella, M. Kishinevski, L. Lavagno, and A. Yakovlev. Synthesizing Petri Nets from Stat...
	[2] R. Negulescu and A. Peeters. Verification of Speed-Dependences in Single-Rail Handshake Circu...
	[3] K. Stevens, R. Ginosar, and S. Rotem. Relative Timing. To appear in Proc. Int. Symp. on Advan...
	[4] S. Rotem, K. Stevens, R. Ginosar, P. Beerel, C. Myers, K. Yun, R. Kol, C. Dike, M. Roncken, a...
	[5] W. Belluomini, C.J. Myers, and H.P. Hofstee. Verification of Delayed-Reset Domino Circuits Us...
	[6] J. Cortadella, M. Kishinevski, A. Kondratyev, L. Lavagno, and A. Yakovlev. A Region-Based The...
	[7] J. Cortadella, M. Kishinevski, A. Kondratyev, L. Lavagno, A. Taubin, and A. Yakovlev. Lazy tr...
	[8] D. Van Campenhout, T. Mudge, and K. A. Sakallah. Timing Verification of Sequential Domino Cir...
	[9] V. Narayanan, B. A. Chappell, and B. M. Fleischer. Static timing analysis for self-resetting ...
	[10] K. Bernstein, K. M. Carrig, C. M. Durham, P. R. Hansen, D. Hogenmiller, E. J. Nowak, and N. ...
	[11] G. Yee and C. Sechen. Clock-Delayed Domino for Adder and Combinational Logic Design. In Proc...
	[12] W. Belluomini and C.J. Myers. Verification of timed systems using POSETs. In Proc. Int. Conf...
	[13] K. Nowka, T. Galambos, and S. Dhong. Circuit design techniques for a Gigahertz integer micro...
	[14] E. J. Shriver, D. H. Hall, N. Nassif, N. E. Raham, N. L. Rethman, G. Watt, and J. A. Farrel....
	[15] S. Chakraborty and D. L. Dill. More Accurate Polynomial-Time Min-Max Timing Simulation. In P...
	[16] A. Xie, S. Kim and P. A. Beerel. Bounding Average Time Separations of Events in Stochastic T...
	[17] D. L. Dill. Trace theory for automatic hierarchical verification of speed-independent circui...
	[18] V. Vakilotojar and P. A. Beerel. Hiding Memory Elements in Induced Hierarchical Verification...
	[19] T. Yoneda and T. Yoshikawa. Using partial orders for trace theoretic verification of asynchr...
	[20] T. Yoneda and H. Ryu. Timed Trace Theoretic Verification Using Partial Order Reduction. In P...

